IMORPHE: An Inheritance and Equivalence Based
Mor phology Description Compiler

Violetta Cavalli-Sfor za, Abdelhadi Soudi

Language Technologies Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15217, U.S.A.
violetta@cs.cmu.edu

Center for Computational Linguistics, Ecole Nationale de I'Industrie Minérale
Avenue Hadj Ahmed Cherkaoui, B.P. 753, Agdal, Rabat, Morocco
asoudi @enim.ac.ma, asoudi2002@yahoo.fr

Abstract

IMORPHE is a significantly extended version of MORPHE, a morphology description compiler. MORPHE’s morphology description
language is based on two constructs: 1) a morphological form hierarchy, whose nodes relate and differentiate surface forms in terms of
the common and distinguishing inflectional features of lexical items; and 2) transformational rules, attached to leaf nodes of the
hierarchy, which generate the surface form of an item from the base form stored in the lexicon. While MORPHE's approach to
morphology description is intuitively appealing and was successfully used for generating the morphology of several European
languages, its application to Modern Standard Arabic yielded morphological descriptions that were highly complex and redundant.
Previous modifications and enhancements attempted to capture more elegantly and concisely different aspects of the complex
morphology of Arabic, finding theoretical grounding in Lexeme-Based Morphology. Those extensions are being incorporated in a
more flexible and less ad hoc fashion in IMORPHE, which retains the unique features of our previous work but embeds them in an
inheritance-based framework in order to achieve even more concise and modular morphology descriptions and greater runtime
efficiency, and lays the groundwork for IMORPHE to become an analyzer as well as a generator.

1. Introduction

Computational models of morphology, particularly for
languages with complex morphology (e.g., Semitic
language root-and-pattern morphology and Amerindian
language polysynthetic morphology) have attracted
significant attention from the computational linguistics
community over the last two decades. Morphological
analyzers and generators play an important role in many
natural language processing technol ogies and applications,
ranging from monolingual and cross-lingual information
retrieval to natura language generation, from machine
tranglation to computer-assisted language learning.

Severa different approaches to computational
morphology have been proposed. The MORPHIX system
(Finkler and Neumann, 1988) used a classification-based
approach to German morphological analysis, and
combined trie data structures with finite-state technology.
Starting with the genera two-level morphology model
(Koskenniemi, 1983), a number of other approaches based
on finite-state transducers have specifically addressed the
morphology of Semitic languages in general, and Arabic
in particular (Beesley et al., 2989; Beesley, 1996; Kiraz,
1998, 2000). These approaches are formally elegant,
computationally efficient, and inherently bidirectional, but
they can be quite difficult to build and maintain.
Characteristically, they give equal status to different
components of the word (root, pattern, prefixes and
suffixes), a claim that is contested by some linguists. For
Modern Standard Arabic, at least, the dictionary-
morphology connection is somewhat problematic, since
the mapping between root-plus-pattern and meaning is not
as systematic as one might wish and meanings are more
reliably associated with stems.

More recently, researchers on Modern Standard Arabic
morphology have argued that stem-grounded lexical
databases, whose entries are associated with grammar and
lexis specifications, are the most appropriate way of
organizing and storing pertinent information for Arabic
(Dichy & Farghaly, 2003; Cavali-Sforza & Soudi,
forthcoming). Indeed, the most commonly used Arabic
morphological analyzer (Buckwalter, 2004) is stem-based,
though it still treats inflectional and other prefixes and
suffixes as equal-status items, relying on dictionaries of
prefixes, stems and suffixes and on compatibility tables to
perform analysis. The Buckwalter analyzer has also been
re-engineered for use in generation (Habash, 2004).

Departing from the knowledge-based tradition of
hand-coded rules and lexicons, which also includes
Prolog-rule based approaches (e.g., Macks, 2002), several
authors have developed systems that learn Semitic
morphology from corpora (Darwish, 2003; Itai & Segal,
2003; Marsi et al., 2005), possibly aided by user feedback
(Abuleil et a., 2002). Since (semi-)automeatic learning of
morphology is a practica and quick way of acquiring
morphological knowledge (modulo tagging work required
for training), empiricaly-based approaches are a
promising for acquiring new morphological knowledge.

