Improved Multi-Heuristic A* for searching with uncalibrated heuristics

Venkatraman Narayanan, Sandip Aine, and Maxim Likhachev

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

The 8th Annual Symposium on Combinatorial Search Jun 12, 2015

goal

start

Solution quality

Solution quality

Combining multiple heuristics

Solution quality

Combining multiple heuristics

Planning time

Admissible Heuristics Inac

Inadmissible Heuristics

Solution quality

Combining multiple heuristics

Planning time

Solution quality

Combining multiple heuristics

Planning time

Inadmissible Heuristics

Planning time

Solution quality

Combining multiple heuristics

Planning time

Inadmissible Heuristics

Planning time

Solution quality

Solution quality

Combining multiple heuristics

Planning time

Inadmissible Heuristics

Planning time

Solution quality

Combining multiple heuristics

Solution quality

Combining multiple heuristics

Inadmissible Heuristics

Planning time

Solution quality

Planning time

Combining multiple heuristics

MHA*: [Aine, Swaminathan, Narayanan, Hwang and Likhachev, RSS 2014] MH-GBFS: [Roger and Helmert, ICAPS 2010] Multi-heuristic Search: [Isto, ISIR 1996]

Solution quality

Combining multiple heuristics

Inadmissible Heuristics

Planning time

Solution quality

Planning time

Combining multiple heuristics

Calibration: g and h different units

MHA*: [Aine, Swaminathan, Narayanan, Hwang and Likhachev, RSS 2014] MH-GBFS: [Roger and Helmert, ICAPS 2010] Multi-heuristic Search: [Isto, ISIR 1996]

Solution quality

Combining multiple heuristics

Planning time

Inadmissible Heuristics

Planning time

Solution quality

Combining multiple heuristics

Calibration: g and h different units

This work: Improved Multi-Heuristic A*

MHA*: [Aine, Swaminathan, Narayanan, Hwang and Likhachev, RSS 2014] MH-GBFS: [Roger and Helmert, ICAPS 2010] Multi-heuristic Search: [Isto, ISIR 1996]

12 DoF Full-body Motion Planning

g: execution time (sec) h₁: base distance (m) h₂: vertical orientation (rad) h₃: horizontal orientation (rad)

g: execution time (sec)
h₁: base distance (m)
h₂: vertical orientation (rad)
h₃: horizontal orientation (rad)

$$g(s)+w\cdot h_1(s) \qquad g(s)+w\cdot h_2(s) \qquad g(s)+w\cdot h_3(s)$$

g: execution time (sec)
h₁: base distance (m)
h₂: vertical orientation (rad)
h₃: horizontal orientation (rad)

$$g(s)+w\cdot h_1(s) \qquad g(s)+w\cdot h_2(s) \qquad g(s)+w\cdot h_3(s)$$

Combining g and h additively not meaningful

Multi-Heuristic Greedy Best-First Search [Roger and Helmert, ICAPS 2010]

Multi-Heuristic Greedy Best-First Search [Roger and Helmert, ICAPS 2010]

Multi-Heuristic Greedy Best-First Search [Roger and Helmert, ICAPS 2010]

Focal-A* [Pearl and Kim, PAMI 1982]

Use distance-to-go estimate to greedily choose from FOCAL list

Focal-A* [Pearl and Kim, PAMI 1982]

Use distance-to-go estimate to greedily choose from FOCAL list

Explicit Estimation Search [Thayer and Ruml, IJCAI 2011]

Use secondary inadmissible heuristic to remove bias in construction of FOCAL list

Focal-A* [Pearl and Kim, PAMI 1982]

Use distance-to-go estimate to greedily choose from FOCAL list

Explicit Estimation Search [Thayer and Ruml, IJCAI 2011]

Use secondary inadmissible heuristic to remove bias in construction of FOCAL list

No calibration problem

Focal-A* [Pearl and Kim, PAMI 1982]

Use distance-to-go estimate to greedily choose from FOCAL list

Explicit Estimation Search [Thayer and Ruml, IJCAI 2011]

Use secondary inadmissible heuristic to remove bias in construction of FOCAL list

No calibration problem

Do not combine multiple heuristics No bounds on re-expansions

Multi-heuristic search framework

View shared-search as single queue search: interleave 'admissible' and 'inadmissible' expansions

