PERCH: <u>Pe</u>rception via Sea<u>rch</u> for Multi-Object Recognition and Localization

Venkatraman Narayanan and Maxim Likhachev

Carnegie Mellon University

Image Courtesy: Simbe Robotics

task: multi-object localization identify type and 3 DoF pose of <u>all objects</u> in the scene (point cloud/depth image)

task: multi-object localization identify type and 3 DoF pose of <u>all objects</u> in the scene (point cloud/depth image)

given

3D models of objects

6 DoF camera pose

Related Work

Local & Global Descriptor Matching

Spin Images, Johnson and Hebert, '99 Radius-based Surface Descriptor, Marton et al., '11 Viewpoint Feature Histogram, Rusu et al., '10 Clustered Viewpoint Feature Histogram, Aldoma et al. '12

Brittle, Sensitive to occlusions

Related Work

Local & Global Descriptor Matching

Spin Images, Johnson and Hebert, '99 Radius-based Surface Descriptor, Marton et al., '11 Viewpoint Feature Histogram, Rusu et al., '10 Clustered Viewpoint Feature Histogram, Aldoma et al. '12

Brittle, Sensitive to occlusions

Learning-based Methods

Convolution-Recursive Network, Socher '12 Transfer Learning, Alexandre, '13 3D ShapeNets, Wu et al., '15 VoxNet, Maturana and Scherer, '15

Combinatorial training data

Need for Deliberative Perception

Need for Deliberative Perception

Contribution: Deliberative Perception

Explicit reasoning about inter-object occlusions

Optimize over space of all possible renderings taking inter-object occlusions in account

Optimize over space of all possible renderings

Optimize over space of all possible renderings

combinatorial search space

- e.g.: 4 objects, 10 (x,y) locations, 10 orientations
- 100⁴ scenes ~12 days @ 10 ms / render on single GPU

Optimize over space of all possible renderings

Cast as tree search over *individual* object poses

Key Insight

Cast as tree search over *individual* object poses

Experiments: Occlusion Dataset

Input RGB-D

PERCH Output

Experiments: Occlusion Dataset

Input RGB-D

Outperforms brute-force ICP and OUR-CVFH baselines

PERCH Output

Experiments: Scaling

Input Depth Image

Output Depth Image

suboptimality bound: 15, sensor delta: 75mm, time: 20 min (all pieces rotationally symmetric expect King and Knight)

Experiments: Scaling

Input Depth Image

Output Depth Image

suboptimality bound: 15, sensor delta: 75mm, time: 20 min (all pieces rotationally symmetric expect King and Knight)

Summary

- <u>Deliberative perception</u>: search for best hypothesis over space of rendered scenes
- Tree search decomposition for optimization: "Monotone Scene Generation Tree"
- <u>Theoretical guarantees</u> on bounded suboptimality of solution

Current Work Discriminatively-guided Deliberative Perception Robotics: Science and Systems (RSS) '16

Statistical learners as discriminative heuristics for search

- code: <u>github.com/venkatrn/perception</u>