
IMORPHĒ: An Inheritance and Equivalence Based  
Morphology Description Compiler 

Violetta Cavalli-Sforza, Abdelhadi Soudi 

Language Technologies Institute, Carnegie Mellon University 
5000 Forbes Avenue, Pittsburgh, PA 15217, U.S.A. 

violetta@cs.cmu.edu 
 

Center for Computational Linguistics, Ecole Nationale de l'Industrie Minérale 
Avenue Hadj Ahmed Cherkaoui, B.P. 753, Agdal, Rabat, Morocco  

asoudi@enim.ac.ma, asoudi2002@yahoo.fr 

Abstract 
IMORPHĒ is a significantly extended version of MORPHĒ, a morphology description compiler. MORPHĒ’s morphology description 
language is based on two constructs: 1) a morphological form hierarchy, whose nodes relate and differentiate surface forms in terms of 
the common and distinguishing inflectional features of lexical items; and 2) transformational rules, attached to leaf nodes of the 
hierarchy, which generate the surface form of an item from the base form stored in the lexicon.  While MORPHĒ’s approach to 
morphology description is intuitively appealing and was successfully used for generating the morphology of several European 
languages, its application to Modern Standard Arabic yielded morphological descriptions that were highly complex and redundant.  
Previous modifications and enhancements attempted to capture more elegantly and concisely different aspects of the complex 
morphology of Arabic, finding theoretical grounding in Lexeme-Based Morphology. Those extensions are being incorporated in a 
more flexible and less ad hoc fashion in IMORPHĒ, which retains the unique features of our previous work but embeds them in an 
inheritance-based framework in order to achieve even more concise and modular morphology descriptions and greater runtime 
efficiency, and lays the groundwork for IMORPHĒ to become an analyzer as well as a generator.1 
 

                                                      
1 Work on EMORPHĒ and IMORPHĒ has been partially supported by grant OISE-0107369 from the National Science Foundation. 

1. Introduction 
Computational models of morphology, particularly for 

languages with complex morphology (e.g., Semitic 
language root-and-pattern morphology and Amerindian 
language polysynthetic morphology) have attracted 
significant attention from the computational linguistics 
community over the last two decades.  Morphological 
analyzers and generators play an important role in many 
natural language processing technologies and applications, 
ranging from monolingual and cross-lingual information 
retrieval to natural language generation, from machine 
translation to computer-assisted language learning.   

Several different approaches to computational 
morphology have been proposed.  The MORPHIX system 
(Finkler and Neumann, 1988) used a classification-based 
approach to German morphological analysis, and 
combined trie data structures with finite-state technology.  
Starting with the general two-level morphology model 
(Koskenniemi, 1983), a number of other approaches based 
on finite-state transducers have specifically addressed the 
morphology of Semitic languages in general, and Arabic 
in particular (Beesley et al., 2989; Beesley, 1996; Kiraz, 
1998, 2000).  These approaches are formally elegant, 
computationally efficient, and inherently bidirectional, but 
they can be quite difficult to build and maintain.  
Characteristically, they give equal status to different 
components of the word (root, pattern, prefixes and 
suffixes), a claim that is contested by some linguists.  For 
Modern Standard Arabic, at least, the dictionary-
morphology connection is somewhat problematic, since 
the mapping between root-plus-pattern and meaning is not 
as systematic as one might wish and meanings are more 
reliably associated with stems.   

More recently, researchers on Modern Standard Arabic 
morphology have argued that stem-grounded lexical 
databases, whose entries are associated with grammar and 
lexis specifications, are the most appropriate way of 
organizing and storing pertinent information for Arabic 
(Dichy & Farghaly, 2003; Cavalli-Sforza & Soudi, 
forthcoming).  Indeed, the most commonly used Arabic 
morphological analyzer (Buckwalter, 2004) is stem-based, 
though it still treats inflectional and other prefixes and 
suffixes as equal-status items, relying on dictionaries of 
prefixes, stems and suffixes and on compatibility tables to 
perform analysis. The Buckwalter analyzer has also been 
re-engineered for use in generation (Habash, 2004). 

Departing from the knowledge-based tradition of 
hand-coded rules and lexicons, which also includes 
Prolog-rule based approaches (e.g., Macks, 2002), several 
authors have developed systems that learn Semitic 
morphology from corpora (Darwish, 2003; Itai & Segal, 
2003; Marsi et al., 2005), possibly aided by user feedback 
(Abuleil et al., 2002).  Since (semi-)automatic learning of 
morphology is a practical and quick way of acquiring 
morphological knowledge (modulo tagging work required 
for training), empirically-based approaches are a 
promising for acquiring new morphological knowledge.     

