

Discriminatively-guided Deliberative Perception (D2P) for Pose Estimation of Multiple 3D Object Instances

Venkatraman Narayanan and Maxim Likhachev

sbpl

Problem Statement

task:

identify type and 3 DoF pose of all objects in the scene (point cloud/depth image)

given:

6 DoF camera pose, 3D models of objects in the scene

- Feature and learning based methods are brittle (e.g., occlusion)
- Learning methods need training data to capture the combinatorics of inter-object interactions
- Generative methods are robust but slow

Contributions

- Framework to guide deliberative global search with any and multiple discriminative learners
- Theoretical guarantees on solution quality
- Notion of completeness for multi-object recognition and pose estimation
- Lazy Multi-Heuristic A*

Perception via Search (PERCH)[1]

minimize over joint object poses

unexplained points in observed cloud + # unexplained points in rendered cloud

Render all possible scenes, select the one that "best matches" the input point cloud

Brute force run time exponential in #objects (\sim 12 days for 4 objects with 10 (x,y) positions, 10 orientations — 100⁴ states)

Joint optimization can be cast as tree search, with monotone constraint! still uninformed search

Key Idea: Guide deliberative search with discriminative learners

Generating Multiple Discriminative Heuristics

Discriminative heuristics can be inadmissible and unrelated to optimization objective FOCAL Multi-Heuristic A* [2] was developed to handle precisely such heuristics

Completeness

Existing methods based on global hypothesis verification are "incomplete": can fail to produce a feasible solution (set of object poses) even if one exists

Evaluation

dataset

- Parallel child node generation (AWS m4.10x, 40 virtual cores); lazy edge evaluation

stage to compensate for discretization artifacts

R-CNN network (ZF architecture) trained on synthetic depth images of individual objects

RCNN-Heuristics

Output

outperforms

30 60 90 120 1 D2P (seconds)

speedup over OUR-CVFH^[4], BF-ICP PERCH

discretization vs ICP tradeoff

code: github.com/venkatrn/perception

References

- [1] Perception via Search Narayanan and Likhachev, ICRA '16
- [2] Improved Muti-Heuristic A*, Narayanan et al., SoCS '15
- [3] Point Cloud Library, Aldoma et al., IEEE RAM '12
- [4] CAD Model Recognition and 6 DOF Pose Estimation using 3D Cues, Aldoma et al., ICCV Workshops, '11