Our work on IMORPHE is grounded in the
knowledge-based tradition, in that it requires a hand-
coded morphology description, but the description is
written in a smple and intuitively appealing formalism
consisting of two components. The first is a hierarchy of
morphological forms defined by the intrinsic features of
lexical items and the additional features attributed (in
generation) or extracted (in anaysis) by a client, features
that are common to groups of forms or distinguish forms
from one another. The second is a set of transformational
rules. In generation, which has been our focus to date, the

L Work on EMORPHE and IMORPHE has been partialy supported by grant OISE-0107369 from the National Science Foundation.

condition part of the rule performs regular expression
matching and the action part modifies the dictionary form
of a lexica item. This much was aready present in
MORPHE, the tool that our work is based on. In order to
reduce the bushiness of the hierarchy and minimize
redundancy in a morphological descriptions, as well as to
make explicit the similarity of different morphological
forms across distant portions of the hierarchy, we
augmented MORPHE with a number of linguistically and
practicaly motivated enhancements. Most recently, we
have been casting those enhancements in an inheritance-
based framework, asis naturally suggested by the use of a
morphological form hierarchy. Although differing in
formalism, search strategy and implementation, our work
bears a clear relaionship to the approach taken in
DATR/KATR (Finkel & Stump, 2002) to generating
Hebrew verb morphology. While much of the impetus
for developing IMORPHE has come from using
MORPHE with Modern Standard Arabic, the framework
itself is completely language independent and its earlier
and simpler versions have indeed been applied to severa
other languages including English, French, German,
Italian, Portuguese, Russian, and Spanish.

In the remainder of this paper, we take a historical
approach to IMORPHE's development. We begin by
describing the original MORPHE system and some of the
extensions included in EMORPHE (Cavalli-Sforza &
Soudi, 1993), motivating those extensions with a brief
overview of Arabic morphology. We then discuss the
limitations of EMORPHE, how those were addressed in
IMORPHE, and provide some details about the specific
differences between the two systems. We conclude with
some remarks about IMORPHE's application to Modern
Standard Arabic, present status and future work.

2. TheOriginal MORPHE Compiler

IMORPHE's approach to morphology description is
drawn from the original MORPHE Morphological Rule
Compiler (Leavitt, 1994), developed at Carnegie Mellon
University in the mid 90's, and from more recent
linguistically—motivated enhancements designed to
capture, in a concise and elegant way, the structure of
words in languages with complex morphologies.
MORPHE was developed in the context of the KANT
machine trandation project (Nyberg & Mitamura, 1992)
and was used in trandation from English to several target
languages. The much simpler morphology of English,
was anayzed with a different tool, so the anaysis
capability of the MORPHE was never fully implemented.
At present, MORPHE and its successors still function only
as generators of surface morphological forms; analysis is
left for future work.

MORPHE’s approach is centered on the concept of a
Morphological Hierarchy Form (MFH). The MFH relates
and contrasts different morphological forms — the leaf
nodes of the hierarchy — by specifying, for each node on
the path from the root to a leaf, the combination of
features and values that distinguish a node from its parent
and siblings. Transformational rules, attached to the |eaf
nodes, add, remove and replace prefixes, suffixes and
infixes, and perform regular substring mappings that result
in the surface form of aword. A morphology description
for a language consists of the specification of the MFH
and a set of transformational rules. MORPHE compiles

the morphology description into Common Lisp functions
that are themselves optionally compiled into object code
for faster runtime performance.

In generation, MORPHE takes as its runtime input a
feature structure (FS) that representing the lexical item
that MORPHE must transform. The FS includes the base
(dictionary) form of the item, itsintrinsic (static) features,
obtained from the lexicon, and extrinsic (dynamic)
features obtained from the client, for example a sentence
generator or a machine translation system. The base form
is identified by a specific feature name. The input is
pushed down a path in the MFH, which acts as a
discrimination net, by matching feature-value pairs in the
MFH and the FS at each node. When a leaf node is
reached, transformational rules are applied to the base
form of the input to produce a string output.