Our work on IMORPHĒ is grounded in the 
knowledge-based tradition, in that it requires a hand-
coded morphology description, but the description is 
written in a simple and intuitively appealing formalism 
consisting of two components.  The first is a hierarchy of 
morphological forms defined by the intrinsic features of 
lexical items and the additional features attributed (in 
generation) or extracted (in analysis) by a client, features 
that are common to groups of forms or distinguish forms 
from one another.  The second is a set of transformational 
rules.  In generation, which has been our focus to date, the 



condition part of the rule performs regular expression 
matching and the action part modifies the dictionary form 
of a lexical item.  This much was already present in 
MORPHĒ, the tool that our work is based on.  In order to 
reduce the bushiness of the hierarchy and minimize 
redundancy in a morphological descriptions, as well as to 
make explicit the similarity of different morphological 
forms across distant portions of the hierarchy, we 
augmented MORPHĒ with a number of linguistically and 
practically motivated enhancements. Most recently, we 
have been casting those enhancements in an inheritance-
based framework, as is naturally suggested by the use of a 
morphological form hierarchy.  Although differing in 
formalism, search strategy and implementation, our work 
bears a clear relationship to the approach taken in 
DATR/KATR (Finkel & Stump, 2002) to generating 
Hebrew verb morphology.   While much of the impetus 
for developing IMORPHĒ has come from using 
MORPHĒ with Modern Standard Arabic, the framework 
itself is completely language independent and its earlier 
and simpler versions have indeed been applied to several 
other languages including English, French, German, 
Italian, Portuguese, Russian, and Spanish.  

In the remainder of this paper, we take a historical 
approach to IMORPHĒ’s development.  We begin by 
describing the original MORPHĒ system and some of the 
extensions included in EMORPHĒ (Cavalli-Sforza & 
Soudi, 1993), motivating those extensions with a brief 
overview of Arabic morphology.  We then discuss the 
limitations of EMORPHĒ, how those were addressed in 
IMORPHĒ, and provide some details about the specific 
differences between the two systems.  We conclude with 
some remarks about IMORPHĒ’s application to Modern 
Standard Arabic, present status and future work. 

2. The Original MORPHĒ Compiler 
IMORPHĒ's approach to morphology description is 

drawn from the original MORPHĒ Morphological Rule 
Compiler (Leavitt, 1994), developed at Carnegie Mellon 
University in the mid 90's, and from more recent 
linguistically–motivated enhancements designed to 
capture, in a concise and elegant way, the structure of 
words in languages with complex morphologies.  
MORPHĒ was developed in the context of the KANT 
machine translation project (Nyberg & Mitamura, 1992) 
and was used in translation from English to several target 
languages.  The much simpler morphology of English, 
was analyzed with a different tool, so the analysis 
capability of the MORPHĒ was never fully implemented.  
At present, MORPHĒ and its successors still function only 
as generators of surface morphological forms; analysis is 
left for future work.   

MORPHĒ’s approach is centered on the concept of a 
Morphological Hierarchy Form (MFH).  The MFH relates 
and contrasts different morphological forms – the leaf 
nodes of the hierarchy – by specifying, for each node on 
the path from the root to a leaf, the combination of 
features and values that distinguish a node from its parent 
and siblings.  Transformational rules, attached to the leaf 
nodes, add, remove and replace prefixes, suffixes and 
infixes, and perform regular substring mappings that result 
in the surface form of a word.  A morphology description 
for a language consists of the specification of the MFH 
and a set of transformational rules.  MORPHĒ compiles 

the morphology description into Common Lisp functions 
that are themselves optionally compiled into object code 
for faster runtime performance. 

In generation, MORPHĒ takes as its runtime input a 
feature structure (FS) that representing the lexical item 
that MORPHĒ must transform.  The FS includes the base 
(dictionary) form of the item, its intrinsic (static) features, 
obtained from the lexicon, and extrinsic (dynamic) 
features obtained from the client, for example a sentence 
generator or a machine translation system.  The base form 
is identified by a specific feature name.  The input is 
pushed down a path in the MFH, which acts as a 
discrimination net, by matching feature-value pairs in the 
MFH and the FS at each node.  When a leaf node is 
reached, transformational rules are applied to the base 
form of the input to produce a string output.   

