15-859: Information Theory and Applications in TCS

CMU: Spring 2013

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy

March 26, 2013

Lecturer: Mahdi Cheraqhchi Scribe: Shashank Singh

1 Recap

- Graph Entropy: Given G = (V, E), we define $H(G) = \min I(X; Y)$ over joint distributions (X, Y), where $X \in V$ is uniformy random and $X \in Y \subseteq V$. We showed Graph Entropy obeys the following:
 - Sub-additivity: $H(G_1 \cup G_2) \leq H(G_1) + G(G_2)$.
 - Monotonicity: If $G_1 \subseteq G_2$, then $H(G_1) \leq G(G_2)$.
 - **Disjoint Union:** If G_1, \ldots, G_k are the connected components if G, then $H(G) = \sum_i \frac{|V(G_i)|}{|V(G)|} H(G_i)$.
- Last time, we applied Graph Entropy to lower bound the size of
 - a covering of a graph by bipartite graphs
 - a perfect family of hash functions

2 Monotone Formula Lower Bounds via Graph Entropy

Today we examine an application of Graph Entropy to Circuit Complexity.

2.1 Monotone Boolean Functions

Definition 1 A boolean function is one mapping $\{0,1\}^n \to \{0,1\}$.

Remark 2 We can equivalently consider boolean functions as mapping $\mathcal{P}([n]) \to \{0,1\}$, using the obvious bijection between $\{0,1\}^n$ and $\mathcal{P}([n])$. Boolean functions are represented by (not necessarily unique) boolean formulae or trees in which leaves variables and internal nodes are logical connectives. We use these representations interchangeably.

Definition 3 A boolean function $f: \mathcal{P}([N]) \to \{0,1\}$ is <u>monotone</u> if $S \subseteq T \in \mathcal{P}([n])$ implies $f(S) \leq f(T)$. Furthermore, if f is a monotone boolean function, then the <u>min-terms of f of size i are</u>

$$(f)_i \stackrel{\triangle}{=} \{ S \in \mathcal{P}([n]) : |S| = i, f(S) = 1, \text{ and } \forall T \subseteq S, f(T) = 0 \}, \quad (f) \stackrel{\triangle}{=} \bigcup_{i=1}^n (f)_i.$$

Furthermore, a boolean formula is monotone if it contains only AND and OR connectives.

Example 4 The following are monotone boolean functions:

- 1. OR: $x \vee y = 0 \Leftrightarrow x = y = 0$. The min-terms of OR are $(OR)_1 = \{\{0\}, \{1\}\}, (OR)_i = \emptyset$ for $i \neq 1$.
- 2. AND: $x \wedge y = 1 \Leftrightarrow x = y = 1$. The min-terms of AND are $(AND)_2 = \{\{0,1\}\}, (AND)_i = \emptyset$ for $i \neq 2$.
- 3. MAJ₃: $MAJ_3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3)$.

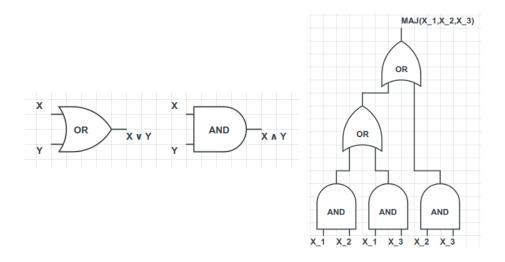


Figure 1: Tree representations of AND, OR, and MAJ₃

Proposition 5 A boolean function is monotone iff it can be represented by a monotone boolean formula.

Proof: Clearly, monotone boolean formulae compute monotone boolean functions.

Let f be a monotone boolean function. Then, $W \subseteq \mathcal{P}([n])$, F(W) = 1 if and only if $\exists S \in (f)$ with $S \subseteq W$. It follows that f is defined uniquely by (f) as follows:

$$f(x_1,\ldots,x_n) = \bigvee_{S \in (f)} \left(\bigwedge_{j \in S} x_j\right), \quad \forall (x_1,\ldots,x_n) \in \{0,1\}^n.$$

Note that this formula, called the Disjunctive Normal Form (DNF) of f, is also represented by a binary tree, since many-input logic gates can be simulated by (linearly many) two-input gates.