Prioritize based on uncalibrated heuristics: no additive combination

Derive bounds from consistent heuristic

procedure MAIN() \bullet OPEN $\leftarrow \emptyset$ $CLOSED_a \leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) **while not** TERM-CRITERION(s_{goal}) **do if** OPEN.EMPTY() **then return null** $s_a \leftarrow OPEN.TOP()$ EXPANDSTATE(s_a) $CLOSED_a \leftarrow CLOSED_a \cup \{s_a\}$ **return** solution path

```
procedure MAIN()

OPEN \leftarrow \emptyset

CLOSED<sub>a</sub> \leftarrow \emptyset

g(s_{start}) \leftarrow 0, g(s_{goal}) \leftarrow \infty

Insert s_{start} in OPEN with PRIORITY(s_{start})

while not TERM-CRITERION(s_{goal}) do

if OPEN.EMPTY() then return null

s_a \leftarrow OPEN.TOP()

EXPANDSTATE(s_a)

CLOSED<sub>a</sub> \leftarrow CLOSED<sub>a</sub> \cup \{s_a\}

return solution path
```

```
procedure MAIN()

OPEN \leftarrow \emptyset

CLOSED<sub>a</sub> \leftarrow \emptyset

g(s_{start}) \leftarrow 0, g(s_{goal}) \leftarrow \infty

Insert s_{start} in OPEN with PRIORITY(s_{start})

while not TERM-CRITERION(s_{goal}) do

if OPEN.EMPTY() then return null

s_a \leftarrow OPEN.TOP()

EXPANDSTATE(s_a)

CLOSED<sub>a</sub> \leftarrow CLOSED_a \cup \{s_a\}

return solution path
```

```
procedure MAIN()

OPEN \leftarrow \emptyset

CLOSED<sub>a</sub> \leftarrow \emptyset

g(s_{start}) \leftarrow 0, g(s_{goal}) \leftarrow \infty

Insert s_{start} in OPEN with PRIORITY(s_{start})

while not TERM-CRITERION(s_{goal}) do

if OPEN.EMPTY() then return null

s_a \leftarrow OPEN.TOP()

EXPANDSTATE(s_a)

CLOSED<sub>a</sub> \leftarrow CLOSED_a \cup \{s_a\}

return solution path
```

 $\begin{array}{l} \operatorname{PRIORITY}(s) \\ g(s) + h(s) \\ \text{or} \\ g(s) + w \cdot h(s) \\ h(s) : \text{ consistent heuristic} \end{array}$

procedure MAIN() OPEN $\leftarrow \emptyset$ CLOSED_a $\leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) while not TERM-CRITERION(s_{goal}) do if OPEN.EMPTY() then return null $s_a \leftarrow OPEN.TOP()$ EXPANDSTATE(s_a) CLOSED_a $\leftarrow CLOSED_a \cup \{s_a\}$ return solution path

procedure EXPANDSTATE(s)

Remove s from OPEN for all $s' \in SUCC(s)$ do if s' was not seen before then $g(s') \leftarrow \infty$ if g(s') > g(s) + c(s, s') then $g(s') \leftarrow g(s) + c(s, s')$ if $s \notin CLOSED_a$ then Insert/Update s' in OPEN with PRIORITY(s')

```
procedure MAIN()

OPEN \leftarrow \emptyset

CLOSED<sub>a</sub> \leftarrow \emptyset

g(s_{start}) \leftarrow 0, g(s_{goal}) \leftarrow \infty

Insert s_{start} in OPEN with PRIORITY(s_{start})

while not TERM-CRITERION(s_{goal}) do

if OPEN.EMPTY() then return null

s_a \leftarrow OPEN.TOP()

EXPANDSTATE(s_a)

CLOSED<sub>a</sub> \leftarrow CLOSED_a \cup \{s_a\}

return solution path
```

procedure MAIN() OPEN $\leftarrow \emptyset$ CLOSED_a $\leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) while not TERM-CRITERION(s_{goal}) do if OPEN.EMPTY() then return null $s_a \leftarrow OPEN.TOP()$ EXPANDSTATE(s_a) CLOSED_a $\leftarrow CLOSED_a \cup \{s_a\}$ return solution path

procedure MAIN() OPEN $\leftarrow \emptyset$ CLOSED_a $\leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) while not TERM-CRITERION(s_{goal}) do if OPEN.EMPTY() then return null

```
s_a \leftarrow \text{OPEN.TOP}()
EXPANDSTATE(s_a)
CLOSED_a \leftarrow \text{CLOSED}_a \cup \{s_a\}
return solution path
```

procedure MAIN() OPEN $\leftarrow \emptyset$ CLOSED_a $\leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) while not TERM-CRITERION(s_{goal}) do if OPEN.EMPTY() then return null for i = 1, ..., n do

for i = 1, ..., n do $s_i \leftarrow \arg\min_{s \in \text{OPEN}} \text{Rank}(s, i)$ EXPANDSTATE (s_i)