3. Extending MORPHĒ for Arabic 
While MORPHĒ’s MFH-plus-transformational rules 

approach is a conceptually attractive way of organizing a 
morphology description, the limitations of the morphology 
description language in the original MORPHĒ system 
proved unwieldy when applied to languages with complex 
root-and-pattern morphology such as Modern Standard 
Arabic (MSA).  While a full description of Arabic 
morphology is beyond the scope of this paper, we 
highlight the major features that are relevant to the 
development of IMORPHĒ and its predecessors.   
Further details are provided in our previous work (Cavalli-
Sforza & Soudi, 2003, forthcoming; Soudi et al., 2002, 
2001, 2002; Cavalli-Sforza et al., 2000).   

3.1. Arabic Morphology 
The parts of speech that are inflected in MSA are 

verbs, nouns and adjectives.  Additional bound 
morphemes that can also occur as prefixes or suffixes 
include: conjunctions, prepositions, vocative, exclamation 
and question particles and the future particle “sa” as 
prefixes;  possessive and direct object pronouns as 
suffixes.  The definite article “Al” is always attached to 
and precedes the noun or adjective, and loses the “A” with 
the preposition “li”.  The morphology of Arabic dialects is 
similar to but simpler than that of MSA.  In what follows 
we focus on the inflectional morphology of MSA. 

3.1.1. Arabic Verb Morphology 
The Arabic verbal system is very rich in forms.  

Arabic verbs are based on three or four radicals, the letters 
that constitute the skeleton of the verb.  An Arabic verb 
can be conjugated according to one of the traditionally 
recognized patterns: 15 triliteral patterns (with 3 radicals), 
of which at least 9 are in common use, and 4 less common 
quadriliteral patterns with 4 radicals), some quite rare.  
Verb patterns are derived by composing the verb root with 
different vowel and consonant patterns.  Within each 
pattern, verbs have two aspects/tenses (perfect and 
imperfect), five moods (indicative, subjunctive, jussive, 
imperative and energetic), and two voices (active and 
passive) for transitive verbs.     

Verb inflection occurs through the concatenation of 
prefixes and suffixes with the stem. Infix modifications 
(stem changes) may occur in the presence of certain 
syntactic features and “weak” consonants  (‘w’ or ‘y’) as 
radicals, and through a change of stem vowel between the 



perfect and imperfect. In verbs of pattern 1 (the simplest 
triliteral pattern), this is not generally predictable.  Several 
of the patterns share the same prefixes and/or suffixes, but 
these interact with stems beginning and ending in weak 
and other consonants to yield a complexly varied 
orthography in inflected forms. 

There are 13 person-number-gender combinations, as 
Arabic only distinguishes between singular and plural 
number for 1st person, but also adds dual and gender 
distinctions for 2nd and 3rd persons. 

3.1.2. Arabic Noun and Adjective Morphology 
Arabic nouns and adjectives are also formed via the 

intersection of three or four consonant radicals with vowel 
and consonant patterns.  They present an inflectional 
paradigm based on definiteness (definite, indefinite), case 
(nominative, genitive, accusative) and number (singular, 
dual, plural).   

A minority of nouns have sound plurals, which are 
regularly formed through the addition of suffixes that 
depend on grammatical gender and case.  More common 
are broken plurals, which entail stem changes according to 
various patterns that are not predictable from the singular 
noun pattern.  Broken plurals behave, under inflection, 
similarly to singular nouns.  Dual inflection occurs 
through regular prefixes. 

Adjectives are not strongly distinguished from nouns, 
and also may have sound and broken plurals. However, 
due to the special agreement rules of Arabic, adjectives 
modifying plural non-human nouns take a singular 
feminine inflection, so that relatively few adjectives are 
actually ever pluralized. 