3. Extending MORPHE for Arabic

While MORPHE's MFH-plus-transformational rules
approach is a conceptually attractive way of organizing a
morphology description, the limitations of the morphol ogy
description language in the originll MORPHE system
proved unwieldy when applied to languages with complex
root-and-pattern morphology such as Modern Standard
Arabic (MSA). While a full description of Arabic
morphology is beyond the scope of this paper, we
highlight the major features that are relevant to the
development of IMORPHE and its predecessors.
Further details are provided in our previous work (Cavalli-
Sforza & Soudi, 2003, forthcoming; Soudi et al., 2002,
2001, 2002; Cavalli-Sforza et a., 2000).

3.1. Arabic Morphology

The parts of speech that are inflected in MSA are
verbs, nouns and adjectives. Additional bound
morphemes that can also occur as prefixes or suffixes
include: conjunctions, prepositions, vocative, exclamation
and question particles and the future particle “sa’ as
prefixes;, possessive and direct object pronouns as
suffixes. The definite article “Al” is always attached to
and precedes the noun or adjective, and loses the “A” with
the preposition “1i”. The morphology of Arabic didectsis
similar to but simpler than that of MSA. In what follows
we focus on the inflectional morphology of MSA.

3.1.1. ArabicVerb Morphology

The Arabic verbal system is very rich in forms.
Arabic verbs are based on three or four radicals, the letters
that constitute the skeleton of the verb. An Arabic verb
can be conjugated according to one of the traditionally
recoghized patterns. 15 triliteral patterns (with 3 radicals),
of which at least 9 are in common use, and 4 less common
quadriliteral patterns with 4 radicals), some quite rare.
Verb patterns are derived by composing the verb root with
different vowel and consonant patterns. Within each
pattern, verbs have two aspectsitenses (perfect and
imperfect), five moods (indicative, subjunctive, jussive,
imperative and energetic), and two voices (active and
passive) for transitive verbs.

Verb inflection occurs through the concatenation of
prefixes and suffixes with the stem. Infix modifications
(stem changes) may occur in the presence of certain
syntactic features and “weak” consonants (‘w’ or 'y’') as
radicals, and through a change of stem vowel between the

perfect and imperfect. In verbs of pattern 1 (the smplest
triliteral pattern), thisis not generally predictable. Severa
of the patterns share the same prefixes and/or suffixes, but
these interact with stems beginning and ending in weak
and other consonants to yield a complexly varied
orthography in inflected forms.

There are 13 person-number-gender combinations, as
Arabic only distinguishes between singular and plural
number for 1% person, but aso adds dual and gender
distinctions for 2" and 3 persons.

3.1.2. Arabic Noun and Adjective M or phology

Arabic nouns and adjectives are adso formed via the
intersection of three or four consonant radicals with vowel
and consonant patterns. They present an inflectional
paradigm based on definiteness (definite, indefinite), case
(nominative, genitive, accusative) and number (singular,
dudl, plural).

A minority of nouns have sound plurals, which are
regularly formed through the addition of suffixes that
depend on grammatical gender and case. More common
are broken plurals, which entail stem changes according to
various patterns that are not predictable from the singular

noun pattern. Broken plurals behave, under inflection,
similarly to singular nouns. Dua inflection occurs
through regular prefixes.

Adjectives are not strongly distinguished from nouns,
and also may have sound and broken plurals. However,
due to the special agreement rules of Arabic, adjectives
modifying plura non-human nouns take a singular
feminine inflection, so that relatively few adjectives are
actually ever pluralized.

3.2. Initial Extensonsto MORPHE

We began by using MORPHE to describe Arabic
verbal morphology. The richness of the inflectional
paradigm for verbs and the stem changes occurring in
verbs with weak radicals, combined with the restriction
that transformational rules could only be attached to |eaf
nodes of the MFH, and only one rule per node, gave rise
to extensive and highly redundant descriptions for even a
subset of the full range of inflected forms. In an effort to
aleviate these problems, we split the generation process
into two steps: 1) generation of stems and 2) generation of
prefixes and suffixes. The MFH was given separate
subtrees for these two processes and MORPHE was called
twice to obtain the final inflected forms (Cavalli-Sforza et
a., 2000). Our representation of the base form of lexical
items was stem-based, since it is stems and not roots that
have specific meaning. Stem changes, as well as prefix
and suffix additions, were effected through
transformational rules but, in order to decide which vowel
change to apply to a stem in the imperfective, werelied on
information associated with an item in the lexicon.

