
Introduction to Coding Theory CMU: Spring 2010

Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding

March 2010

Lecturer: V. Guruswami Scribe: Venkat Guruswami & Balakrishnan Narayanaswamy

1 Review - Concatenated codes and Zyablov’s tradeoff

In the last class we saw (Theorem 14) that it is possible to efficiently construct an (asymptotically
good) concatenated code of rate R with distance meeting the Zyablov trade-off between relative
distance δ and rate R:

δZyablov(R) = max
R≤r≤1

(1− R

r
)h−1(1− r) (1)

Given a specified rate target R, the construction involved a brute force search for the inner code
Cin of rate r that met the Gilbert-Varshamov bound and had relative distance h−1(1 − r). Once
such an inner code was found, it was used to encode each symbol of the outer Reed-Solomon code.

This use of a search step left open the question of constructing fully explicit codes, with no brute-
force search for a smaller code, with similar trade-offs.

2 Justesen’s code

Justesen [9] provided an explicit concatenated code construction that achieved the Zyablov tradeoff
over a range of rates (approximately rates R ≥ .31) and was aymptotically good for any desired
rate R ∈ (0, 1). The construction was based on the following insights:

1. A inner codes Ciin do not have to be the same

2. It is sufficient if most (a fraction 1 − o(1)) of the inner codes meet the Gilbert-Varshamov
bound.

How can we exploit these insights ? We fix the outer code Cout as the [n = 2m − 1, k, n− k + 1]2m

Reed Solomon code RSF,F∗ [n, k] over the field F = F2m . Each symbol in the resulting code can be
mapped (bijectively) into a binary sequence of length m using an F2-linear map σ : F2m → Fm2 .
We code each sequence i (for i = 1, . . . , n) with a different binary rate half inner code Ciin. That is
each Ciin maps the binary sequence of length m to a binary sequence of length 2m. Suppose that
most (at least (1− o(1))n) of the inner codes Ciin have a relative distance δi ≥ δg.
This concatenated code has rate R

2 = k
2n and relative distance at least (1 − 2R − o(1))δg. If most

of the inner codes (almost) meet the GV bound for rate 1/2 codes, so that

δg = δGV (1/2)− o(1) = h−1(1/2)− o(1) , (2)

1



then the overall code has relative distance given by

δ(R) = (1− 2R)h−1(1/2)− o(1) . (3)

In the Exercise 1 below, we will construct a family of codes such that all but a small fraction of
them asymptotically meet the GV bound.

Exercise 1 Show that there is a family F of [2m,m]2 binary linear codes such that the following
hold

1. |F| = 2m − 1

2. Most of the codes C ∈ F have relative distance at least h−1(1/2)− o(1)

(Hint: Consider the code family from HW 1, Question 5.b. For α ∈ F2m, α 6= 0, consider the map
Lα : Fm2 → F 2m

2 defined as
Lα(x) = (x;σ(α • σ−1(x))) (4)

and the family of codes F = {Lα : α 6= 0}. We showed that there exist codes in this family that
asymptotically meet the GV bound. The same argument can actually show that this is true for most
codes in the family.)

Using these codes as the different inner codes Ciin’s with outer code RSF,F∗ [n, k] gives us the following
result:

Lemma 1 There are explicit binary linear codes of rate R < 1/2 and relative distance

(1− 2R)h−1(
1
2

)− o(1) . (5)

Remark 2 In the above concatenated code, the message is a polynomial f ∈ F2m [X] of degree at
most k − 1 and it is encoded by the evaluations of both f(X) and Xf(X) at the nonzero elements
of the field, which are then expressed as elements of Fm2 as per some basis.

We see that the above only gives codes of overall rate less than 1/2 (since the inner code itself
has rate only 1/2). For larger rates we modify the construction in Exercise 1 to construct a small
family of codes of any desired rate r ∈ (1/2, 1) that meet the GV bound.

Exercise 2 For any 1 ≤ s ≤ m, show that there is a family F of [m + s,m]2 binary linear codes
such that the following hold

1. |F| = 2m − 1

2. Most of the codes C ∈ F have relative distance at least h−1(s/(m+ s))− o(1)

2



(Hint: Modify the code family from Exercise 1 as follows. Define σ
′

: F2m → F s2 such that
σ
′
(x) = first s bits of σ(x). For α ∈ F2m, α 6= 0, consider the map L

′
α : Fm2 → Fm+s

2 defined as

L
′
α(x) = (x;σ

′
(α • σ−1(x))) (6)

and the family of codes F =
{
L
′
α : α 6= 0

}
. Use volume arguments to show that most codes in this

family have relative distance ≥ h−1( s
s+m)− o(1).

By concatenating the outer Reed-Solomon code of length 2m− 1 with all the different codes in the
above family, we get the following:

Theorem 3 For any R ∈ (0, 1), there are explicit binary lineat codes of rate at least R and relative
distance at least

δJustesen(R) = max
r≥max( 1

2
,R)

(1− R

r
)h−1(1− r)− o(1) (7)

We compare the two bounds constructive results: the Zyablov tradeoff (Eq. 1) and the explicit
construction Justesen tradeoff (Eq. 7) in the figure below.