3.2. Initial Extensions to MORPHĒ  
We began by using MORPHĒ to describe Arabic 

verbal morphology.  The richness of the inflectional 
paradigm for verbs and the stem changes occurring in 
verbs with weak radicals, combined with the restriction 
that transformational rules could only be attached to leaf 
nodes of the MFH, and only one rule per node, gave rise 
to extensive and highly redundant descriptions for even a 
subset of the full range of inflected forms.  In an effort to 
alleviate these problems, we split the generation process 
into two steps: 1) generation of stems and 2) generation of 
prefixes and suffixes.  The MFH was given separate 
subtrees for these two processes and MORPHĒ was called 
twice to obtain the final inflected forms (Cavalli-Sforza et 
al., 2000).  Our representation of the base form of lexical 
items was stem-based, since it is stems and not roots that 
have specific meaning.  Stem changes, as well as prefix 
and suffix additions, were effected through 
transformational rules but, in order to decide which vowel 
change to apply to a stem in the imperfective, we relied on 
information associated with an item in the lexicon.  

Some theoretical and computational treatments of 
morphology have given equal status to morphemes 
representing meanings (lexemes) and to grammatical 
morphemes such as gender and number inflections, 
placing them in separate dictionaries (e.g. Kiraz, 2000; 
Buckwalter, 2004).  MORPHĒ’s treatment of stems as 
primary morphemes and of inflectional affixes as 
transformations applied to stems deviates from that 
conception of morphology but agrees well with the theory 
of Lexeme-Based Morphology (Aronoff, 1994; Beard, 

1995; Soudi et al., 2001).  The next step was to consider 
inflection of nouns and, in particular, how to handle 
broken plurals within the same framework (Soudi et al., 
2002).  Although the singular and plural have a different 
stem, they are forms of the same lexeme and should not be 
treated as separate lexicon entries.  However, since the 
plural stem cannot be predictably derived from the 
singular, it must be associated with the singular in the 
lexicon as an alternate base form. 

Experience with the original MORPHĒ and 
comparison with Lexeme-Based Morphology, suggested a 
number of theoretically motivated extensions to 
MORPHĒ’s description language:  
1) Allomorph declarations support stem alternations 

linked to specific lexical items, are associated with a 
node in the MFH, and direct MORPHĒ to look for an 
alternate base form in the input FS. 

2) Default rules, attached to pre-leaf nodes, describe 
transformations associated with most but not all nodes 
in an MFH subtree.  The more specific (exceptional) 
transformations are attached to the leaf nodes. 

3) Equivalence declarations express the equivalence of 
transformations across different portions of the MFH.  
This construct clearly corresponds to the rules of 
referral postulated by Lexeme-Based Morphology. 

4) Implicit equivalencing of nodes states that the same 
node can be reached through different feature-value 
paths in the MFH, turning the hierarchy into a graph.  
 
The above language extensions allowed us to describe 

the fully diacritized inflected forms of strong and hollow 
verbs (verbs with a weak middle radical) and sound and 
broken noun plurals for MSA even more compactly, 
showing explicitly which forms behave similarly and 
reducing the redundancy of the description.  

Additional system extensions were targeted at 
facilitating the development of large morphology 
descriptions.  The Enhanced MORPHĒ tool (EMORPHĒ) 
(Cavalli-Sforza & Soudi, 2003) accepts morphology 
descriptions spread across multiple files. It also includes a 
facility for thoroughly testing the morphology description 
by automatically generating all forms of a collection of 
representative lexical items and comparing them to 
expected results.   

3.3. EMORPHĒ’s Limitations  
While EMORPHĒ significantly enhances original 

MORPHĒ, it still falls short of providing an optimally 
concise and elegant framework for describing the 
morphology of languages such as MSA.  We characterize 
those languages as displaying a richness of inflectional 
forms distinguished by classes of stem alternations, 
prefixes and suffixes that are shared by some but not all 
forms.  Our goal was to more concisely capture 
regularities in the morphological descriptions of such 
languages while also improving runtime efficiency.   

Conciseness: Because in (E)MORPHĒ a single rule 
can be attached to a node, a rule must take care of all 
necessary transformations, which makes rules monolithic 
and redundant across forms that share similar affix 
changes. Recall that this problem was the motivation for 
initially splitting the generation process into two phases; it 
was further alleviated, but not completely eliminated, by 
equivalence declarations in EMORPHĒ.   



Efficiency: In the two-stage approach still used in 
EMORPHĒ to generate the fully inflected form of a 
lexical item, redundant work is performed in checking the 
features in the input FS twice, once for determining the 
appropriate stem, then again for determining the prefix 
and suffix.  Since the stem subtree is relatively shallow, at 
least for nouns and for sound and hollow verbs, the cost in 
time is not high, but avoiding it altogether would be 
better.  Furthermore, the two-stage process complicates 
extending EMORPHĒ to perform analysis.   