 $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE (s_a) CLOSED $_a \leftarrow \text{CLOSED}_a \cup \{s_a\}$ return solution path N inadmissible heuristics

procedure MAIN() OPEN $\leftarrow \emptyset$ CLOSED_a $\leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) while not TERM-CRITERION(s_{goal}) do if OPEN.EMPTY() then return null

for i = 1, ..., n do $s_i \leftarrow \arg\min_{s \in \text{OPEN}} \text{Rank}(s, i)$ EXPANDSTATE (s_i)

 $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE (s_a) CLOSED $_a \leftarrow \text{CLOSED}_a \cup \{s_a\}$ return solution path N inadmissible heuristics

if h_i calibrated $RANK(s,i) = g(s) + w \cdot h_i(s)$ else $RANK(s,i) = h_i(s)$

procedure MAIN() OPEN $\leftarrow \emptyset$ CLOSED_a $\leftarrow \emptyset$, CLOSED_u $\leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, g(s_{goal}) \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY(s_{start}) while not TERM-CRITERION(s_{goal}) do if OPEN.EMPTY() then return null for i = 1, ..., n do $s_i \leftarrow \arg \min_{s \in OPEN} RANK(s, i)$ EXPANDSTATE(s_i) CLOSED_u $\leftarrow CLOSED_u \cup \{s_i\}$

 $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE (s_a) CLOSED $_a \leftarrow \text{CLOSED}_a \cup \{s_a\}$ return solution path N inadmissible heuristics

if h_i calibrated RANK $(s,i) = g(s) + w \cdot h_i(s)$ else RANK $(s,i) = h_i(s)$

procedure MAIN() OPEN $\leftarrow \emptyset$ $\text{CLOSED}_a \leftarrow \emptyset, \ \text{CLOSED}_u \leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ \overline{g(s_{goal}) \leftarrow \infty}$ Insert s_{start} in OPEN with PRIORITY (s_{start}) while not TERM-CRITERION (s_{goal}) do if OPEN.EMPTY() then return null for i = 1, ..., n do $s_i \leftarrow \arg\min_{s \in \text{OPEN}} \text{Rank}(s, i)$ EXPANDSTATE (s_i) $CLOSED_u \leftarrow CLOSED_u \cup \{s_i\}$ $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE(s_a) $CLOSED_a \leftarrow CLOSED_a \cup \{s_a\}$ return solution path

procedure MAIN() OPEN $\leftarrow \emptyset$ $\text{CLOSED}_a \leftarrow \emptyset, \text{ CLOSED}_u \leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ \overline{g(s_{goal}) \leftarrow \infty}$ Insert s_{start} in OPEN with PRIORITY (s_{start}) while not TERM-CRITERION (s_{goal}) do if OPEN.EMPTY() then return null for i = 1, ..., n do $s_i \leftarrow \arg\min_{s \in OPEN} RANK(s, i)$ EXPANDSTATE (s_i) $CLOSED_u \leftarrow CLOSED_u \cup \{s_i\}$ $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE(s_a) $CLOSED_a \leftarrow CLOSED_a \cup \{s_a\}$

return solution path

procedure MAIN() OPEN $\leftarrow \emptyset$ $\text{CLOSED}_a \leftarrow \emptyset, \text{ CLOSED}_u \leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ \overline{g(s_{goal})} \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY (s_{start}) while not TERM-CRITERION (s_{goal}) do if OPEN.EMPTY() then return null for $i = 1, \ldots, n$ do $s_i \leftarrow \arg\min_{s \in P-SET} Rank(s, i)$ ExpandState(s_i) $CLOSED_u \leftarrow CLOSED_u \cup \{s_i\}$ $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE(s_a) $CLOSED_a \leftarrow CLOSED_a \cup \{s_a\}$ return solution path

$$\underbrace{f(s) \le w \cdot f(s_a)}_{s_a}$$

 $P-SET \leftarrow \{s : s \in OPEN \\ \land s \notin CLOSED_u \\ \land P-CRITERION(s)\}$