Some theoretical and computational treatments of
morphology have given equal status to morphemes
representing meanings (lexemes) and to grammatical
morphemes such as gender and number inflections,
placing them in separate dictionaries (e.g. Kiraz, 2000;
Buckwalter, 2004). MORPHE's treatment of stems as
primary morphemes and of inflectiona affixes as
transformations applied to stems deviates from that
conception of morphology but agrees well with the theory
of Lexeme-Based Morphology (Aronoff, 1994; Beard,

1995; Soudi et a., 2001). The next step was to consider
inflection of nouns and, in particular, how to handle
broken plurals within the same framework (Soudi et al.,
2002). Although the singular and plural have a different
stem, they are forms of the same lexeme and should not be
treated as separate lexicon entries. However, since the
plural stem cannot be predictably derived from the
singular, it must be associated with the singular in the
lexicon as an alternate base form.

Experience with the origind MORPHE and
comparison with Lexeme-Based Morphology, suggested a
number of theoretically motivated extensions to
MORPHE's description language:

1) Allomorph declarations support stem aternations
linked to specific lexica items, are associated with a
node in the MFH, and direct MORPHE to look for an
aternate base form in the input FS.

2) Default rules, attached to pre-leaf nodes, describe
transformations associated with most but not al nodes
in an MFH subtree. The more specific (exceptional)
transformations are attached to the leaf nodes.

3) Equivalence declarations express the equivalence of
transformations across different portions of the MFH.
This construct clearly corresponds to the rules of
referral postulated by Lexeme-Based Morphol ogy.

4) Implicit equivalencing of nodes states that the same
node can be reached through different feature-value
paths in the MFH, turning the hierarchy into a graph.

The above language extensions allowed us to describe
the fully diacritized inflected forms of strong and hollow
verbs (verbs with a weak middle radical) and sound and
broken noun plurals for MSA even more compactly,
showing explicitly which forms behave similarly and
reducing the redundancy of the description.

Additional system extensons were targeted at
facilitating the development of large morphology
descriptions. The Enhanced MORPHE tool (EMORPHE)
(Cavalli-Sforza & Soudi, 2003) accepts morphology
descriptions spread across multiple files. It also includes a
facility for thoroughly testing the morphology description
by automatically generating al forms of a collection of
representative lexical items and comparing them to
expected results.

3.3. EMORPHE’sLimitations

While EMORPHE significantly enhances origina
MORPHE, it ill falls short of providing an optimally
concise and elegant framework for describing the
morphology of languages such as MSA. We characterize
those languages as displaying a richness of inflectional
forms distinguished by classes of stem alternations,
prefixes and suffixes that are shared by some but not all
forms. Our goad was to more concisely capture
regularities in the morphologica descriptions of such
languages while also improving runtime efficiency.

Conciseness: Because in (E)]MORPHE a single rule
can be attached to a node, a rule must take care of all
necessary transformations, which makes rules monolithic
and redundant across forms that share similar affix
changes. Recall that this problem was the motivation for
initially splitting the generation process into two phases; it
was further aleviated, but not completely eliminated, by
equivalence declarations in EMORPHE.

Efficiency: In the two-stage approach still used in
EMORPHE to generate the fully inflected form of a
lexical item, redundant work is performed in checking the
features in the input FS twice, once for determining the
appropriate stem, then again for determining the prefix
and suffix. Since the stem subtree is relatively shallow, at
least for nouns and for sound and hollow verbs, the cost in
time is not high, but avoiding it altogether would be
better. Furthermore, the two-stage process complicates
extending EMORPHE to perform analysis.

The next section describes how our current work seeks
to address the two issues of conciseness and efficiency.

