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Abstract— We describe the application of a recently devel-
oped deliberative perception framework to the task of multi-
object instance recognition in warehouse environments. Tradi-
tional object recognition pipelines based exclusively on discrim-
inative feature-matching and/or statistical learners are often
sensitive to inter-object occlusions and the training data used.
Deliberative approaches such as PERCH treat multi-object pose
estimation as a generative global optimization over possible
configurations of objects, thereby predicting and accounting for
occlusions. Further, D2P—an extension of PERCH, leverages
guidance from modern learning-based techniques to combine
the efficiency of discriminative approaches with the robustness
provided by global reasoning. We conclude with a discussion of
how these approaches were used by Carnegie Mellon Univer-
sity’s team in the 2016 Amazon Picking Challenge, and their
role in the upcoming 2017 Amazon Robotics Challenge.

I. INTRODUCTION

Warehouse environments pose a significant challenge for
object recognition and localization. Densely packed shelves
with extreme amounts of occlusion, deformable objects, and
sensor-unfriendly (e.g. specular) objects are typical causes
of perception brittleness [1]. At the same time, the semi-
structured nature of warehouses, i.e, prior knowledge of
environment, knowledge of shelf contents, and sensor pose
provide opportunities to design algorithms that are more ro-
bust compared to general computer vision techniques. In this
abstract, we discuss how a recently developed deliberative
perception framework is well-suited to the class of problems
arising in warehouse perception.

Traditional methods for object instance detection have
relied on matching hand-coded feature descriptors between
the observed scene and 3D models, with recent data-driven
methods permitting automated learning of those feature
descriptors. While these methods, broadly classified as dis-
criminative, provide attractive test-time speeds, they remain
brittle in practice despite numerous variants that have shown
promise. As an example, consider the scene in Fig. 1, where
we need to identify and localize the Elmers’ glue bottle,
which is almost completely occluded by the shelf. Methods
that employ feature correspondence matching fare poorly as
key feature descriptors could be lost due to occlusion by the
shelf, whereas learning-based methods could suffer as they
might have not seen a similar training instance where only
such a small portion of the object is visible. However, one
could jointly reason about the occlusion caused by the shelf
and the positions of the other objects to infer the exact pose
of the Elmer’s glue bottle. This kind of global reasoning
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Fig. 1: A typical scene from a warehouse picking task. Here, we
have access to the list of objects in the bin, their 3D models and
that of the shelf as well. (a) An image of the shelf-bin from which
we are required to identify and localize the Elmer’s glue bottle,
marked by a red bounding box. (b) An image of the Elmer’s glue
bottle that needs to be localized.

forms the basis of deliberative perception algorithms such as
PERCH [2].

II. RELATED WORK

Discriminative Approaches. Typical approaches for ob-
ject instance detection in point clouds employ local or
global 3D feature descriptors. Approaches that use local
descriptors follow a two step procedure: i) compute and find
correspondences between a set of local shape-preserving 3D
feature descriptors on the model and the observed scene and
ii) estimate the rigid transform between a set of geometrically
consistent correspondences. Examples of local 3D feature
descriptors include Spin Images [3], Fast Point Feature His-
tograms (FPFH) [4], Signature of Histograms of Orientations
(SHOT) [5] etc. Approaches that use global descriptors
(e.g., VFH [6], CVFH [7], OUR-CVFH [8], GRSD [9] etc.)
follow a three step procedure: i) build a database of 3D
global descriptors on renderings corresponding to different
viewpoints of each object during the training phase, ii)
extract clusters belonging to individual objects in the test
scene, and iii) match each cluster’s 3D global descriptor to
one in the database to obtain both identity and pose together.
In both approaches, a final local optimization step such as
Iterative Closest Point (ICP) [10] is often used to fine-tune
the pose estimates. A comprehensive survey of descriptor-
based methods is presented in [11].

Other discriminative approaches for object instance de-
tection are based on template matching [12, 13], Hough
forests [14] and deep neural networks trained on colorized
versions of synthetically-generated or real depth images of
object instances [15, 16].

Generative Approaches. their

Despite speed and



prevalence, a primary limitation of descriptor-based and
discriminatively-trained methods is their brittleness to occlu-
sions and other variations not captured during the training
phase. Further, they are ill-suited for multi-object instance
detection and pose estimation since the training data needs
to capture the combinatorics of the problem (i.e, the features
learnt must be capable of predicting inter-object occlusions
for arbitrary combinations of objects).

Generative approaches on the other hand treat multi-object
pose estimation as an optimization or filtering problem over
possible renderings of the scene [2, 17-19]. This allows them
to inherently account for inter-object occlusions. Further,
they do not require any semantic grouping/segmentation
of points into “objects” as required by global descrip-
tor approaches. In what follows, we will summarize our
prior works under this category—Perception via Search
(PERCH) [2] and D2P [19].