Improved MHA* Variants

procedure MAIN() OPEN $\leftarrow \emptyset$ $\text{CLOSED}_a \leftarrow \emptyset, \text{CLOSED}_u \leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ \overline{g(s_{goal})} \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY (s_{start}) while not TERM-CRITERION (s_{goal}) do if OPEN.EMPTY() then return null for i = 1, ..., n do $s_i \leftarrow \arg\min_{s \in \text{P-SET}} \text{Rank}(s, i)$ EXPANDSTATE(s_i) $\text{CLOSED}_u \leftarrow \text{CLOSED}_u \cup \{s_i\}$ $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE(s_a) $CLOSED_a \leftarrow CLOSED_a \cup \{s_a\}$ return solution path

$$\underbrace{f(s) \le w \cdot f(s_a)}_{s_a}$$

 $P-SET \leftarrow \{s : s \in OPEN \\ \land s \notin CLOSED_u \\ \land P-CRITERION(s)\}$

Improved MHA* Variants

procedure MAIN() OPEN $\leftarrow \emptyset$ $\text{CLOSED}_a \leftarrow \emptyset, \text{CLOSED}_u \leftarrow \emptyset$ $g(s_{start}) \leftarrow 0, \ \overline{g(s_{goal})} \leftarrow \infty$ Insert s_{start} in OPEN with PRIORITY (s_{start}) while not TERM-CRITERION (s_{goal}) do if OPEN.EMPTY() then return null for i = 1, ..., n do $s_i \leftarrow \arg\min_{s \in \text{P-SET}} \text{Rank}(s, i)$ EXPANDSTATE (s_i) $\text{CLOSED}_u \leftarrow \text{CLOSED}_u \cup \{s_i\}$ $s_a \leftarrow \text{OPEN.TOP}()$ EXPANDSTATE(s_a) $CLOSED_a \leftarrow CLOSED_a \cup \{s_a\}$

return solution path

Decision points

PRIORITY(s) TERM-CRITERION(s) P-CRITERION(s)

 $P-SET \leftarrow \{s : s \in OPEN \\ \land s \notin CLOSED_u \\ \land P-CRITERION(s)\}$

Improved MHA* Variants

PRIORITY(s) **P-CRITERION**(s) **TERM-CRITERION**(s)

 $\begin{array}{lll} \mathsf{MHA}^* + & g(s) + w \cdot h(s) & g(s) + h(s) \leq & g(s) \leq \\ & \max_{s \in \mathsf{CLOSED}_a} \mathsf{PRIORITY}(s) & \max_{s \in \mathsf{CLOSED}_a} \mathsf{PRIORITY}(s) \end{array}$

Focal-MHA* g(s) + h(s) $g(s) + h(s) \le g(s) \le g(s) \le w \cdot \min_{s \in OPEN} PRIORITY(s)$ $w \cdot \min_{s \in OPEN} PRIORITY(s)$

Unconstrained $g(s) + w \cdot h(s)$ none $g(s) \leq$ MHA* $\max_{s \in \text{CLOSED}_a} \text{PRIORITY}(s)$

MHA*++

Focal-MHA*

Unconstrained MHA*

MHA*++

Focal-MHA*

Unconstrained MHA*

Theorem 1

For all three variants, solution is bounded sub-optimal

$$g(s_{goal}) \le w \cdot g^*(s_{goal})$$

MHA*++

Focal-MHA*

Unconstrained MHA*

Theorem 1

For all three variants, solution is bounded sub-optimal

$$g(s_{goal}) \le w \cdot g^*(s_{goal})$$

Theorem 2

For all three variants, no state is expanded more than twice

MHA*++

Focal-MHA*

Unconstrained MHA*

Theorem 1

For all three variants, solution is bounded sub-optimal

$$g(s_{goal}) \le w \cdot g^*(s_{goal})$$

Theorem 2

For all three variants, no state is expanded more than twice

Theorem 3

For MHA*++ and Focal-MHA*, no state with $g(s) + h(s) > w \cdot g^*(s_{goal})$ will be expanded