3



Exercise 3 Show that the δZyablov(R) = δJustesen(R) for R ≥ .31.

Hint: Differentiating the expression (1− R/r)h−1(1− r) w.r.t r, one finds that the r maximizing
this expression (and thus leading to the Zyablov trade-off in (1)) satisfies

R =
r2

1 + log2 (1− h−1(1− r))
.

For R ≥ 0.31, the solution r to the above equation lies in the range [1/2, 1], and thus the Zyablov
bound can be met by the Justesen construction.

2.1 Meeting the Zyablov trade-off at lower rates

The Justesen construction in the previous section used a good ensemble of codes of rate r = 1
2 for

the inner code, with the size of the ensemble |F| < 2m. The reason that the same construction
does not work for rates R < .31 is that we do not know small enough inner code ensembles with
rate r < 1

2 where most of the codes are meet the GV bound.

For example, for R ≈ 0.15, the optimal choice of the inner rate r in the Zyablov bound is ≈ 1/3.
Consider the following map, similar to the ones used in Exercises 1 and 2,

Lα1,α2(x) = (x;σ(α1 • σ−1(x));σ(α2 • σ−1(x))) (8)

and the family of codes defined by this map for all pairs of nonzero field elements α1, α2. One can
show, via a similar counting argumemt, that this is a family of at most 22m codes where most of
the codes meet the GV bound and have relative distance δ = h−1(2

3)− o(1).

To use these rate 1/3 codes in a Justesen-like construction, we need an outer code over alphabet
F2m that has block length about 22m, and which nearly meets the Singleton bound. Reed-Solomon
codes are limited to a block length of 2m and thus are not long enough. The solution around
this predicament is provided by algebraic-geometric (AG) codes. As we briefly mentioned earlier,
AG codes over Fq are a generalization of RS curves based on evaluation of functions with few
“poles” at the rational points of an appropriately chosen algebraic curve which has � q points
with coordinates in Fq. Shen [12] proposed an explicit family of AG codes over Fq which can have
block length at least qc for any desired c, and whose relative distance as a function of the rate R is
1−R− oq(1). Using these codes as outer codes in place of RS codes and the appropriate extension
of the above rate 1/3 code ensemble in a Justesen-like construction, he was able to give an explicit
construction achieving the Zyablov trade-off for the entire range of rates R ∈ (0, 1). Discussing the
details of these AG codes are beyond the scope of this course, and the interested reader can find
the details in the original paper [12].

3 Decoding algorithms

We now turn to algorithmic aspects of error-correction. We first consider the (relatively benign)
erasure channel and then move on to channels that arbitrarily corrupt a constant fraction of the
transmitted codeword symbols. We will see that Reed-Solomon codes admit efficient decoding
algorithms matching the combinatorial bounds possible by virtue of its minimum distance.

4



3.1 Erasure decoding of linear codes

Consider a [n, k, d]q code with message x ∈ Fkq and corresponding codeword y = Gx ∈ Fnq . Suppose
a subset S ⊆ {1, . . . , n} is received (uncorrupted) and the rest of the positions are erased. The
location of the erasures are known at the receiving end. Decoding the message involves solving the
linear system

GSx = yS (9)

We reorder the indices so that the first |S| entries in y are the uncorrupted entries, resulting in the
following matrix system, 

GS

GS


 x

 =


yS

yS

 (10)

As long as the rank of GS is k, the solution to GSx = yS is uniquely determined. When the number
of erasures is less than d, i.e., |S| > n − d, the distance property of the code implies that GS has
full rank. Thus one can correct any pattern of d− 1 or fewer erasures by solving the linear system
GSx = yS in O(n3) time. However, specific structured G matrices can allow much faster solution of
the linear system (even linear time in certain cases as we will see later on when discussing expander
codes), leading to faster erasure recovery algorithms.

3.2 Erasure decoding of Reed Solomon Codes

We recall the interpretation of Reed Solomon codes from the previous lecture,

Definition 4 Reed-Solomon codes
For integers 1 < k < n, field F of size |F| > n, and a set S = {α1, . . . , αn} ⊆ F, we define the
Reed-Solomon code

RSF,S [n, k] = {(p(α1), . . . , p(αn)) ∈ Fn|p ∈ F[X] a polynomial of degree ≤ k − 1} (11)

To encode a message m = (m0, . . . ,mk−1) ∈ Fk, we interpret the polynomial as

p(X) = m0 +m1X + . . .+mk−1X
k−1 ∈ F[X] (12)

Suppose a codeword from a Reed Solomon code is transmitted over an erasure channel and all but
t symbols are erased. Then the decoder must reconstruct the message m from t pairs of values
{(α1, f(α1)), . . . , (αt, f(αt))}. Since the polynomial p(X) is a degree k−1 polynomial it is uniquely
determined by its value at any t ≥ k points. This can be done using FFTs in n logO(1) n time or
using polynomial interpolation in O(n2) time. Suppose t = k and nonerased locations correspond
to {α1, α2, . . . , αk}. Note that if we define the polynomials pj for 1 ≤ j ≤ k

pj(X) =
k∏

i=1,i 6=j

X − αi
αj − αi

, (13)

5



the interpolated polynomial is then

f(X) =
k∑
j=1

f(αj)pj(X) . (14)

The number n−k of erasures corrected by RS codes is optimal, since to have any hope of recovering
the k message symbols, one must receive at least k symbols at the receiving end.

