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task: multi-object localization

identify type and 3 DoF pose of all objects
in the scene (point cloud/depth image)




task: multi-object localization

identify type and 3 DoF pose of all objects
in the scene (point cloud/depth image)

given

3D models of objects 6 DoF camera pose




Related Work

Local & Global Descriptor Matching
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Spin Images, Johnson and Hebert, '99

Radius-based Surface Descriptor, Marton et al., "1
Viewpoint Feature Histogram, Rusu et al., ‘10

Clustered Viewpoint Feature Histogram, Aldoma et al. ‘12

Brittle, Sensitive to occlusions
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Learning-based Methods
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Convolution-Recursive Network, Socher '12
Transfer Learning, Alexandre, 13

3D ShapeNets, Wu et al., "15
VoxNet, Maturana and Scherer, '15

Combinatorial training data



Need for Deliberative Perception

:




Need for Deliberative Perception

Explicit reasoning about inter-object occlusions
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Contribution: Deliberative Perception




PERCH: Perception via Search

Optimize over space of all possible renderings
taking inter-object occlusions in account
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Optimize over space of all possible renderings



PERCH: Perception via Search
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Optimize over space of all possible renderings

combinatorial search space
e.g.: 4 objects, 10 (x,y) locations, 10 orientations

100% scenes ~12 days @ 10 ms / render on single GPU



PERCH: Perception via Search

Optimize over space of all possible renderings

l Key Insight

Cast as tree search over

individual object poses
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Cast as tree search over
individual object poses



PERCH: Perception via Search
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PERCH: Perception via Search

Cast as tree search over
individual object poses




Experiments: Occlusion Dataset

Input RGB-D PERCH Output
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Experiments: Occlusion Dataset

Input RGB-D PERCH Output
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Outperforms brute-force ICP and OUR-CVFH baselines



Experiments: Scaling

Input Depth Image Output Depth Image

boptimality bound: 15, sensor delta: 7Z5mm, time: 20

(all pieces rotationally symmetric expect King and Knight)
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Summary

e Deliberative perception: search for best hypothesis over space of rendered scenes

e Tree search decomposition for optimization: “Monotone Scene Generation Tree”

e Theoretical guarantees on bounded suboptimality of solution

Statistical learners as discriminative heuristics for search
Current Work Discriminatively-guided Deliberative Perception
Robotics: Science and Systems (RSS) ’16

RCNN-Heuristics

Input RGB-D

code: github.com/venkatrn/perception



http://github.com/venkatrn/perception

