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In many robotic domains such as flexible automated manufacturing or
personal assistance, a fundamental perception task is that of identifying
and localizing objects whose 3D models are known. Canonical approaches
to this problem include discriminative methods that find correspondences
between feature descriptors computed over the model and observed data.
While these methods have been employed successfully, they can be unreli-
able when the feature descriptors cannot capture variations in observed data:
a classic example being occlusion. As a step towards deliberative reasoning,
we present PERCH: PErception via SeaRCH, an algorithm that seeks to find
the best explanation of the observed sensor data by hypothesizing possible
scenes in a generative fashion. Our contributions are: i) formulating the
multi-object recognition and localization task as an optimization problem
over the space of hypothesized scenes, ii) exploiting structure in the opti-
mization to cast it as a combinatorial search problem on what we call the
Monotone Scene Generation Tree, and iii) leveraging parallelization and
recent advances in multi-heuristic search in making combinatorial search
tractable. We prove that our system can guaranteeably produce the best
explanation of the scene under the chosen cost function, and validate our
claims on real world RGB-D test data. Our experimental results show that
we can identify and localize objects under heavy occlusion—cases where
state-of-the-art methods struggle.

While model-based recognition and pose estimation of objects has been
an active area of research for decades in the computer vision community [4,
10], the proliferation of low-cost depth sensors such as the Microsoft Kinect
has introduced a plethora of opportunities and challenges. Model-based ob-
ject recognition and localization in the present 3D era falls broadly under
two approaches: local and global recognition systems. The former operate
by matching local 3D descriptors (e.g., Spin Images [7], Fast Point Feature
Histograms (FPFH) [11]) between the model and test scenes and then esti-
mating a geometrically feasible rigid transform. Global recognition systems
encode the notion of an object by capturing shape and viewpoint informa-
tion jointly in a descriptor. These approaches employ a training phase to
build a library of global descriptors corresponding to different observed in-
stances (for e.g., an object viewed from different viewpoints) and attempt
to match the descriptor computed at observation time to the closest one in
the library. Examples of such systems include Clustered Viewpoint Fea-
ture Histogram (CVFH) [1], OUR-CVFH [3], Global Radius-based Surface
Descriptors (GRSD) [8] etc. Other approaches to estimating object pose
include local voting schemes [5] or template matching [6] to first detect ob-
jects, and then using global descriptor matching or ICP for pose refinement.

Although both local and global feature-based approaches have enjoyed
popularity owing to their speed and intuitive appeal, they suffer when used
for identifying and localizing multiple objects in the scene (Fig. 1). The
limitation is perhaps best described by the following lines from the book
by Stevens and Beveridge [12]: “Searching for individual objects in isola-
tion precludes explicit reasoning about occlusion. Although the absence of
a model feature can be detected (i.e., no corresponding data feature), the
absence cannot be explained (why is there no corresponding data feature?).
As the number of missing features increase, recognition performance de-
grades”. In this work, we present an approach that explicitly models inter-
object occlusion through rendering possible configurations of objects.

Technical Details. The problem we consider is that of localizing table-
top objects from depth data such as a full point cloud, or a 2.5D Kinect sen-
sor. The problem statement is as follows: given 3D models of N unique
objects, a point cloud (/) of a scene containing K > N objects (possibly con-
taining replicates of the N unique objects), and the 6 degrees of freedom
(DoF) pose of the sensor, we are required to find the 3 DoF pose (x,y, 0) of
each of the K objects in the scene. We make the following assumptions: a)
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Figure 1: Identifying and localizing the pose of multiple objects simultaneously is
challenging in many domains such as robotic manipulation because of inter-object
occlusions. Illustration shows multiple chess pieces occluding each other.

The number (K) and type of objects in the scene are known ahead of time
(but not the correspondences themselves), b) The objects in the scene vary
only in position and yaw (3 DoF) with respect to their 3D models, and c) We
have access to the intrinsic parameters of the sensor, so that we can render
scenes using the available 3D models.

We formulate the problem of identifying and obtaining the 3 DoF poses
of objects O1,0,,...,0k as that of finding the minimizer of the following
‘explanation cost’:
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for some sensor noise threshold &. Intuitively, the formulation seeks a ren-
dering of the scene that best explains the observed sensor data. In the ideal
scenario where there is no noise in the observed scene and where we have
access to a perfect renderer, we could do an exhaustive search over the joint
object poses to obtain a solution with zero cost. However, this naive ap-
proach is a recipe for computational disaster: even when we have only 3
objects in the scene and discretize our positions to 100 grid locations and
10 different orientations, we would have to synthesize/render 10° scenes to
find the global optimum.