12 DoF full-body motion planning for the PR2 robot

1 consistent heuristic + 19 inadmissible heuristics

100 trials with random start-goal pairs

Trial 'success' if solution found in 1 minute

Comparisons with MH-GBFS^[1], RRT-Connect^[2]

	w = 100							
	++	Focal	Uncons	Original				
Success (%)	84	75	84	61				
States Expanded	2415	3058	2415	5179				
Run Time (s)	36.89	47.44	36.98	75.63				
Base Cost (m)	5.33	5.47	5.33	5.47				
Arm Cost (rad)	6.32	6.45	6.32	6.02				

	w = 100					
	++	Focal	Uncons	Original		
Success (%)	84	75	84	61		
States Expanded	2415	3058	2415	5179		
Run Time (s)	36.89	47.44	36.98	75.63		
Base Cost (m)	5.33	5.47	5.33	5.47		
Arm Cost (rad)	6.32	6.45	6.32	6.02		

	w = 100						
	++	Original					
Success (%)	84	75	84	61			
States Expanded	2415	3058	2415	5179			
Run Time (s)	36.89	47.44	36.98	75.63			
Base Cost (m)	5.33	5.47	5.33	5.47			
Arm Cost (rad)	6.32	6.45	6.32	6.02			

	w = 100						
	++	++ Focal Uncons					
Success (%)	84	75	84	61			
States Expanded	2415	3058	2415	5179			
Run Time (s)	36.89	47.44	36.98	75.63			
Base Cost (m)	5.33	5.47	5.33	5.47			
Arm Cost (rad)	6.32	6.45	6.32	6.02			

	w = 100			w = 10			w = 5					
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-
12 DoF full-body motion planning for the PR2 robot

	w = 100					w	= 10		w = 5			
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-

MHA*: success rate goes down with w

12 DoF full-body motion planning for the PR2 robot

	w = 100					w	= 10		w = 5			
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-

12 DoF full-body motion planning for the PR2 robot

	w = 100			w = 10				w = 5						
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original	MH-GBFS	RRT-C
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0	85	45
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-	2752	n/a
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-	41.98	21.95
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-	5.45	5.22
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-	6.60	8.26

12 DoF full-body motion planning for the PR2 robot

	w = 100			w = 10				w = 5						
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original	MH-GBFS	RRT-C
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0	85	45
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-	2752	n/a
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-	41.98	21.95
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-	5.45	5.22
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-	6.60	8.26

RRT-C: success rate affected by narrow passages

12 DoF full-body motion planning for the PR2 robot

	w = 100					w = 10				w = 5				
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original	MH-GBFS	RRT-C
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0	85	45
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-	2752	n/a
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-	41.98	21.95
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-	5.45	5.22
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-	6.60	8.26

Run time: RRT-C fast when it succeeds

12 DoF full-body motion planning for the PR2 robot

	w = 100					w = 10				w = 5				
	++	Focal	Uncons	Original	++	Focal	Uncons	Original	++	Focal	Uncons	Original	MH-GBFS	RRT-C
Success (%)	84	75	84	61	83	74	83	0	66	74	60	0	85	45
States Expanded	2415	3058	2415	5179	3293	3086	3227	-	2378	3086	2472	-	2752	n/a
Run Time (s)	36.89	47.44	36.98	75.63	47.60	47.88	46.96	-	37.92	48.08	38.31	-	41.98	21.95
Base Cost (m)	5.33	5.47	5.33	5.47	5.32	5.52	5.33	-	4.77	5.52	4.49	-	5.45	5.22
Arm Cost (rad)	6.32	6.45	6.32	6.02	6.17	6.49	6.17	-	5.70	6.49	5.41	-	6.60	8.26

MH-GBFS, RRT-C: No bounds on quality

Sliding Tile Puzzles: 8x8, 9x9 and 10x10

13	2	8	4	10
6	22		7	9
3	5	1	11	20
17	24	18	14	23
16	21	15	12	19

Consistent heuristic: Manhattan distance + linear conflicts 8 Inadmissible heuristics: 'waypoint' pattern database heuristics

100 random trials, 5 minute timeout

Sub-optimality bound w

9x9 Sliding Tile Puzzles

Summary

Improved MHA*: allows use of multiple inadmissible, uncalibrated heuristics

Completeness, bounded sub-optimality, bounded re-expansions

Experimental validation on full-body motion planning and large sliding tile puzzles

Extensions to round-robin: Meta-A*, Dynamic Thompson Sampling [Phillips M, Narayanan V, Aine S, and Likhachev M, IJCAI 2015]

Future work: parallelization, anytime