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Allow edges to be a function of vertices: e = f(V )
Expressive representation captures complex articulations
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Representation
Generalized Kinematic Graph (GK-Graph) 

Allow edges to be a function of vertices: e = f(V )
Expressive representation captures complex articulations

Able to represent conditions such as

Door-Wall joint is rigid only when handle is
a) unturned, and
b) in the plane of the door frame

Otherwise, it is revolute
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Given N candidate articulation models, find a 
cost-minimal policy to achieve the goal  

Each candidate model is a hypothesis of how the object operates

“the door opens if you turn the handle and push”
“the door opens if you turn the handle and pull”
“the door opens if you slide it across”



Problem Formulation

Given N candidate articulation models, find a 
cost-minimal policy to achieve the goal  

Each candidate model is a hypothesis of how the object operates

The goal is some function of the kinematic graph

“the object’s joint limits have been reached”
“the handle has moved X cm from where it was”
“the camera can see what is inside”
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User-defined cost, e.g, get to the goal as quickly as possible

Policy: mapping from what the robot sees and its uncertainty over 
candidate models to an action it can execute
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entropy in distribution over model 
parameters/degrees of freedom 
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Key Contributions of this Work:

1. Task-oriented: approach as a planning problem as opposed to a learning problem

2. Novel (and perceptually grounded) representation for articulated objects: GK-Graph
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cost-minimal policy to achieve the goal  

Some notation:
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Set of vertices in GK-Graph:

Action: 

x 2 X

State:
s 2 S : hx, ✓i
a 2 A
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f✓(x), ✓ = {1, 2, . . . , N}Candidate models:

Set of vertices in GK-Graph:
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Underlying ‘true’ model is unobserved
POMDP
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Planning under Model Uncertainty
POMDPs: 

• Defined by <S,A,T,C,O> (state, action, transition, cost, observation)

• For given partially observed state, what is the optimal action to take 
(policy)?

• Optimal action should minimize sum of future costs (optionally discounted 
in time)

• Hard to solve exactly (PSPACE-complete)



Planning under Model Uncertainty
POMDPs and belief space: 
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Planning under Model Uncertainty
The belief MDP (b-MDP)

• POMDPs are equivalent to an MDP on the belief space

• POMDP: <S,A,T,C,O> 

• b-MDP: <B,A,T’,C’> (need to define T’ and C’)

• Use MDP solver of your choice (value iteration, policy iteration) and be 
done

• Alas, not so simple--infinitely many belief states, infinite branching factor
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Back to our problem...

f✓(x), ✓ = {1, 2, . . . , N}Candidate models:

Set of vertices in GK-Graph:

Action: 

x 2 X

State:
s 2 S : hx, ✓i
a 2 A

is fully observed--no noise in observing GK-graph verticesx

Key assumptions:

GK-graph transitions are deterministic:
x

0 = Sim(x, ✓, a)
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Don’t need belief over all states          . Sufficient to maintain                 b(s) b
x

(✓)

b
x

(✓) is simply an N-vector.  We have one of these for every x.
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is fully observed--no noise in observing GK-graph verticesx

Key assumptions:

GK-graph transitions are deterministic:
x

0 = Sim(x, ✓, a)
Belief transitions don’t have infinite branching factor!

Don’t need belief over all states          . Sufficient to maintain                 b(s) b
x

(✓)

b
x

(✓) is simply an N-vector.  We have one of these for every x.



Planning under Model Uncertainty
The belief MDP

For this special case where part of the state is fully 
observed (MOMDP[1]), we can write the belief transition 
update as

[1] Ong et al., POMDPS for Robotics Tasks with Mixed Observability, RSS ’05
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Planning under Model Uncertainty
The belief MDP

Key result: an action in the belief space can produce at most N successor 
belief states (as opposed to infinitely many in the general case)



Planning under Model Uncertainty
Belief MDP is now tractable--got rid of infinite branching, 
uncertainty only over models

State space is still large (can’t run value iteration)

Value iteration examines every state in the MDP
Can we get away without doing so?



Planning under Model Uncertainty
Belief MDP is now tractable--got rid of infinite branching, 
uncertainty only over models

State space is still large (can’t run value iteration)

Value iteration examines every state in the MDP
Can we get away without doing so?

Yes! Use heuristics (a la A*) to prune the search space

Key idea: we will never reach certain parts of the state space 
from the start state, under the optimal policy

LAO*: Hansen and Zilberstein, Artificial Intelligence, 2001
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LAO*



Planning under Model Uncertainty
Plan-execute-replan-repeat

Belief update
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Perceptual Grounding



Perceptual Grounding
Use mincut for GK-graph segmentation

For prismatic model, theta is angle between 
prismatic axis and xi-xj

For revolute model, theta is angle between 
the lever arms from xi and xj
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Experiments
Actions: forces on unit sphere discretized into 20 directions

Heuristic:

Inverse kinematics controller for executing action



Experiments

Video
https://www.youtube.com/watch?v=E7xFtzC8ycc

https://www.youtube.com/watch?v=E7xFtzC8ycc


Experiments
Planner Efficiency Tests



Summary
Novel representation (GK-Graph) for articulated objects

Planning for task-oriented manipulation

Efficient LAO* based planner for solving the belief MDP

Key insights: belief MDP tractable when transitions are 
deterministic, and when part of state is fully observed

Perception system for auto-generating candidate models

Extensive experiments on the PR2 robot

Questions?