The following insight allows us to circumvent exhaustive search: by en-
forcing a specific ordering in which object poses are assigned, the explana-
tion cost can be decomposed into a sum of per-object costs, thereby paving
the way for a smarter search scheme. Specifically, the constraint on the or-
dering is that every time an object is added to the scene, it does not occlude
any of the existing objects. In other words, the number of points in the ren-
dered point cloud should be monotonically non-decreasing. This constraint
on the ordering and the decomposition of the cost function results in the min-
imization problem being reduced to a tree search problem on what we call
the Monotone Scene Generation Tree (MSGT). Specifically, the minimiza-
tion problem is now equivalent to finding the shortest-cost path from the
root node (empty scene) to a goal node (state with all object poses assigned)
in the MSGT (Fig. 2). Although tree-search is much more tractable than
exhaustive search over the joint object poses, the branching factor is still
large. To speed up search, we leverage recent work in heuristic search [9]
that permits the use of multiple arbitrary heuristics, while still preserving
guarantees on completeness and bounds on solution quality.



Figure 2: Portion of a Monotone Scene Generation Tree (MSGT): the root of the tree
is the empty scene, and new objects are added progressively as we traverse down the
tree. Notice how child states never introduce an object that occludes objects already
in the parent state. A counter-example (marked by the red cross) is also shown. Any
state on the K level of the tree is a goal state, and the task is to find the one that has
the lowest cost path from the root—marked by a green bounding box in this example.

Experiments. To evaluate the performance of PERCH for multi-object
recognition and pose estimation in challenging scenarios where objects could
be occluding each other, we pick the occlusion dataset described by Aldoma
et al. [2] that contains objects partially touching and occluding each other.
The dataset contains 3D CAD models of 36 common household objects, and
22 RGB-D tabletop scenes with 80 object instances that vary only in yaw
and translation. We compared PERCH with two baselines: the first is the
OUR-CVFH descriptor [3] that was designed to be robust to occlusions. We
trained the OUR-CVFH pipeline by rendering 642 views of every 3D CAD
model from viewpoints sampled around the object. Our second baseline is
an ICP-based optimization one, which we refer to as Brute Force without
Rendering (BFw/oR). Here, we slide the 3D model of every object in the
scene over the observed point cloud, and perform a local ICP-alignment at
every step. The set of object poses that have the best total fitness score is
taken as the solution.

Figure 3 shows some qualitative examples of PERCH’s results, while
Fig. 4 provides a quantitative comparison with the baselines. The latter
shows the number of correct poses produced by each of the methods (out of
80 objects), for the following definition of ‘correct pose’: a predicted pose
(x,y,0) for an object is considered correct if ||(x,y) — (Xtrue, Virue ) |2 < At
and SHORTESTANGULARDIFFERENCE(0, Oy ) < AB. We see that PERCH
consistently dominates the baselines for different definitions of correct pose,
with the improvements being most significant when very accurate poses are
desired (translation error under 1 cm). The most computationally expensive
part of PERCH, rendering scenes during the search, is embarrassingly par-
allel. We parallelized our implementation with the MPI framework and ran
the experiments on an Amazon AWS cluster of 2 m4.10x machines with 40
virtual cores each. The mean time to find a solution per scene was 6.5 min-
utes. We also note that PERCH does not require any training time, unlike
the global descriptor pipelines.

In summary, we presented PERCH, an algorithm for multi-object recog-
nition and localization that uses search to find the ‘best’ explanation of an
observed scene. Our contributions were the formulation of multi-object lo-
calization as an optimization over rendered scenes, and exploiting structure
in the optimization to cast it as a tree search problem. Our results demon-
strate that PERCH can robustly identify and localize objects even under
heavy occlusion.
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Figure 3: Examples showing the output of PERCH on the occlusion dataset. Left:
RGB-D scenes in the dataset. Middle: Depth images of the corresponding input RGB-
D scenes, Right: The depth image reconstructed by PERCH through rendering object
poses.
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Figure 4: Number of objects whose poses were correctly classified by the baseline
methods (BFw/oR, OUR-CVFH) and PERCH, for different definitions of ‘correct
pose’.
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