3.3 Decoding Reed-Solomon codes from errors

We now turn to the more challenging problem of decoding Reed-Solomon codes from worst-case
errors. Specifically, we would like to decode the RS code RS[n, k] up to τ = bn−k2 c errors. (Recall
that the code has distance n− k+ 1, so the correct codeword is uniquely determined as the closest
codeword to the received word if up to τ errors occur.)

Suppose a polynomial f ∈ Fq[X] of degree k− 1 is encoded as the RS codeword (f(α1), . . . , f(αn))
and transmitted, but it is received as the noisy word y = (y1, . . . , yn) satisfying yi 6= f(αi) for at
most τ values of i. The goal is to recover the polynomial f(X) from y.

We now discuss an algorithm due to Welch and Berlekamp [15] for solving this problem. (The
streamlined and simplified presentation discussed here is due to Gemmell and Sudan [7].) Note
that if we knew the location of the errors, i.e., the set E = {i | yi 6= f(αi)}, then the decoding is
easy, as we can erase the erroneous and interpolate the polynomial on the rest of the locations.

To this end, let us define the error locator polynomial (which is unknown to the decoder):

E(X) =
∏

f(αi)6=yi

(X − αi) (15)

The degree of E(X) is ≤ τ . Clearly E(X) has the property that for 1 ≤ i ≤ n, E(αi)yi =
E(αi)f(αi). Define the polynomial

N(X) = E(X)F (X) , (16)

which has degree at most τ + k − 1. Now the bivariate polynomial

P (X,Y ) = E(X)Y −N(X) (17)

satisfies P (αi, yi) = 0, ∀i. We will use the existence of such a P to find a similar bivariate polynomial
from which we can find f(X).

Formally, the algorithms proceeds in two steps.

Step 1 : Find a non-zero polynomial Q(X,Y ) such that,

1. Q(X,Y ) = E1(X)Y −N1(X)

2. deg E1 ≤ τ and deg N1 ≤ τ + k − 1

3. Q(αi, yi) = 0, ∀i

6



Step 2 : Output N1(X)
E1(X) as f(X)

Proposition 5 A non-zero solution Q to Step 1 exists.

Proof: Take E1 = E, N1 = N . �

Proposition 6 Any solution (E1, N1) must satisfy N1
E1

= f .

Proof: Define the polynomial

R(X) = E1(X)f(X)−N1(X) (18)

Fact 1: deg R ≤ τ + k − 1. This follows immediately from the conditions imposed on the degree
of E1 and N1.
Fact 2: R has at least n−τ roots. Indeed, for each locations i that is not in error, i.e., f(αi) = yi,
we have R(αi) = Q(αi, yi) = 0.

Using the above two facts, we can conclude that if n− τ > τ + k− 1, then R is identically 0, which
means that f(X) = N(X)/E1(X). Since τ = bn−k2 c, this condition on τ is met, and we conclude
that the algorithm successfully recovers f(X). �

We now argue that the above algorithm can be implemented in polynomial time. Clearly the second
step is easy. For the first interpolation step, note that it can be solved by finding a non-zero solution
to a homogeneous linear system with unknowns being the coefficients of the polynomials N1, E1,
and n linear constraints Q(αi, yi) = 0. Since we guaranteed the existence of a nonzero solution,
one can find some nonzero solution by Gaussian elimination in O(n3) field operations.

The interpolation step is really rational function interpolation and near-linear time algorithms are
known for it. Also one can do fast polynomial division in n logO(1) n field operations. Thus overall
the algorithm can also be implemented in near-linear time.

We conclude by recording the main result concerning decoding RS codes up to half the distance.

Theorem 7 There is a polynomial time decoding algorithm for an [n, k]q Reed-Solomon code that
can correct up to dn−k2 e worst-case errors.

Thus, for a given rate R we can correct a 1−R
2 fraction of errors (using RS codes and the above

algorithm) which is the best possible by the Singleton bound. Later in the course we will look at
list decoding algorithms that can improve on these parameters by allowing the decoder to output
a (small) list of candidate codewords.

The primary disadvantage of RS codes are that they are defined over very large alphabets (of size
at least the codeword length). We will soon see efficiently decodable binary codes constructed via
code concatenation. But next we see a different algorithm for decoding RS codes up to half the
distance, which was historically the first such algorithm.

7



4 Peterson Algorithm for decoding RS codes

The Peterson Algorithm from 1960 [11] is another algorithm to decode Reed Solomon codes up to
half the minimum distance. One interesting feature of its discovery is that it is a non-trivial poly-
nomial time algorithm for a non-trivial problem proposed before polynomial time was formalized
as the theoretical standard for efficient computation!