2.2 Size of a Boolean Function and Threshold Functions

Definition 6 The <u>size size(ϕ) of a formula ϕ </u> is the number of nodes in the tree representation of ϕ .

The size of a boolean function f is

$$\operatorname{size}(f) \stackrel{\triangle}{=} \min_{\phi \ computing \ f} \operatorname{size}(\phi).$$

That is, size(f) is number of nodes in the smallest tree computing f.

Definition 7 For $k \in [n]$, the <u>threshold function</u> $Th_k^n : \mathcal{P}([n]) \to \{0,1\}$ is defined for $S \in \mathcal{P}([n])$ by

$$Th_k^n(S) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} 1 & if |S| \ge k \\ 0 & else \end{array} \right.$$

Example 8 Threshold functions generalize AND, OR, and MAJ:

$$AND = Th_n^n$$
 $\operatorname{size}(AND) = 2n - 1$
 $OR = Th_1^n$ $\operatorname{size}(OR) = 2n - 1$
 $MAJ = Th_{\lceil n/2 \rceil}^n$

It can be shown that MAJ is the 'most complex' threshold, in that it maximizes size (Th_k^n) over k.

2.3 Bounding the Size of Threshold Functions

Consider the problem of bounding $\operatorname{size}(Th_k^n)$. For general k, the bound $\operatorname{size}(Th_k^n) \in O(n^{5.3})$ due to (Valiant, 1984) is known, based on a probabilistic construction which we do not give here.

We analyze the case k=2, for which the following upper bound is easy to demonstrate:

Claim 9 size $(Th_2^n) \in O(n^2)$.

Proof:

$$(Th_2^n)_2 = \{\{i, j\} \in \mathcal{P}([n]) : i \neq j\}.$$

Furthermore, $\forall i \neq 2$, $(Th_2^n)_i = \emptyset$. Thus, the DNF of Th_2^n is

$$Th_2^n(x_1,\ldots,x_n) = \bigvee_{\substack{\{i,j\}\in\mathcal{P}([n])\\i\neq j}} x_i \wedge x_j,$$

which (since $\operatorname{size}(AND)$, $\operatorname{size}(OR) \in O(n)$) indicates $\operatorname{size}(Th_2^n) \in O(n^2)$.

Remark 10 Consider the following Divide and Conquer construction:

Divide the input string $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$ into $y = (x_1, \ldots, x_{\lceil n/2 \rceil})$ and $z = (x_{\lfloor n/2 \rfloor}, \ldots, x_n)$. Then, we have the recursive formula

$$Th_2^n(x) = Th_2^{\lceil n/2 \rceil}(y) \vee Th_2^{\lfloor n/2 \rfloor}(z) \vee (Th_1^{\lceil n/2 \rceil}(y) \wedge Th_1^{\lfloor n/2 \rfloor}(z)).$$

This recurrence gives an upper bound: defining $S_n = \text{size}(Th_2^n)$, the recurrence gives

$$S_n \le 2S_{n-1} + O(n),$$

since clearly size $(Th_1^n) \in O(n)$. The solution of this standard recurrence (think mergesort) is

$$S_n \le (2n + \lceil \log n \rceil + 1)(\lceil \log n \rceil)$$
 and so $S_n \in O(n \log n)$.

Exercise: Refine this bound to $\operatorname{size}(Th_2^n) \leq 2n\lceil \log n \rceil - 1$. The lower bound we now give shows this is tight.

We now apply Graph Entropy to prove the lower bound $\operatorname{size}(Th_2^n) \geq 2\lceil n \log n \rceil - 1$, following (Newman, Ragde, and Wigderson 1990). In order to use graph entropy we're going define a graph G_f for a boolean function f. Consider defining the following:

Definition 11

$$G_f \stackrel{\triangle}{=} (V, E), \quad where \quad V \stackrel{\triangle}{=} [n], \quad and \quad E \stackrel{\triangle}{=} (f)_2.$$

Note that n is from Th_2^n and is not necessarily the number of variables in f.

Example 12 $G_{Th_2^n} = K_n$. For a single variable x_i , G_{x_i} is the empty graph on n vertices.