The next section describes how our current work seeks 
to address the two issues of conciseness and efficiency.  

4. IMORPHĒ 
IMORPHĒ, is an inheritance-and-equivalence based 

reformulation of MORPHĒ.  It retains MORPHĒ’s 
original conception of morphology description based on 
an MFH and transformational rules, and the equivalence 
and allomorph declarations of EMORPHĒ, but casts them 
in an inheritance-based framework with more modular 
rules.  Transformational rules and allomorph declarations 
can be attached to any node in the hierarchy and inherited, 
canceled, or overridden by children nodes, thereby 
generalizing EMORPHĒ’s default rules.  The restriction 
of one rule per node is removed: multiple rules can be 
attached to any node or defined as global rules to be used 
by interested nodes.  Via an extended equivalence 
declaration, a node can “borrow” (use) some or all rules 
present on other nodes (or even just some of their clauses), 
and/or use a global rule.  Finally, a node can change the 
order of application of its inherited and/or borrowed rules.   

The above extensions, described below in greater 
detail, required significant additions to the morphology 
description language, and the morphology description 
compiler must do significantly more work to collect and 
adjust the information associated with each inflected form. 
However, runtime generation of inflected forms is 
performed in a single pass through the MFH, as in 
IMORPHĒ’s predecessors.  In addition IMORPHĒ retains 
backwards compatibility by being able to compile 
morphology descriptions that use only MORPHĒ and 
EMORPHĒ declarations.  

4.1. The Morphology Description Language 
A full Extended BNF specification of IMORPHĒ’s 

morphology description language is beyond the scope of 
this paper, but we highlight below its major constructs and 
point out its relationship with (E)MORPHĒ’s constructs. 

4.1.1. MORPH-FORM Declarations  
IMORPHĒ’s MFH is built through a set of morph-

form declarations.  The simplest syntax is: 

(MORPH-FORM <node> <parent> <FS-pieces>) 

where <node> is the new node being created, <parent> is 
its parent node, and <FS-pieces> is one or more feature-
value pairs that distinguish the node from its parent and, if 
present in a lexical item’s FS at runtime, will allow it to 
reach this node.   

This simple declaration, already present in  (E)MORPHĒ, 
is supplemented in IMORPHĒ by three optional slots 
(:allomorph, :rules, :inherit) whose contents allow 
associating with the node, locally and more precisely, 
allomorph, rule and inheritance  information.   

The extended syntax of a morph-form declaration, 
which gives IMORPHĒ an object-oriented flavor, is then: 

(MORPH-FORM <node> <parent> <FS-pieces> 
 :allomorph <allomorph-spec> 
 :rules     <rules-spec> 
 :inherit   <inheritance-spec> 
 ) 

The :allomorph and  :rules slots are described 
further below.  The :inherit slot is used by an implicitly 
equivalenced node (a node with the same name as another 
node but reached through a different FS path through the 
MFH), in order to specify through which path to inherit 
information.  Additional :position subslots in each of the 
:allomorph and :rules slot are used to reorder allomorph 
substitutions and rules acquired through inheritance. 

4.1.2. MORPH-ALLOMORPH Declarations  
The morph-allomorph declaration, introduced in 

EMORPHĒ, associates with a node a directive to search in 
the FS for an alternate base form to which apply further 
transformations.  Only one allomorph is allowed on any 
given node.  The syntax used in EMORPHĒ is: 

(MORPH-ALLOMORPH <node> <feature>) 

where <feature> is the name of the FS feature whose value 
contains the alternate base form.  In IMORPHĒ, this syntax is 
retained and extended with an optional <position> 
specifier, which allows changing the order of application 
of this operation relative to other rules associated with a 
node.  A morph-allomorph declaration can be placed 
anywhere in the file after the <node> itself has been 
created through a morph-form declaration.  This 
mechanism for declaring allomorph information, detached 
from node creation, is retained for backwards 
compatibility.  In IMORPHĒ, the same effect is obtained 
by attaching the information directly to the node itself 
through the :allomorph slot, in an :own subslot.  The 
:allomorph slot further permits specifying whether the 
node cancels allomorph information coming from an 
ancestor or overrides it with information locally specified 
on the node or borrowed through an equivalence (see 
below) to another node.   