The Peterson Algorithm works with the parity check view of RS codes which we recall here

Definition 8 (Parity-check characterization) For integers 1 ≤ k < n, a field F of size |F| =
q = n + 1, a primitive element α ∈ F∗q, and the set S = {1, α, α2, . . . , αn−1}, the [n, k, n − k + 1]q
Reed-Solomon code over F with evaluation set S is given by

RSF,S [n, k] = {(c0, c1, ..., cn−1) ∈ Fn|c(X) = c0 + c1X + . . .+ cn−1Xn−1

satisfies c(α) = c(α2) = . . . = c(αn−k) = 0}

Suppose a codeword c ∈ RSF,S [n, k] is transmitted and an error vector e ∈ Fn of Hamming weight
at most

τ =
⌊
n− k

2

⌋
is added to c, so that it is received as y = c+e = (y0, y1, . . . , yn−1). The goal is to efficiently recover
c (or the polynomial f ∈ F[X] of degree < k that it encodes).

For l ∈ {1, . . . , n− k}, we can compute the syndrome

Sl =
n−1∑
j=0

yjα
lj = c(αl) +

n−1∑
j=0

ejα
lj =

n−1∑
j=0

ejα
lj (19)

since c(αl) = 0 for 1 ≤ l ≤ n− k. Let us define the syndrome polynomial S(X)

S(X) =
n−k∑
l=1

SlX
l−1 . (20)

This polynomial and its properties play a key role in the development and analysis of the decoding
algorithm. Note that the syndrome polynomial can be efficiently computed from the received word.

We define T ⊆ {0, 1, . . . , n− 1} be the set of error locations, i.e., T = {i | ei 6= 0}. Define the Error
Locator Polynomial as follows (note that T and the error locator polynomial are not known at the
decoder, and computing them is at the heart of the decoding task).

E(X) =
∏
j∈T

(1− αjX) (21)

This polynomial is defined so that it has roots exactly at α−j for those indices j where the received
vector y is in error. The degree of E is |T | ≤ τ .

8



We now simplify the expression for the syndrome polynomial:

S(X) =
n−k∑
l=1

SlX
l−1

=
n−k∑
l=1

X l−1
∑
j∈T

ejα
lj

=
∑
j∈T

ejα
j
n−k∑
l=1

X l−1αj(l−1)

=
∑
j∈T

ejα
j

(
1− (αjX)n−k

1− αjX

)
Hence

E(X)S(X) =
(∏
j∈T

(1− αjX)
)
S(X) =

∑
j∈T

ejα
j
(
1− (αjX)n−k

) ∏
i∈T,i6=j

(1− αiX) .

Defining
Γ(X) =

∑
j∈T

ejα
j
∏

i∈T,i6=j
(1− αiX)

leads us to the equation (often called the Key Equation)

E(X)S(X) ≡ Γ(X) (mod Xn−k) (22)

We would like to use the above equation to solve for E(X). Once we do that we can find the roots
of E to determine the error locations, and then find the message polynomial by interpolation using
the non-erroneous locations. Note that in the Key Equation, we know S(X) but do not know either
E(X) or Γ(X). However, we observe the following property of Γ(X): it has degree at most τ − 1.
Therefore the Key Equation implies that the coefficients of theXj for τ ≤ j ≤ n−k−1 in E(X)S(X)
all equal 0. The decoder will use this to find the coefficients of E(X) by solving a homegeneous
linear system. Specifically, the algorithm will solve for unknowns ai where E(X) = 1 +

∑τ
i=1 aiX

i.

The decoding algorithm proceeds as follows. (Since the system solved by the decoder could have
multiple solutions, we will denote the candidate error locator polynomial found by the decoder
as E1 and later prove that E1 must be divisible by E, which suffices to locate all the erroneous
positions.)

Step 1: Compute the syndrome polynomial S(X).

Step 2: Solve for {ai}τi=1 to find E1(X) = 1 +
∑τ

i=1 aiX
i such that the coefficients of Xj in

E1(X)S(X) all equal 0 for j = τ, τ + 1, . . . , n − k − 1. (This is a system of n − k − τ
homogeneous linear equations in the ai’s.)

Step 3: Find all roots of E1(X) using brute force search (we also later describe an optimization
called Chien search which is faster for hardware implementations.) Suppose the roots are
α−i1 , . . . , α−il for some l ≤ τ .

9



Step 4: Erase the locations {i1, i2, . . . , il} in the received word y and then interpolate a degree
< k polynomial f(X) through the unerased positions. If this is not possible, declare decoding
failure. Otherwise, return f(X) as the message polynomial.

We now prove that assuming at most τ errors occurred, the polynomial E1(X) found in Step 2 will
be divisible by E(X) and hence all the error locations will be roots of E1(X) as well.

Proposition 9 The error locator polynomial E(X) divides the polynomial E1(X) found by the
algorithm.

Proof: Recall that E(X) =
∏
j∈T (1−αjX). In general polynomials may not have a multiplicative

inverse modulo Xn−k (for example the polynomial X has no inverse mod Xn−k). However, E(X)
has an inverse modulo Xn−k, namely

E−1(X) =
∏
j∈T

(1 + αjX + . . .+ (αjX)n−k−1).

Therefore we can solve for the syndrome (modulo Xn−k) as

S(X) ≡ Γ(X)E−1(X) (mod Xn−k) . (23)

Let Γ(X) be the polynomial of degree at most τ − 1 such that

E1(X)S(X) ≡ Γ1(X) (mod Xn−k) . (24)

Combining (23) and (24), we get

E1(X)Γ(X) ≡ E(X)Γ1(X) (mod Xn−k) .