4. IMORPHE

IMORPHE, is an inheritance-and-equivalence based
reformulation of MORPHE. It retains MORPHE's
original conception of morphology description based on
an MFH and transformational rules, and the equivalence
and allomorph declarations of EMORPHE, but casts them
in an inheritance-based framework with more modular
rules. Transformational rules and allomorph declarations
can be attached to any node in the hierarchy and inherited,
canceled, or overridden by children nodes, thereby
generalizing EMORPHE's default rules. The restriction
of one rule per node is removed: multiple rules can be
attached to any node or defined as global rules to be used
by interested nodes. Via an extended equivalence
declaration, a node can “borrow” (use) some or al rules
present on other nodes (or even just some of their clauses),
and/or use a globa rule. Finally, a node can change the
order of application of itsinherited and/or borrowed rules.

The above extensions, described below in greater
detail, required significant additions to the morphology
description language, and the morphology description
compiler must do significantly more work to collect and
adjust the information associated with each inflected form.
However, runtime generation of inflected forms is
performed in a single pass through the MFH, as in
IMORPHE’s predecessors. In addition IMORPHE retains
backwards compatibility by being able to compile
morphology descriptions that use only MORPHE and
EMORPHE declarations.

4.1. TheMorphology Description Language

A full Extended BNF specification of IMORPHE's
morphology description language is beyond the scope of
this paper, but we highlight below its major constructs and
point out its relationship with (E)MORPHE’s constructs.

4.1.1. MORPH-FORM Declarations
IMORPHE’s MFH is built through a set of mor ph-
form declarations. The simplest syntax is:

(MORPH- FORM <node> <par ent > <FS- pi eces>)

where <node> is the new node being created, <parent> is
its parent node, and <FS-pieces> is one or more feature-
value pairs that distinguish the node from its parent and, if
present in a lexicd item's FS at runtime, will alow it to
reach this node.

This simple declaration, already present in (E)MORPHE,
is supplemented in IMORPHE by three optional dlots
(:allomorph, :rules, :inherit) whose contents alow
associating with the node, locally and more precisely,
alomorph, rule and inheritance information.

The extended syntax of a morph-form declaration,
which gives IMORPHE an object-oriented flavor, isthen:

(MORPH- FORM <node> <par ent > <FS- pi eces>
:al | omor ph <al | onor ph- spec>
crules <rul es- spec>
sinherit <i nheritance- spec>

)

The :allomorph and :rules dots are described
further below. The :inherit dot is used by an implicitly
equivalenced node (a node with the same name as another
node but reached through a different FS path through the
MFH), in order to specify through which path to inherit
information. Additional :position subdots in each of the
:allomorph and :rules dot are used to reorder allomorph
substitutions and rules acquired through inheritance.

412. MORPH-ALLOMORPH Declarations

The morph-allomorph declaration, introduced in
EMORPHE, associates with a node a directive to searchin
the FS for an alternate base form to which apply further
transformations. Only one allomorph is allowed on any
given node. The syntax used in EMORPHE is:

(MORPH- ALLOMORPH <node> <f eat ur e>)

where <feature> is the name of the FS feature whose value
contains the alternate base form. In IMORPHE, this syntax is
retained and extended with an optional <position>
specifier, which alows changing the order of application
of this operation relative to other rules associated with a
node. A morph-allomorph declaration can be placed
anywhere in the file after the <node> itself has been
created through a morph-form declaration. This
mechanism for declaring allomorph information, detached
from node creation, is retained for backwards
compatibility. In IMORPHE, the same effect is obtained
by attaching the information directly to the node itself
through the :allomorph dot, in an :own subslot. The
:allomorph dlot further permits specifying whether the
node cancels alomorph information coming from an
ancestor or overrides it with information locally specified
on the node or borrowed through an equivalence (see
below) to another node.

41.3. MORPH-(G)RULE Declarations
A mor ph-rule declaration attaches a transformational
ruletoanode. The basic syntax of aruleis:

(MORPH- RULE <node> <cl ause>*)
A <clause> is defined as:
(<regexp-pattern> <operation>*)

where <regexp-pattern> is a regular expression string that
matches against the base form of a lexica item and
<operation> is a list of operations to be applied to that
base form if the test is successful. This rule declaration
syntax is retained in IMORPHE but augmented and
supplemented in several ways.