III. TECHNICAL DETAILS

PERCH addresses the task of identifying and localizing
multiple objects with known 3D models in a static depth
image or point cloud. Formally, we are given the 3D models
of N unique objects, an input point cloud I (which can also
be generated from a depth image) containing K > N objects,
some of which may be duplicates of an unique instance,
and the 6 DoF pose of the camera sensor along with its
intrinsics. The number (K) and type of objects in the scene
are assumed to be known a priori, but no “clustering” is
required (i.e, the algorithm looks at the scene as a whole,
rather than identifying and estimating the pose of each cluster
in the scene). Objects are assumed to vary only in 3 DoF pose
(z,y, yaw) with respect to their 3D model coordinate axes.
In practice, we construct multiple 3D models of an object
corresponding to canonical poses (stable configurations in the
absence of other objects), and treat each of those as distinct
objects. While this assumption is reasonable in most cases,
we are currently investigating the extension of PERCH to
tractably handle full 6 DoF pose.

Optimization Formulation. PERCH formulates the prob-
lem of identifying and obtaining the poses of objects
01,04,...,0 as that of finding the minimizer of an
“explanation” cost function which captures how well the
rendered scene matches the input scenes, paying due atten-
tion both-ways—i.e, points in the input cloud should have
an associated point in the rendered cloud, and vice-versa.
Formally,
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pel PERK
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Fig. 2: Portion of a Monotone Scene Generation Tree (MSGT):
the root of the tree is the empty scene, and new objects are added
progressively as we traverse down the tree. Notice how child states
never introduce an object that occludes objects already in the parent
state. A counter-example (marked by the red cross) is also shown.
Any state on the K™ level of the tree is a goal state, and the task is
to find the one that has the lowest cost path from the root—marked
by a green bounding box in this example.

in which OUTLIER(p|P) for a point cloud P and point p
is defined as follows:

1 if ming cp||p’ —pll2 > 6 @)

OUTLIER(p|P) =
(plP) {0 otherwise

where ¢ represents the sensor noise resolution.

While this optimization problem looks completely in-
tractable at the outset due to the combinatorially large search
space (joint poses of all objects), the following insight allows
us to circumvent exhaustive search: by enforcing a specific
ordering in which object poses are assigned, the explanation
cost can be decomposed into a sum of per-object costs,
thereby allowing for a smarter search scheme. Specifically,
the constraint on the ordering is that every time an object is
added to the scene, it does not occlude any of the existing
objects. In other words, the number of points in the rendered
point cloud should be monotonically non-decreasing. This
constraint on the ordering and the decomposition of the cost
function results in the minimization problem being reduced
to a tree search problem on what we call the Monotone Scene
Generation Tree (MSGT). Specifically, the minimization
problem is now equivalent to finding the shortest-cost path
from the root node (empty scene) to a goal node (state with
all object poses assigned) in the MSGT (Fig. 2).

Leveraging Discriminative Guidance. While tree-search
is much more tractable than exhaustive search over the joint
object poses, the branching factor is still large and could
result in prohibitively large run times. In D2P [19], PERCH
was extended to leverage arbitrary discriminative techniques
as heuristics to guide the tree search. Specifically, by adopt-
ing a multi-heuristic graph search algorithm which supports
inadmissible heuristics [20], D2P incorporates learning-based
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Fig. 3: Number of objects whose poses were correctly classified
by the baseline methods (BFw/oR, OUR-CVFH) and PERCH, for
different definitions of ‘correct pose’. Results reproduced from [2].

methods such as deep neural networks to focus the search on
promising solutions, while preserving theoretical guarantees
on the solution quality. In the context of the 2016 Amazon
Picking Challenge, we used a superpixel-based convolutional
neural network trained on RGB images to constrain the
search space for PERCH. Our current approach to the
2017 Amazon Robotics Challenge is based on using a fully
convolutional network to obtain pixelwise labels, which in
turn will serve as a heuristic for PERCH.

IV. EXPERIMENTAL RESULTS.

To evaluate the performance of PERCH for multi-object
recognition and pose estimation in challenging scenarios
where objects could be occluding each other, we pick the
occlusion dataset described by Aldoma et al. [11] that con-
tains objects partially touching and occluding each other. The
dataset contains 3D CAD models of 36 common household
objects, and 22 RGB-D tabletop scenes with 80 object
instances that vary only in yaw and translation. We compared
PERCH with two baselines: the first is the OUR-CVFH
descriptor [8] that was designed to be robust to occlusions.
We trained the OUR-CVFH pipeline by rendering 642 views
of every 3D CAD model from viewpoints sampled around
the object. Our second baseline is an ICP-based optimization
one, which we refer to as Brute Force without Rendering
(BFw/oR). Here, we slide the 3D model of every object in
the scene over the observed point cloud, and perform a local
ICP-alignment at every step. The set of object poses that
have the best total fitness score is taken as the solution.

Figure. 3 provides a quantitative comparison with the base-
lines. The latter shows the number of correct poses produced
by each of the methods (out of 80 objects), for the following
definition of ‘correct pose’: a predicted pose (z,vy, ) for an
object is considered correct if ||(z,y) — (Tuue, Yurue) |2 < At
and SHORTESTANGULARDIFFERENCE(0, 0yye) < Af. We
see that PERCH consistently dominates the baselines for
different definitions of correct pose, with the improvements
being most significant when very accurate poses are desired
(translation error under 1 cm). While PERCH without using
any discriminative guidance is computationally expensive (on
the order of minutes for a scene), using it in conjunction
with discriminative heuristics reduced computation to under
a minute for the 2016 Amazon Picking Challenge. We also
note that PERCH does not require any training time unlike
other discriminative methods, making it suitable for cases
when there is not enough training time available.
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