Both the polynomials E1(X)Γ(X) and E(X)Γ1(X) have degree at most τ + (τ − 1) = 2τ − 1 ≤
n− k − 1, therefore we can conclude that they are in fact equal as polynomials:

E1(X)Γ(X) = E(X)Γ1(X) . (25)

We now note that gcd(E(X),Γ(X)) = 1. This follows from the following two observations: (i)
the elements α−j for j ∈ T are all the roots of E(X), and (ii) by definition of Γ(X), it follows
that Γ(α−j) = ej

∏
i∈T ;i 6=j(α

j − αi) 6= 0. By (25) we know that E(X) divides E1(X)Γ(X), and
since gcd(E(X),Γ(X)) = 1, we conclude that E(X) must divide E1(X). � Since both E and E1

have constant term equal to 1, it follows from Proposition 9 that if instead of finding a degree τ
polynomial E1(X), we try to find a polynomial of degree 1, 2, . . . , τ successively till the algorithms
succeeds, then in fact we will recover the error locator polynomial E(X) as E1(X). This is an
alternate way to implement the algorithm, which will in fact be faster when the number of errors
is much smaller than τ .

Corollary 10 If we find E1(X) of the smallest degree that satisfies the Key Equation E1 (22) then,
E1(X) = E(X).

10



Remark 11 We can find the roots of E1(X) in Step 3 of the Peterson Algorithm by brute force
search over all elements of the field checking if E1(αj) = 0 for j = 0, 1, 2, . . . , n−1. An optimization
called “Chien search” leads to more practical hardware implementations. Chien search [4] is based
on the following observation (our description is from [16])

If E1(X) has degree τ , then E1(αi+1) can be computed from E1(αi) by τ multiplications
of variables with constants as opposed to τ multiplications of variables with variables
needed in the brute force search.

This is because of the following relationship between the evaluations E1(αi) and E1(αi+1). If

E1(αi) = e0 + e1α
i + . . .+ eτα

iτ = γ0,i + γ1,i + . . .+ γτ,i , then

E1(αi+1) = e0 + e1α
i+1 + . . .+ eτα

(i+1)τ = γ0,i + γ1,iα+ . . .+ γτ,iα
τ .

Exercise 4 (Forney’s formula) Once the error locations T are computed, show that the error
values are given by the following formula. For every j ∈ T ,

ej =
−αjΓ(α−j)
E′(α−j)

(26)

where E′(X) is the derivative of E(X). This can be used in place of the interpolation step for
recovering the codeword.

Remark 12 For binary BCH codes, once we know the exact error locations (say by finding a
solution E1(X) with smallest degree), we can just flip those locations to get the true codeword, and
no separate step is needed to compute the error values.

Remark 13 (Complexity the algorithm) The naive implementation of the algorithm takes cu-
bic time, with the dominant step being solving the linear system to find E1(X). Sugiyama, Kasahara,
Hirasawa and Namekawa [14] gave a quadratic time implementation using Euclid’s algorithm for
solving the Key equation.

Berlekamp [2] gave an iterative quadratic time implementation of the solution to the key equation,
which was later generalized by Massey [10] to give an algorithm for finding the shortest linear
feedback shift register (LFSR) that generates a given sequence. This method is now referred to as
the Berlekamp-Massey algorithm and is widely used in practice for decoding Reed-Solomon codes.
Blahut [3] gave a method to accelerate the Berlekamp-Massey algorithm through recursion, resulting
in a near-linear (n logO(1) n) time algorithm for decoding RS codes.

5 Decoding concatenated codes

5.1 A Naive algorithm

As we noted at the beginning of this class, RS codes require large alphabets and are therefore
not suited for applications where we need, for example, binary codes. We also saw in previous

11



lectures the method of code concatenation which can be used to reduce the alphabet size to while
preserving a good rate vs distance trade-off. We now consider efficient decoding algorithms for
decoding concatenated codes with outer Reed-Solomon code. We start with a naive decoder, and
later improve upon it.

Suppose that x is the message to be transmitted, coded with a Reed-Solomon outer code Cout to
obtain symbols c1, . . . , cn. Each of these is coded with an inner code Cin resulting in the transmitted
codeword, whose i’th block is Cin(ci). As before assume that the outer code has distance D and
inner codes have distance d. In theory, we should be able to correct up to dD

2 errors since the
distance of the concatenated code is at least dD.

x

↓ Cout
c1 c2 · · · cn

↓ Cin ↓ Cin ... ↓ Cin
Cin(c1) Cin(c2) · · · Cin(cn)

channel ↓noise channel ↓noise
... channel ↓noise

z1 z2 · · · zn

Figure 1: Decoding concatenated codes.

Suppose (due to errors) we receive zi for i = 1, . . . , n instead of Cin(ci). Note that the total number
of errors introduced equals

∑n
i=1 ∆(Cin(ci), zi). A simple decoder tries to reverse the encoding as

follows.
Step 1 : Find ai such that ∆(Cin(ai), zi) is minimized.
Step 2 : Decode (a1, . . . , an) as per the decoder for the outer code Cout which can correct < D/2
errors.