Firstly, in IMORPHE, unlike its predecessors, more
than one rule can be attached to a node. |If there are
multiple morph-rule declarations naming a node, they
will be attached to the node in the order in which they are
read in. However, as for mor ph-allomor ph declarations,
the above rule declaration syntax is augmented by
alowing as the last element a <position> specifier which

states the order in which the rule should be applied to the
base form relative to other rules and alomorph
substitution:

(MORPH RULE <node> <cl ause>* [<position>])

Secondly, in order to make rules less monoalithic, that
is, to alow pieces of rules to be borrowed and used by
other nodes, both clauses and operations are optionally
named (and should be named if they are to be borrowed).

Thirdly, a new morph-grule declaration allows a
“global” rule (arulethat is not a priori associated with any
node) to be defined, with the expectation that it will be
used by multiple other nodes.

Findly, rules can be attached directly to a node in a
mor ph-for m declaration through the :rules slot and :own
subglot, where they can aso be optionaly be named (if
they are to be borrowed). In addition to declaring rules
for a node, the :rules dot specifies whether the node
borrows rules and rule pieces from other nodes, uses
global rules, cancels rule information coming from an
ancestor and/or supplements it with rule pieces from other
nodes and/or a global rule. Rules attached to a node via
the :rules slot and/or via a mor ph-rule declaration, can
be reordered with respect to each other and an alomorph
substitution. It is the compiler's job to cumulate and
reorder the rule information.

4.1.4. MORPH-EQUIVALENCE Declarations

EMORPHE uses a mor ph-equivalence declaration, to
state that one node was to be considered equivalent to
another node and could borrow rules associated with that
node. A node can be equivaenced to only one other node
but could have multiple nodes equivalenced to it. The
syntax, retained in IMORPHE, is:

(MORPH- EQUI VALENCE <conmmon- node>
(<equiv-node>+))

and says that each of the <equiv-node>s is like <common-
node>. The latter could be an actual node in the MFH, or
avirtua node to which rule information could be attached
through mor ph-rule declarations.

IMORPHE also alows information to be borrowed
from other nodes more selectively through the : allomor ph
and :rules dotsin the morph-form declaration.

4.2. ThelMORPHE Compiler

In (E)MORPHE, rules and allomorphs are attached
only to prelleaf and leaf nodes of the MFH and
compilation of a morphology description required asingle
pass through the MFH in order to generate the
CommonLisp functions that then generate morphol ogical
forms at runtime. However, in order to achieve a
minimally redundant morphological description for a
language such as Arabic, where morphologica forms
share several stem, prefix and suffix transformations, the
MFH was split into two parts (stem/infix and prefix plus
suffix transformations) and the generation process at
runtime required two passes. IMORPHE replaces the
simple compilation process with one that requires severa
passes, but, once the morphology description is fully
compiled, runtime generation occurs in asingle step.

Thefirst passreadsin all morphology description files,
checking the syntax of declarations and building the MFH.
Allomorph, rule, equivalence and inheritance information

is attached to the MFH nodes in a preliminary way that
closely mirrors the structure of the description files.

In the second pass, the compiler navigates the MFH
using the preliminary attachment information to actually
find and attach to the nodes the appropriate alomorphs
and rules. Inherited information is percolated down,
canceled or overridden. Information from equivalencesis
retrieved, selected or overridden. Finally, the results are
assembled, resulting in the possible creation of new rules
from pieces of existing rules.

The third pass applies ordering constraints on
allomorphs and rules to produce a fina sequence of
operations (allomorph substitutions and transformations)
for each node in the MFH.

The fourth and final pass reuses parts of the old
MORPHE compiler to create the Common Lisp functions
that implement the compiled morphology description.

Compilation may stop at the end of the first or the
second pass if syntactic or semantic errors are found or
names cannot be resolved. The third pass may produce
warnings about ambiguous reordering, but compilation
will otherwise run al the way through.