4.1.3. MORPH-(G)RULE Declarations  
A morph-rule declaration attaches a transformational 

rule to a node.  The basic syntax of a rule is: 

(MORPH-RULE <node> <clause>*) 

A <clause> is defined as: 

(<regexp-pattern> <operation>*) 

where <regexp-pattern> is a regular expression string that 
matches against the base form of a lexical item and 
<operation> is a list of operations to be applied to that 
base form if the test is successful.  This rule declaration 
syntax is retained in IMORPHĒ but augmented and 
supplemented in several ways. 

Firstly, in IMORPHĒ, unlike its predecessors, more 
than one rule can be attached to a node.  If there are 
multiple morph-rule declarations naming a node, they 
will be attached to the node in the order in which they are 
read in.  However, as for morph-allomorph declarations, 
the above rule declaration syntax is augmented by 
allowing as the last element a <position> specifier which 



states the order in which the rule should be applied to the 
base form relative to other rules and allomorph 
substitution:  

(MORPH-RULE <node> <clause>* [<position>]) 

Secondly, in order to make rules less monolithic, that 
is, to allow pieces of rules to be borrowed and used by 
other nodes, both clauses and operations are optionally 
named (and should be named if they are to be borrowed).  

Thirdly, a new morph-grule declaration allows a 
“global” rule (a rule that is not a priori associated with any 
node) to be defined, with the expectation that it will be 
used by multiple other nodes.   

Finally, rules can be attached directly to a node in a 
morph-form declaration through the :rules slot and :own 
subslot, where they can also be optionally be named (if 
they are to be borrowed).   In addition to declaring rules 
for a node, the :rules slot specifies whether the node 
borrows rules and rule pieces from other nodes, uses 
global rules, cancels rule information coming from an 
ancestor and/or supplements it with rule pieces from other 
nodes and/or a global rule.  Rules attached to a node via 
the :rules slot and/or via a morph-rule declaration, can 
be reordered with respect to each other and an allomorph 
substitution.  It is the compiler’s job to cumulate and 
reorder the rule information. 

4.1.4. MORPH-EQUIVALENCE Declarations  
EMORPHĒ uses a morph-equivalence declaration, to 

state that one node was to be considered equivalent to 
another node and could borrow rules associated with that 
node.  A node can be equivalenced to only one other node 
but could have multiple nodes equivalenced to it.  The 
syntax, retained in IMORPHĒ, is: 

 (MORPH-EQUIVALENCE <common-node>  
                  ( <equiv-node>+ ) ) 

and says that each of the <equiv-node>s is like <common-
node>.  The latter could be an actual node in the MFH, or 
a virtual node to which rule information could be attached 
through morph-rule declarations.   

IMORPHĒ also allows information to be borrowed 
from other nodes more selectively through the :allomorph 
and :rules slots in the morph-form declaration.   

4.2. The IMORPHĒ Compiler 
In (E)MORPHĒ, rules and allomorphs are attached 

only to pre-leaf and leaf nodes of the MFH and 
compilation of a morphology description required a single 
pass through the MFH in order to generate the 
CommonLisp functions that then generate morphological 
forms at runtime.  However, in order to achieve a 
minimally redundant morphological description for a 
language such as Arabic, where morphological forms 
share several stem, prefix and suffix transformations, the 
MFH was split into two parts (stem/infix and prefix plus 
suffix transformations) and the generation process at 
runtime required two passes. IMORPHĒ replaces the 
simple compilation process with one that requires several 
passes, but, once the morphology description is fully 
compiled, runtime generation occurs in a single step.   

The first pass reads in all morphology description files, 
checking the syntax of declarations and building the MFH.  
Allomorph, rule, equivalence and inheritance information 

is attached to the MFH nodes in a preliminary way that 
closely mirrors the structure of the description files.   

In the second pass, the compiler navigates the MFH 
using the preliminary attachment information to actually 
find and attach to the nodes the appropriate allomorphs 
and rules.  Inherited information is percolated down, 
canceled or overridden.  Information from equivalences is 
retrieved, selected or overridden. Finally, the results are 
assembled, resulting in the possible creation of new rules 
from pieces of existing rules.   

The third pass applies ordering constraints on 
allomorphs and rules to produce a final sequence of 
operations (allomorph substitutions and transformations) 
for each node in the MFH.   

The fourth and final pass reuses parts of the old 
MORPHĒ compiler to create the Common Lisp functions 
that implement the compiled morphology description. 