Lemma 14 The above algorithm recovers the correct codeword if the number of errors is less than
dD
4 .

Proof: Note that for each i for which < d
2 errors occur in ith block, the inner decoding succeeds

and we have ai = ci. If less than dD
4 errors occur in total, then the number of blocks with at least

d/2 errors is less than D
2 . Therefore the string (a1, . . . , an) passed to the outer decoder differs from

the true outer codeword (c1, c2, . . . , cn) in < D/2 locations. The outer decoder then succeeds is
recovering (c1, . . . , cn). �

5.2 Generalized Minimum Distance (GMD) Decoding of concatenated codes :
Randomized version

Forney [6] gave a better algorithm for decoding that can correct a number of errors < dD
2 errors.

This method is called Generalized Minimum Distance (GMD) decoding, and is based on using an
errors-and-erasures decoder for the outer code. Recall that the Welch-Berlekamp algorithm that
we discussed for Reed-Solomon can handle τ errors and s erasures as long as 2τ + s < D.

12



The naive algorithm discussed above is sub-optimal because all the guesses ai from the inner decoder
are treated on equal footing regardless of how far their inner encodings were from zi. Intuitively,
the outer decoder should place higher confidence in symbols whose inner encodings are close to
zi. This is achieved by assigning a measure of confidence to each ai and erasing symbols whose
confidence is below some threshold. Running such an algorithm for various choices of the threshold
leads gives the GMD algorithm.

We first present a randomized version of GMD decoding that is easier and more intuitive to analyze,
and then discuss how the algorithm can be derandomized to give a deterministic version. Below is
the algorithm description.

Step 1: Decode zi to ai as before by finding the ai that minimizes ∆(Cin(ai), zi)

Step 2: Set wi = min[∆(Ciin(ai), zi), d2 ].

Step 3: With probability 2wi
d set ai to be an erasure symbol ‘?’.

Step 4: Run the errors-and-erasures decoder (say Welch-Berlekamp in the case of Reed-Solomon
codes) on the resulting sequence of ais and ?s.

We assume that the total number of errors,
∑n

i=1 ∆(Cin(ci), zi) < dD/2 and study the conditions
under which this algorithm successfully decodes to the true codeword. Define τ as the number of
errors and s as number of erasures in the outer codeword after the (randomized) inner decoding.

Lemma 15 E[2τ + s] < D where the expectation is taken over the random choices of erasures.

Proof: Let Zerri and Zerasuresi be indicator random variables for the occurrence of an error and
declaration of an erasure respectively in the decoding of the i’th block zi. We have

τ =
n∑
i=1

Zerri s =
n∑
i=1

Zerasuresi .

Claim 16 E[2Zerri +Zerasuresi ] < 2ei
d , where ei = ∆(zi, Cin(ai)) is the number of errors introduced

by the channel in the ith block introduced by the channel.

Note that once we prove the claim, by linearity of expectation

E[2τ + s] ≤
2
∑n

i=1 ei
d

< D ,

so that Lemma 15 would be proved. �

Proof: (Of Claim 16) We consider two cases.

Case 1 : ai = ci (i’th block is correctly decoded)
In this case, trivially E[Zerri ] = 0 and

E[Zerasuresi ] = Pr[Zerasuresi = 1] =
2wi
d

=
2ei
d

13



since wi = min{∆(Cin(ai), zi), d2} = min{ei, d2} ≤ ei. Thus E[2Zerri + Zerasuresi ] ≤ 2ei
d .

Case 2 : ai 6= ci (i’th block is incorrectly decoded)
In this case

E[Zerasuresi ] =
2wi
d

and E[Zerri ] = 1− 2wi
d

so that
E[2Zerri + Zerasuresi ] = 2− 2wi

d
. (27)

Since ai 6= ci, we have

d ≤ ∆(Cin(ci), Cin(ai)) ≤ ∆(Cin(ci), zi) + ∆(zi, Cin(ai)) = ei + ∆(zi, Cin(ai)) .

Thus if wi = ∆(zi, Cin(ai)), then wi + ei ≥ d. On the other hand if wi = d/2, then ei ≥ wi ≥ d/2,
so wi+ei ≥ d as well. Thus wi ≥ d−ei. Plugging this into (27) we get E[2Zerri +Zerasuresi ] ≥ 2ei/d
as desired.

The two cases together complete a proof of the claim. �

5.3 GMD Decoding: Deterministic version

We now see how to derandomize the previously presented GMD decoder. We first recall that the
randomness was used when we declared a particular block to be an erasure with probability 2wi

d .
The derandomization is based on the following observation.

Claim 17 There exists some threshold Θ such that if we declare an erasure in the i’th location if
Θ ≤ 2wi

d for every i, then 2τ̄ + s̄ < D, where τ̄ and s̄ as the number of errors and erasures when Θ
is used as the threshold.

Proof: Suppose we pick Θ ∈ [0, 1] uniformly. For each i declare erasure for block if θ ≤ 2wi
d .