4.3. Using IMORPHE with Arabic

At the time of this writing, the IMORPHE compiler is
fully designed but still under implementation. We are
testing each compilation phase using morphology
descriptions developed while using EMORPHE for strong
and hollow (weak middle radical) Arabic verbs and noun
inflection, and augmenting the test suite with some
defective (weak final radical) and assimilated (weak initial
radical) verbs.

Allomorph attributions and other stem change
infformation are attached higher in the MFH than
prefix/suffix transformational rules. In generating the
inflected forms, the resulting stem modifications are
performed before prefix and suffix additions. Inheritance
alows prefix and suffix rules to be attached at the point of
highest coverage and overridden in specific cases.
Equivalencing, multiple rules, and rule naming allow rules
to be attached to a single appropriate node, and borrowed
by other nodes in the MFH. The result is a morphology
description where rules are specified only once, but may
be used by multiple nodes in the MFH, even distant ones.
The resulting morphology description is relatively ssimple,
minimally redundant, and shows clearly the similarities
between different forms, even those that are distant from
each other in the MFH.

5. Conclusions and Future Work

We have described the evolution, design and current
state of the IMORPHE morphology description compiler.
While IMORPHE’'s morphology description language
incorporates several ideas that conveniently address
characteristics of Modern Standard Arabic morphology,
IMORPHE is language independent. Its use with MSA
has pushed the tool’s development in a direction that
supports minimally redundant morphological descriptions
and makes explicit the similarities of related
morphological forms.

At present, work on the compiler is till in progress
and, when completed, will give IMORPHE full generation
capability. Turning IMORPHE into an analyzer will be
one of the next steps but one further extension, prior to

proceeding to work on anaysis, will be the addition of
optional rules. These will allow IMORPHE to support
prefixes — such as prepositions and conjunctions — and
suffixes — such as possessive and direct object pronouns —
that are attached to words but are not part of the
inflectional morphology of the language and may or may
not be present. We expect the final tool, including the
testing system, to be available through Carnegie Mellon
University's Language Technologies Ingtitute under a no
cost licensing agreement for research use.

6. References

Abuleil, S, Alsamara, K. & Evens, M. (2002).
Acquisition System for Arabic Noun Morphology. In
Proceedings of the Workshop on Computational
Approaches to Semitic Languages, Conference of the
Association for Computational Linguistics (ACL 2002),
Philade! phia, pp. 19-26.

Aronoff, M. (1994). Morphology by Itself: Stems and
Inflectional Classes. Cambridge, MA: MIT Press.

Beard, R. (1995). Lexeme-Morpheme Base Morphology: A
General Theory of Inflection and Word Formation.
New York, NY: State University of New Y ork Press.

Beedey, K., Buckwalter, T. & Newton, S. (1989). Two-
Level Finite-State Analysis of Arabic Morphology. In
Proceedings of the Seminar on Bilingual Computing in
Arabic and English, Cambridge, England.

Beedey, K. (1996). Arabic Finite-State Morphological
Analysis and Generation. In Proceedings COLING’ 96,
Vol. 1, pp. 89-94.

Buckwalter, T. (2004). Buckwalter Arabic Morphological
Analyzer Version 2.0. Linguistic Data Consortium,
University of Pennsylvania. LDC Catalog Number:
LDC2004L02, www.ldc.upenn.edu/Catal og/.

Cavalli-Sforza, V. & Soudi A. (forthcoming). Arabic
Computational Morphology: A Tradeoff between
Multiple-Operations and Multiple-Stems. In Arabic
Computational Morphology: Knowledge-based and
Empirical Methods. In A. Soudi, A.Van den Bosch, G.
Neumann (Eds.). Arabic Computational Morphology:
Knowledge-based and Empirical Methods,
Kluwer/Springer's series on Text, Speech and Language
Technology.

Cavalli-Sforza, V. & Soudi A. (2003), Enhancements to a
Morphological Generator to Capture Arabic
Morphology. In Proceedings of the Eighth International
Symposium on Social Communication, Center of
Applied Linguistics, Santiago de Cuba, pp. 565-570.