Compilation may stop at the end of the first or the 
second pass if syntactic or semantic errors are found or 
names cannot be resolved.  The third pass may produce 
warnings about ambiguous reordering, but compilation 
will otherwise run all the way through. 

4.3. Using IMORPHĒ with Arabic 
At the time of this writing, the IMORPHĒ compiler is 

fully designed but still under implementation.  We are 
testing each compilation phase using morphology 
descriptions developed while using EMORPHĒ for strong 
and hollow (weak middle radical) Arabic verbs and noun 
inflection, and augmenting the test suite with some 
defective (weak final radical) and assimilated (weak initial 
radical) verbs.   

Allomorph attributions and other stem change 
information are attached higher in the MFH than 
prefix/suffix transformational rules. In generating the 
inflected forms, the resulting stem modifications are 
performed before prefix and suffix additions. Inheritance 
allows prefix and suffix rules to be attached at the point of 
highest coverage and overridden in specific cases.  
Equivalencing, multiple rules, and rule naming allow rules 
to be attached to a single appropriate node, and borrowed 
by other nodes in the MFH.  The result is a morphology 
description where rules are specified only once, but may 
be used by multiple nodes in the MFH, even distant ones.   
The resulting morphology description is relatively simple, 
minimally redundant, and shows clearly the similarities 
between different forms, even those that are distant from 
each other in the MFH. 

5. Conclusions and Future Work 
We have described the evolution, design and current 

state of the IMORPHĒ morphology description compiler.  
While IMORPHĒ’s morphology description language 
incorporates several ideas that conveniently address 
characteristics of Modern Standard Arabic morphology, 
IMORPHĒ is language independent.  Its use with MSA 
has pushed the tool’s development in a direction that 
supports minimally redundant morphological descriptions 
and makes explicit the similarities of related 
morphological forms.  

At present, work on the compiler is still in progress 
and, when completed, will give IMORPHĒ full generation 
capability.  Turning IMORPHĒ into an analyzer will be 
one of the next steps but one further extension, prior to 



proceeding to work on analysis, will be the addition of 
optional rules.  These will allow IMORPHĒ to support 
prefixes – such as prepositions and conjunctions – and 
suffixes – such as possessive and direct object pronouns – 
that are attached to words but are not part of the 
inflectional morphology of the language and may or may 
not be present.  We expect the final tool, including the 
testing system, to be available through Carnegie Mellon 
University's Language Technologies Institute under a no 
cost licensing agreement for research use. 

6. References  
Abuleil, S., Alsamara, K. & Evens, M. (2002). 

Acquisition System for Arabic Noun Morphology. In 
Proceedings of the Workshop on Computational 
Approaches to Semitic Languages, Conference of the 
Association for Computational Linguistics (ACL 2002), 
Philadelphia, pp. 19-26. 

Aronoff, M. (1994). Morphology by Itself: Stems and 
Inflectional Classes. Cambridge, MA: MIT Press.  

Beard, R. (1995). Lexeme-Morpheme Base Morphology: A 
General Theory of Inflection and Word Formation. 
New York, NY: State University of New York Press.  

Beesley, K., Buckwalter, T. & Newton, S. (1989). Two-
Level Finite-State Analysis of Arabic Morphology.  In 
Proceedings of the Seminar on Bilingual Computing in 
Arabic and English, Cambridge, England. 

Beesley, K. (1996). Arabic Finite-State Morphological 
Analysis and Generation. In Proceedings COLING’96, 
Vol. 1, pp. 89-94. 

Buckwalter, T. (2004). Buckwalter Arabic Morphological 
Analyzer Version 2.0. Linguistic Data Consortium, 
University of Pennsylvania.  LDC Catalog Number: 
LDC2004L02, www.ldc.upenn.edu/Catalog/. 

Cavalli-Sforza, V. & Soudi A. (forthcoming). Arabic 
Computational Morphology: A Tradeoff between 
Multiple-Operations and Multiple-Stems. In Arabic 
Computational Morphology: Knowledge-based and 
Empirical Methods. In A. Soudi,  A. Van den Bosch, G. 
Neumann (Eds.). Arabic Computational Morphology: 
Knowledge-based and Empirical Methods, 
Kluwer/Springer's series on Text, Speech and Language 
Technology. 

Cavalli-Sforza, V. & Soudi A. (2003), Enhancements to a 
Morphological Generator to Capture Arabic 
Morphology. In Proceedings of the Eighth International 
Symposium on Social Communication, Center of 
Applied Linguistics, Santiago de Cuba, pp. 565-570.   

