Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty

Venkatraman Narayanan and Maxim Likhachev

Articulated Objects

- Many household objects are articulated-doors, drawers, cabinets etc.
- Must understand the articulation (kinematic constraints) to manipulate these objects
- Existing approaches [1,2] are 'exploratory' learning methods: no task-grounding

Contributions

- A novel representation called the Generalized Kinematic Graph (GK-Graph) for modeling complex objects
- A planning formulation that reasons about uncertainty over candidate articulation models to accomplish a specific task
- Perception pipeline for auto-generating candidate articulation models

Generalized Kinematic (GK) Graph

Allow edges to be a function of all vertices

e.g., "revolute when handle turned, rigid otherwise"

Planning with the GK-Graph

Planning under Uncertainty

Given N candidate articulation models (GK-Graphs) and a goal, find a cost-minimal policy

POMDP formulation

• Following assumptions make tractable belief-MDP's dimensionality and branching factor

Uncertainty only over θ (mixed-observable MDP)

Don't need belief over all states b(s)Sufficient to maintain $b_x(\theta)$

Transitions are deterministic given θ

Transitions in the belief space can produce at most N successor states

• Use LAO* [3] to efficiently solve belief-MDP

Evaluation

Perception Pipeline

Segment planes

Generate candidate axes

Assign GK-Graph edges

PR2 Experiments

- Actions: forces sampled from unit sphere
- 5-10 candidate models per trial
- Interleave planning and execution
- Planning times ~ 5s, up to 4 replans
- Code: github.com/venkatrn/ltm

References

- [1] Katz and Brock (ICRA '08, ICRA '13)
- [2] Sturm et al. (IJCAI '09, Springer '13)
- [3] Hansen and Zilberstein (Al '01)