Cavali-Sforza, V., Soudi, A., & Mitamura, T. (2000),
Arabic Morphology Generation Using a Concatenative
Strategy. In Proceedings of the First Meeting of the
North American Chapter of the Association for
Computational Linguistics (NAACL 2000), Seattle, pp.
86-93.

Darwish, K. (2002). Building a Shallow Arabic
Morphological Analyzer in One Day. |In Proceedings
of the Workshop on Computational Approaches to
Semitic Languages. Conference of the Association for
Computational Linguistics (ACL 2002), Philadelphia,
pp. 9-18.

Dichy, J. & Farghaly, A. (2003). Roots & Patterns vs.
Stems plus Grammar-Lexis Specifications. on what
basis should a multilingual lexical database centred on
Arabic be built?. In Proceedings of the Workshop on

Machine Tranglation for Semitic Languages:. Issues and
Approaches, Ninth Machine Trandation Summit, New
Orleans, pp. 1-8.

Finkel, R. & Stump, G. (2002). Generating Hebrew verb
morphology by default inheritance hierarchies. In
Proceedings of the Workshop on Computational
Approaches to Semitic Languages. Conference of the
Assaciation for Computational Linguistics (ACL 2002),
Philadel phia, pp. 9-18.

Finkler, W. & Neumann, G. (1988). MORPHIX. A Fast
Redlization of a Classification-Based Approach to
Morphology. In H. Trost (Ed.) 4. Osterreichische
Artificial-Intelligence-Tagung. Wiener Workshop -
Wissenshasierte Sprachverarbeitung. Proceedings.
Berlin etc.: Springer, pp. 11-19.

Habash, Nizar (2004). Large Scale Lexeme Based Arabic
Morphological Generation. In Proceedings of
Traitement Automatique du Langage Naturel (TALN-
04). Fez, Morocco.

Itai, A. & Segal, E. (2003). A Corpus Based
Morphological Analyzer for Unvocalized Modern
Hebrew In Proceedings of the Workshop on Machine
Trandation for Semitic Languages. Issues and
Approaches, Ninth Machine Trandation Summit, New
Orleans, pp. 29-36.

Kiraz, G. (1998). Arabic Computational Morphology in
the West. In Proceedings of the Sixth International
Conference and Exhibition on Multi-lingual
Computing, Cambridge.

Kiraz, G. (2000). A Multi-tiered Nonlinear Morphology
using Multi-tape Finite State Automata: A Case Study
on Syriac and Arabic. In Computational Linguistics, 26
(1), pp. 77-105.

Koskenniemi, K. (1983). Two-level morphology: A
General Computational Modd for Word-Form
Recognition and Production. Ph.D. Thesis, University
of Helsinki.

Leavitt, JR. (1994). MORPHE: A Morphological Rule
Compiler. Technical Report: CMU-CMT-94-MEMO.
Macks, A. (2002). Parsing Akkadian Verbs with Prolog.

In Proceedings of the Workshop on Computational
Approaches to Semitic Languages. Conference of the
Assaciation for Computational Linguistics (ACL 2002),

Philadel phia, pp. 3-8.

Marsi, E., Van den Bosch, A., & Soudi, A. (2005).
Memory-based morphological analisis generation and
part-of-speech tagging of Arabic. In Proceedings of the
Workshop on Computational Approaches to Semitic
Languages, Conference of the Association for
Computationa Linguistics, Ann Arbor, pp. 1-8

Nyberg, E., & Mitamura, T. (1992). The KANT system:
Fast, accurate, high-quality trandation in practical
domains. In Proceedings of COLING-9.

Soudi, A., Cavali-Sforza, V., & Jamari, A. (2002). The
Arabic Noun System Generation. In Proceedings of the
International Symposium on The Processing of Arabic,
University of Manouba, Tunisia, pp. 69-87.

Soudi, A., Cavdli-Sforza, V., & Jamari, A. (2001). A
Computational Lexeme-Based Treatment of Arabic
Morphology. In Proceedings of the Arabic Natural
Language Processing Workshop, Conference of the
Association for Computational Linguistics (ACL 2001),
Toulouse, pp. 155-162.

