

PERCH: Perception via Search for Multi-Object Recognition and Localization

Venkatraman Narayanan and Maxim Likhachev

Problem Statement

task

identify type and 3 DoF pose of every object in the scene (point cloud/depth image)

given

6 DoF camera pose, 3D models of objects in the scene

Feature and template-based methods are brittle (e.g., occlusion)

Learning methods need training data to capture the combinatorics of inter-object interactions

Contributions

- Deliberative perception: search for best "hypothesis" over space of rendered scenes
- Tree search decomposition for optimization: "Monotone Scene Generation Tree"
- Theoretical guarantees on bounded suboptimality of solution

Optimization Formulation

minimize cost

#unexplained points in observed cloud

#unexplained points in rendered cloud

Render all possible scenes, select the one that "best matches" the input depth image

- Brute-force search over joint state space is intractable: 4 objects, 10 (x,y) positions, 10 orientations: 100⁴ states ~ 12 days on a GPU
- Key idea: cost function can be decomposed over objects under a monotonicity constraint: assign object poses sequentially; ensure penalty accrued for an assigned object never decreases
- Constraint results in "non-occluding" order, problem reduces to tree search on this Monotone Scene Generation Tree

Monotone Scene Generation Tree & Heuristic Search

Find shortest path from root node to any leaf

- Tree search is still hard. For branching factor of 8000 and tree depth of 4, we have $\sim 4 \times 10^{15}$ nodes in the tree
- We use Focal Multi-Heuristic A* (MHA*)^[1] for the search, and parallelize child node generation
 - Heuristic I: prefer expanding nodes lower in the tree
 - Heuristic 2: prefer expanding nodes where assigned objects have maximum overlap with input point cloud
- Focal MHA* guarantees that solution is within desired quality bound, despite using arbitrary heuristics

Evaluation

dataset

- Household objects occlusion dataset^[2]
- **–** 36 objects models, 82 instances in 23 scenes
- Discretization: 4 cm, 22.5 deg; ICP at every stage to compensate for discretization artifacts
- Parallel child node generation (AWS m4.10x, 2x40 cores)
- Mean search time: 6.5 mins

baselines OUR-CVFH[3] **Brute-Force ICF**

scaling experiment

Upcoming at Robotics: Science and Systems (RSS) '16 Discriminatively-guided Deliberative Perception (D2P)

code: github.com/venkatrn/perception

- [1] Improved Muti-Heuristic A*, Narayanan et al., SoCS '15
- [2] Point Cloud Library, Aldoma et al., IEEE RAM '12
- [3] CAD Model Recognition and 6 DOF Pose Estimation using 3D Cues, Aldoma et al., ICCV Workshops, 'I I