Cavalli-Sforza, V., Soudi, A., & Mitamura, T. (2000), 
Arabic Morphology Generation Using a Concatenative 
Strategy. In Proceedings of the First Meeting of the 
North American Chapter of the Association for 
Computational Linguistics (NAACL 2000), Seattle, pp. 
86-93.  

Darwish, K. (2002). Building a Shallow Arabic 
Morphological Analyzer in One Day.  In Proceedings 
of the Workshop on Computational Approaches to 
Semitic Languages.  Conference of the Association for 
Computational Linguistics (ACL 2002), Philadelphia, 
pp. 9-18. 

Dichy, J. & Farghaly, A. (2003). Roots & Patterns vs. 
Stems plus Grammar-Lexis Specifications: on what 
basis should a multilingual lexical database centred on 
Arabic be built?. In Proceedings of the Workshop on 

Machine Translation for Semitic Languages: Issues and 
Approaches, Ninth Machine Translation Summit, New 
Orleans, pp. 1-8. 

Finkel, R. & Stump, G. (2002). Generating Hebrew verb 
morphology by default inheritance hierarchies. In 
Proceedings of the Workshop on Computational 
Approaches to Semitic Languages.  Conference of the 
Association for Computational Linguistics (ACL 2002), 
Philadelphia, pp. 9-18. 

Finkler, W. & Neumann, G. (1988). MORPHIX. A Fast 
Realization of a Classification-Based Approach to 
Morphology. In H. Trost (Ed.) 4. Österreichische 
Artificial-Intelligence-Tagung. Wiener Workshop - 
Wissensbasierte Sprachverarbeitung. Proceedings. 
Berlin etc.: Springer, pp. 11-19.  

Habash, Nizar (2004). Large Scale Lexeme Based Arabic 
Morphological Generation. In Proceedings of 
Traitement Automatique du Langage Naturel (TALN-
04). Fez, Morocco. 

Itai, A. & Segal, E. (2003). A Corpus Based 
Morphological Analyzer for Unvocalized Modern 
Hebrew In Proceedings of the Workshop on Machine 
Translation for Semitic Languages: Issues and 
Approaches, Ninth Machine Translation Summit, New 
Orleans, pp. 29-36. 

Kiraz, G. (1998). Arabic Computational Morphology in 
the West.  In Proceedings of the Sixth International 
Conference and Exhibition on Multi-lingual 
Computing, Cambridge. 

Kiraz, G. (2000). A Multi-tiered Nonlinear Morphology 
using Multi-tape Finite State Automata: A Case Study 
on Syriac and Arabic. In Computational Linguistics, 26 
(1), pp. 77-105. 

Koskenniemi, K. (1983). Two-level morphology: A 
General Computational Model for Word-Form 
Recognition and Production. Ph.D. Thesis, University 
of Helsinki. 

Leavitt, J.R. (1994).  MORPHĒ: A Morphological Rule 
Compiler. Technical Report: CMU-CMT-94-MEMO. 

Macks, A. (2002). Parsing Akkadian Verbs with Prolog.  
In Proceedings of the Workshop on Computational 
Approaches to Semitic Languages.  Conference of the 
Association for Computational Linguistics (ACL 2002), 
Philadelphia, pp. 3-8. 

Marsi, E., Van den Bosch, A., & Soudi, A. (2005). 
Memory-based morphological analisis generation and 
part-of-speech tagging of Arabic. In Proceedings of the 
Workshop on Computational Approaches to Semitic 
Languages, Conference of the Association for 
Computational Linguistics, Ann Arbor,  pp. 1-8 

Nyberg, E., & Mitamura, T. (1992). The KANT system: 
Fast, accurate, high-quality translation in practical 
domains. In Proceedings of COLING-9.   

Soudi, A., Cavalli-Sforza, V.,  & Jamari, A. (2002). The 
Arabic Noun System Generation. In Proceedings of the 
International Symposium on The Processing of Arabic, 
University of Manouba, Tunisia, pp. 69-87.  

Soudi, A., Cavalli-Sforza, V., & Jamari, A. (2001). A 
Computational Lexeme-Based Treatment of Arabic 
Morphology. In Proceedings of the Arabic Natural 
Language Processing Workshop, Conference of the 
Association for Computational Linguistics (ACL 2001), 
Toulouse, pp. 155-162. 


