
15-859: Information Theory and Applications in TCS CMU: Spring 2013

Lecture 17: Introduction to Communication Complexity
March 28, 2013

Lecturer: Venkatesan Guruswami Scribe: Amit Datta

1 Introduction

The question that we ask when dealing with communication complexity [referenced to here-
after as CC] is “How many bits do two or more parties need to exchange to compute a
function on their inputs?”. This is a rich topic, so much that an entire book was written on
it way back in 1997.

1.1 CC vs IT

The starting point for Information Theory [IT] is that certain communication needs to take
place and the particular question that we ask is “How to carry out the communication?”,
for example which codes to use.

However, for CC, the starting point is that some problem needs to be solved [e.g. compute
(A+B) when A, B are with different parties]. The specific question that we are interested in
here is “What needs to be communicated?” So, the basic difference between IT and CC is
that one is about the ‘how’ while the other is about the ‘what’.

Recently many connections have emerged between CC and IT. “Most lower bound tech-
niques for CC actually lower bound the information exchanged (not just the number of bits
exchanged but, which could be greater)”

2 Classic CC

The problem of two-party CC was first introduced by Yao in 1979. If Alice and Bob are
two parties, Alice having an input x and Bob having an input y, at the end of the 2-party
communication protocol, each should end up with the value f(x, y), where f is some function
that is known to both Alice and Bob. In particular, we want to deal with functions of the
form:

f : {0, 1}n × {0, 1}n → {0, 1}

A trivial protocol to achieve this is the following:

• Alice sends x to Bob [n bits]

• Bob computes f(x, y) and returns the result to Alice [1 bit]

1



The trivial protocol requires an exchange of n+ 1 bits.

CC is useful in

1. circuit complexity

2. streaming computation

3. data structure lower bounds

Definition 2.1 (Communication Protocol). A communication is a sequence of instructions
such that, given a party’s input and the sequence of bits exchanged so far, it can be determined
which bit is to sent next / what to output.

The communication protocol can be viewed as a binary tree, each node having two edges,
labeled with 0 and 1 each. Each node v is labeled with av(or bv), which is a function that
computes what Alice (or Bob) needs to send to Bob (or Alice) depending on x(or y) and the
transcript so far.

Protocol Π is said to correctly compute a function f iff ∀(x, y), following Π leads to a leaf
labeled with f(x, y). For a protocol Π that correctly computes f , define CC(Π, f) = depth
of the protocol tree. This also represents the maximum number of bits exchanged between
the parties for any inputs (x, y).

Definition 2.2. The deterministic CC of f , denoted by D(f) is given by:

D(f) = min
Π s.t Π correctly computes f

CC(Π, f)

We already saw that D(f) ≤ n+ 1. Let us see a few examples now.

• When inputs can be only of the form 1n or 0n, D(f) ≤ 2

• When f is parity bit of both x, y, i.e. f(x, y) = ⊕ixi ⊕⊕jyj, where xi is the ith bit of
x. In this case, D(f) ≤ 2, since Alice can compute her parity bit and send it to Bob,
who can compute the joint parity and send it back.

• f = EQ, i.e. f(x, y) = 1 when x = y; 0 otherwise. In this case, D(EQ) = n + 1. We
will see a concrete proof of this later in the text.

The communication protocol can be seen as a matrix, with the rows have all possible
values of x, and the columns having all possible values of y, each entry of the matrix corre-
sponding to elements (x, y) having f(x, y).

Consider a protocol tree, we define a set Rl for a leaf l as follows:

Rl = {(x, y)|Π leads to l on input (x, y)}

Claim 2.3. ∀ leaves l, Rl is a rectangle on the communication matrix.

2



In fact, the above claim holds for all nodes in the tree.

Proof. We prove this by induction.

Base Case
This trivially holds for the root of the tree, since Rroot includes all the elements in the

matrix, which is a rectangle.
Inductive Hypothesis

The claim holds for some intermediate node w, with children u, v, i.e. Rw is a rectangle.
Inductive Step

W.l.o.g, let us assume that w node represents a turn for Alice [A similar proof will hold if
its Bob’s turn]. In order to reach u, some additional constraints [that this bit should be a 0]
need to be enforced on the input x of Alice. So, some of the rows of the rectangle Rw will be
removed, but none of the columns of Rw would be affected. After the removal of these rows,
the Ru obtained would still be a rectangle. Similarly, Rv can be showed to be rectangle.

Definition 2.4. A rectangle R is said to be f -monochromatic if ∃b ∈ {0, 1} : ∀(x, y) ∈
R, f(x, y) = b

Note 1 For any protocol Π, the leaves give a partition of X × Y in to rectangles.

Note 2 If Π correctly computes f , then eachRl corresponding to a leaf l must be f -monochromatic.

So, if D(f) = c then ∃ a partition of X × Y into 2c f -monochromatic rectangles. The
contrapositive of this is presented as a theorem:

Theorem 2.5. If any partition of X × Y into f -monochromatic rectangles needs ≥ t rect-
angles, then D(f) ≥ dlog2 te

Let us observe a few more examples:

EQ: Observe that the communication matrix for this function would be an identity matrix.
No two 1s would be in one monochromatic rectangle. So, the number of rectangles
enclosing the 1s would be 2n. For the remaining 0s, the number of rectangles would
be ≥ 1. So, D(EQ) ≥ dlog2(2n + 1)e = n+ 1

We take a slight detour here to introduce Fooling Sets. A 0-fooling set is a set of pairs (x, y) ∈
f−1(0) such that no two of them are together in a monochromatic rectangle. FS0(f) = max
size of a 0-fooling set. Similarly, FS1(f) = max size of a 1-fooling set.

Theorem 2.6.
D(f) ≥ dlog2(FS0(f) + FS1(f))e

So, for D(EQ), FS1(f) ≥ 2n, FS0(f) ≥ 1.

Exercise 2.7. Prove that D(GT ) = n+ 1, where GT (x, y) = 1 if x > y; 0 otherwise.

3



DISJ: Disjointness is like the “3-SAT of CC”. DISJ(x, y) = 1 if x∩ y = φ; 0 otherwise. Think
of x as the set {i|xi = 1}. DISJ(x, y) = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

Theorem 2.8.
D(DISJ) = n+ 1

Proof. Lets try to prove that FS1(DISJ) is large. Consider two pairs of inputs (A,A) and
(B,B) such that A 6= B. Since one is a complement of the other, we have DISJ(A,A) = 1
and DISJ(B,B) = 1, since they are definitely disjoint.

Since A 6= B, ∃a ∈ A\B. So, a ∈ A∩B. Hence, (A,B) are not disjoint and DISJ(A,B) =
0. Similarly DISJ(B,A) = 0. Hence, for no two inputs of this type will they be with the
same monochromatic rectangle.

So, FS1(DISJ) ≥ 2n and FS0(DISJ) ≥ 1. This implies D(DISJ) = n+ 1.

4