Define τ̄ and s̄ as the number of errors and erasures when Θ is used as the threshold. The previous
argument shows that

EΘ[2τ̄ + s̄] < D (28)

since all that was required for the argument was that at location i we declared an erasure with
probability 2wi/d. Thus,there exists a Θ for which 2τ̄ + s̄ < D. � Now the derandomization

problem reduces to one of searching for an appropriate value for Θ. Since Θ takes value in the
continuous range [0, 1], we cannot try out all possibilities in the range. However, note that if we
order the wi in increasing order so that (with notational abuse) 0 ≤ w1 ≤ . . . ≤ wN . All values of
Θ in the range [2wi

d ,
2wi+1

d ) lead to the same set of erasure decisions (the first i locations are erased,
and the last n − i are not). Thus, our search for the right threshold Θ only needs to be over the
discrete set of values Θ ∈ {0, 1}

⋃
{2w1

d , . . . , 2wn
d }. Noting that wi is an integer in the range [0, d2)

(or d/2 itself), there are only O(d) relevant values of Θ to search over. We have thus proved the
following.

Theorem 18 For a concatenated code with outer code of block length N , alphabet size Q, and
distance D and an inner code of distance d and block length n, we can correct any pattern of

14



< dD/2 errors using O(d) calls to an errors-and-erasure decoder for the outer code that can correct
any pattern of τ and s erasures provided 2τ + s < D. The runtime of the decoding algorithm is
O(NQnO(1) +NTout) where Tout is the running time of the outer errors-and-erasures decoder.

Together with our construction of concatenated codes with outer Reed-Solomon code that meet
the Zyablov bound, we can conclude the following.

Corollary 19 For any R ∈ (0, 1) and γ > 0, there is a polynomial time constructible family of
binary codes of rate R that can be decoded from up to a fraction

1
2

max
R≤r≤1

(1−R/r)h−1(1− r)− γ

of errors.

Remark 20 The above result implies the following for the two extremes of low rate and high rate
codes. For ε → 0, we can correct up to a fraction (1

4 − ε) errors in polytime with explicit binary
codes of rate Ω(ε3), and we can correct a fraction ε of errors with explicit binary codes of rate
1 − O(

√
ε log(1/ε)). (We leave it as an exercise to check these calculations.) Note that the non-

constructive rate bounds guaranteed by the Gilbert-Varshamov bound for these regimes are Ω(ε2)
and 1−O(ε log(1/ε)) respectively.

6 Capacity achieving codes for the BSC and BEC

We will now use concatenation with outer code that can correct a small fraction of worst-case
errors to construct codes that achieve the Shannon capacity of the BEC and BSC, together with
polynomial time encoding/decoding. First, let us recall the definition of the Binary erasure channel.

Definition 21 (The Binary Erasure Channel (BEC)) is parameterized by a real α, 0 ≤ α ≤
1, which is called the erasure probability, and is denoted BECα. Its input alphabet is X = {0, 1}
and output alphabet is Y = {0, 1, ?} . Upon input x ∈ X, the channel outputs x with probability
1 − α, and outputs ? (corresponding to erasing the symbol) with probability α. (It never flips the
value of a bit.)

The capacity of BECα equals 1−α. Recall that, if we have a [n, k, d]q code with message x ∈ Fkq and
corresponding codeword y = Gx ∈ Fnq . Suppose a subset S ⊆ {1, . . . , n} is received (uncorrupted).
Decoding the message involves solving the linear system

GxS = yS (29)

We reorder the indices so that the first |S| entries in y are the uncorrupted entries, resulting in the
following matrix system, 

GS

GS


 x

 =


yS

yS

 (30)

15



As long as rank(S) ≥ k, then this linear system can be solved exactly in O(n3) time by Gaussian
Elimination. As long as the matrix GS is full column rank then the solution is unique. We have
the following.

Proposition 22 Using a binary matrix of size n×n(1−α) with entries chosen i.i.d uniform from
{0, 1} as the generator matrix G achieves the capacity of the BEC with high probability.

The drawbacks with this solution are the cubic time and randomized nature of the construction.
in addition, for a given choice of G it is hard to certify that (most) (1 + α)k× k sub-matrices of G
have full (column) rank. We will use the idea of concatenation to make this constructive.

Let α be the erasure probability of the BEC and say our goal is to construct a code of rate (1−α−ε)
that enables reliable communication on BECα. Let C1 be a linear time encodable/decodable binary
code of rate (1−ε/2) that can correct a small constant fraction γ = γ(ε) > 0 of worst-case erasures.
Such codes were constructed in [13, 1]. For the concatenated coding, we do the following. For some
parameter b, we block the codeword of C1 into blocks of size b, and then encode each of these blocks
by a suitable inner binary linear code C2 of dimension b and rate (1 − α − ε/2). The inner code
will be picked so that it achieves the capacity of the BECα, and specifically recovers the correct
message with success probability at least 1 − γ/2. For b = b(ε, γ) = Ω

(
log(1/γ)

ε2

)
, a random code

meets this goal with high probability, so we can find one by brute-force search (that takes constant
time depending only on ε).

