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PROBLEM SET 4
Due by Tuesday, April 30

INSTRUCTIONS

• You are allowed to collaborate with up to two other students taking the class in solving
problem sets. But here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before com-
mencing any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches
to the problems. Please note that you are not allowed to share any written material and you
must write up solutions on your own without any “collaboration notes” as an aid.

3. You must clearly acknowledge your collaborator(s) in the write-up of your solutions.
4. Of course, if you prefer, you can also work alone (see the last bullet item for some

“credit” for doing so).

• Solutions typeset in LATEX are strongly preferred.

• You should not search for solutions on the web. More generally, you are urged to try and
solve the problems without consulting any reference material other than the course notes
and what we cover in class. If for some reason you feel the need to consult some source,
please acknowledge the source and try to articulate the difficulty you couldn’t overcome before
consulting the source and how it helped you overcome that difficulty. Alternatively, before
turning to any such material, we encourage you to ask us for hints or clarifications.

• Please start work on the problem set early. The problem set has six problems and is worth a
total of 100 points. As a rather rough guess/estimate, scoring around 85% of the points, or
75% of the points if you work by yourself, might suffice for an A on this problem set.

1. (15 points) Let S ⊂ Rn be a set of points and T1, . . . , Tm be subsets of [n] such that, for every
i ∈ [m], the set S projected to the coordinate positions picked by Ti has at least ni distinct
elements. Suppose each position j ∈ [n] is included in at least k of the sets T1, . . . , Tm. Show
that

|S|k ≤
∏
i∈[m]

ni.

(Hint: Shearer’s lemma.)

2. (15 points) Consider the hypercube graphH with vertex set {0, 1}m for some positive integer
m, and edges (x, y) ∈ E for x, y ∈ {0, 1}n that differ in exactly 1 bit position. Let S ⊂ {0, 1}m.

(a) Prove, using an entropy based argument, that the number of edges (x, y) ∈ E with both
x, y ∈ S is at most (|S| log |S|)/2.
Hint: Consider the random variable (X1, X2, . . . , Xm) uniformly distributed on S. What’s
the value of H(X1|X2, X3, . . . , Xm)?



(b) Can you improve the above upper bound when |S| ≤ 2m/2?

3. (10 points) LetG be a graph with chromatic number χ(G) and a distribution P on its vertices.
Show that

H(G,P ) ≤ log2 χ(G).

4. (25 points) (Yet another characterization of graph entropy) The vertex packing polytope of a
graph G with vertex set V = [n], denoted by VP(G), is defined as the convex hull of charac-
teristic vectors of the independent sets of G. That is,

VP(G) := {
∑

S∈I(G)

αS · χ(S) : (∀S)αS ≥ 0,
∑

S∈I(G)

αS = 1},

where I(G) ⊂ V is the set of all independent sets of G and χ(S) := (s1, . . . , sn) ∈ {0, 1}n
such that si = 1 ⇔ i ∈ S. The goal of this exercise is to show that the entropy of a graph G
under distribution P = (p1, . . . , pn) is determined by

H(G,P ) = min
(a1,...,an)∈VP(G)

ai>0

∑
i∈[n]

pi log2
( 1

ai

)
. (1)

(a) First, prove that

min
(a1,...,an)∈VP(G)

ai>0

∑
i∈[n]

pi log2
( 1

ai

)
≤ min

(X,Y )
X∼P,X∈Y,Y ∈I(G)

I(X;Y ).

In order to do so, let (X,Y ) be the minimizer of the right hand side and show that
the convex combination of the independent sets defined by the distribution of Y is a
feasible solution for the optimization on the left hand side. Hint: You may want to use
concavity of the log function and Jensen’s inequality to simplify the calculations.

(b) Prove the reverse inequality

min
(a1,...,an)∈VP(G)

ai>0

∑
i∈[n]

pi log2
( 1

ai

)
≥ min

(X,Y )
X∼P,X∈Y,Y ∈I(G)

I(X;Y )

by letting
∑

S∈I(G) αS · χ(S) to be the minimizer of the left hand side and naturally
defining the joint distribution (X,Y ) from the given distribution P and the coefficients
αS . Hint: Again, you may find concavity of the log function useful.

(c) Show that the minimum in (??) is attained by
∑

S∈I(G) αS · χ(S) where the coefficients
αS are only supported on maximal independent sets (that is, any independent set S
that is strictly contained in a larger one gets αS = 0).

5. (20 points) In this exercise, you will revisit the rectangle size bound and prove a version
(in a similar spirit to the discrepancy method from class) that is useful for lower bounding
randomized communication complexity.



(a) Consider the usual setup of a Boolean function f : X × Y → {0, 1}. Let α, ρ ∈ (0, 1).
Suppose we have a distribution µ on X × Y such that for every large rectangle R =
S × T ⊆ X × Y with µ(R) ≥ ρ, we have a sizeable fraction of 1s in the rectangle;
formally

µ(R ∩ f−1(1)) > α · µ(R ∩ f−1(0)) .

Prove that in this case

2R(f) ≥ 1

ρ

(
µ(f−1(0))− 1

α

)
.

(b) Using the above or otherwise prove that R(IP) ≥ n−O(1).

6. (15 points) Consider the following variant of the indexing problem. Alice holds a string x =
(x1, . . . , xn) ∈ {0, 1}n and Bob holds an index i ∈ {1, 2, . . . , n} and the bits x1, x2, . . . , xi−1.
The goal is for Alice to send one message which will enable Bob to determine xi with prob-
ability at least 2/3. Prove that the randomized one-way communication complexity of this
problem is still lower bounded by Ω(n) bits.