The decoding proceeds as one would expect: first each of the inner blocks is decoded, by solving
a linear system, returning either decoding failure or the correct value of the block. (There are
no errors, so when successful, the decoder knows it is correct.) Since the inner blocks are chosen
to be large enough, each inner decoding fails with probability at most γ/2. Since the noise on
different blocks are independent, by a Chernoff bound, except with exponentially small probability,
we have at most a fraction γ of erasures in the outer codeword. (For R = 1 − α − ε, we have
Pr(decoder failure, error) ≤ 2−ε

2n < γ). These are then handled by the linear-time erasure
decoder for C1. We thus have,

Theorem 23 For the BECα, we can construct codes of rate 1 − α − ε, i.e., within ε of capacity,
that can be encoded and decoded in n/εO(1) time.

While this is pretty good, the brute-force search for the inner code is unsatisfying, and the BEC is
simple enough that better runtimes (such as O(n log(1/ε))) are achieved by certain irregular LDPC
codes.

A similar approach can be used for the BSCp. We recall the definition of the BSC.

Definition 24 (The Binary Symmetric Channel (BSC)) has input alphabet X = {0, 1} and
output alphabet Y = {0, 1}. The BSC is parameterized by a real number p, 0 ≤ p ≤ 1

2 called the
crossover probability, and often denoted BSCp. The channel flips its input with probability p.

For the BSC, the outer code C1 must be picked so that it can correct a small fraction of worst-
case errors — again, such codes of rate close to 1 with linear time encoding and decoding are
known [13, 8]. Everything works as above, except that the decoding of the inner codes, where we

16



find the codeword of C2 closest to the received block, requires a brute-force search and this takes
2b = 2Ω(1/ε2) time. This can be improved to polynomial in 1/ε by building a look-up table, but
then the size of the look-up table, and hence the space complexity and time for precomputing the
table, is exponential in 1/ε. Thus,

Theorem 25 For the BSCp, we can construct codes of rate 1−H(p)− ε, i.e., within ε of capacity,
that can be encoded in n/εO(1) time and which can be reliably decoded in n21/εO(1)

time.

It remains an important open question to obtain such a result with decoding complexity n/εO(1),
or even poly(n/ε).1

We also want to point out that recently an alternate method using LP decoding has been used to
obtain polynomial time decoding at rates arbitrarily close to capacity [5]. But this also suffers from
a similar poor dependence on the gap ε to capacity.

References

[1] Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal recovery.
IEEE Transactions on Information Theory, 42(6):1732–1736, 1996. 16

[2] E. R. Berlekamp. Nonbinary bch decoding. International Symposium on Information Theory,
1968. 11

[3] R. E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, 1983. 11

[4] R. T. Chien. Cyclic decoding procedure for the bose-chaudhuri-hocquenghem codes. IEEE
Transactions on Information Theory, IT-10:357–363, 1964. 11

[5] Jon Feldman and Clifford Stein. LP decoding achieves capacity. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 460–469, 2005. 17

[6] G. D. Forney. Generalized minimum distance decoding. IEEE Trans. Information Theory,
IT-12:125–131, 1966. 12

[7] Peter Gemmell and Madhu Sudan. Highly resilient correctors for multivariate polynomials.
Information Processing Letters, 43(4):169–174, 1992. 6

[8] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal rate.
IEEE Transactions on Information Theory, 51(10):3393–3400, October 2005. 16

[9] J. Justesen. Class of constructive asymptotically good algebraic codes. Information Theory,
IEEE Transactions on, 18(5):652 – 656, sep 1972. 1

1We remark that asymptotically, with ε fixed and n→∞, the exponential dependence on 1/ε can be absorbed into
an additional factor with a slowly growing dependence on n. However, since in practice one is interested in moderate
block length codes, say n ≤ 106, a target runtime such as O(n/ε) seems like a clean way to pose the underlying
theoretical question.

17



[10] J. L. Massey. Shift-register synthesis and bch decoding. IEEE Trans. Information Theory,
IT-15:122–127, 1969. 11

[11] W. W. Peterson. Encoding and error-correction procedures for the bose-chaudhuri codes. IRE
Transactions on Information Theory, IT-6:459–470, 1960. 8

[12] B.-Z. Shen. A justesen construction of binary concatenated codes that asymptotically meet
the zyablov bound for low rate. Information Theory, IEEE Transactions on, 39(1):239 –242,
jan 1993. 4

[13] D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transactions
on Information Theory, 42(6):1723–1732, 1996. 16

[14] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for solving key equation
for decoding goppa codes. Information and Control, 27:8799, 1975. 11

[15] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction of algebraic block codes. US Patent
Number 4,633,470, December 1986. 6

[16] Wikipedia. Chien search — Wikipedia, the free encyclopedia, 2004. [Online accessed 24-Mar-
2010]. 11

18


	Review - Concatenated codes and Zyablov's tradeoff
	Justesen's code
	Meeting the Zyablov trade-off at lower rates

	Decoding algorithms
	Erasure decoding of linear codes
	Erasure decoding of Reed Solomon Codes
	Decoding Reed-Solomon codes from errors

	Peterson Algorithm for decoding RS codes
	Decoding concatenated codes
	A Naive algorithm
	Generalized Minimum Distance (GMD) Decoding of concatenated codes : Randomized version
	GMD Decoding: Deterministic version

	Capacity achieving codes for the BSC and BEC