It helps now to have a few lemmas about how graph entropy evolves with AND and OR operations.

Lemma 13 Suppose $f = g \vee h$. Then, $G_f \subseteq G_g \cup G_h$, and hence $H(G_f) \leq H(G_g) + H(G_h)$.

Proof: Suppose $e = \{i, j\} \in E(G_f)$. Then, $1 = f(e) = g(e) \lor h(e)$; without loss of generality, g(e) = 1. By construction of G_f , $e \in (f)_2$, so $f(\{i\}) = f(\{j\}) = 0$. Then, $g(\{i\}) = g(\{j\}) = 0$, so $e \in (g)_2 = E(G_g)$.

It would be nice if we also had this property for AND, but it doesn't hold, as the following example shows:

Example 14 Suppose $g(x_1, x_2) = x_1, h(x_1, x_2) = x_2$. Then, $\{1, 2\} \in E(G_f)$, but $\{1, 2\} \notin E(G_q), E(G_h)$.

Thus, we need a weaker statement:

$$G_{a \wedge h} \subseteq G_a \cup G_h \cup T_{a,h}$$
.

Lemma 15 $T_{g,h}$ is the subgraph of G_f induced by edges in

$$(g)_1 \triangle (h)_1 \stackrel{\triangle}{=} ((g)_1 - (h)_1) \times ((h)_1 - (g)_1).$$

Proof: Let $e = \{i, j\}$, and let $f', g', h' : \{0, 1\}^2 \to \{0, 1\}$ denote the restrictions of f, g, h, respectively, to e (since the formulae are monotone, we can think of this as setting the other coordinates to 0). Then, we have

$$\begin{pmatrix}
f'(x_i, x_j) = x_i \wedge x_j \\
g'(x_i, x_j) \neq x_i \wedge x_j \\
h'(x_i, x_j) \neq x_i \wedge x_j \\
f' = g' \wedge h'
\end{pmatrix}
\Rightarrow \text{possible cases are } \begin{cases}
g' = x_i, & h' = x_j \\
g' = x_j, & h' = x_i
\end{cases}$$
by inspection
$$\begin{cases}
g'(x_1, x_2) \neq x_i \vee x_j \\
h'(x_1, x_2) \neq x_i \vee x_j
\end{cases}$$

(here, we make the simplifying assumption that f, g, h are non-constant functions; these cases can be analyzed separately) which in turn implies that $e \in ((g)_1 - (h)_1) \times ((h)_1 - (g)_1) \stackrel{\triangle}{=} (g)_1 \triangle (h)_1$.

Remark 16 Since $(g)_1 - (h)_1$ and $(h)_1 - (g)_1$ are disjoint, $T_{g,h}$ is bipartite. We showed in a previous lecture that this implies $H(T_{g,h}) \leq 1$. Using subadditivity and the facts

$$H(G_{g \lor h}) \le H(G_g) + H(G_h)$$

 $H(G_{g \land h}) \le H(G_g) + H(G_h) + 1$
 $H(G_{x_i}) = 0$
 $H(G_{Th_2^n}) = H(K_n) = \log n,$

we see that any monotone formula for Th_2^n has at least $\lceil \log n \rceil$ AND gates, and hence $\operatorname{size}(Th_2^n) \ge \lceil \log n \rceil$.

We can get an even tighter lower bound by tightening the upper bound on $H(T_{q,h})$:

Observe that, while $V(T_{g,h}) = [n]$, $E(T_{g,h}) \subseteq (g)_1 \triangle(h)_1$, which implies, by the disjoint union property,

 $H(T_{g,h}) \leq \frac{|(g)_1 \triangle (h)_1|}{n}.$

Let's define a potential function:

Definition 17

$$\mu(f) \stackrel{\triangle}{=} H(G_f) + \frac{|(f)_1|}{n}.$$

Claim 18 For both $f = g \lor h$ and $f = g \land h$, $\mu(f) \le \mu(g) + \mu(h)$.

Proof: Case 1: $f = g \lor h$. Assuming no gate computes a constant function,

$$(f)_1 = \{i : f(\{i\}) = 1\} = (g)_1 \cup (h)_1.$$

Thus,

$$\mu(f) = H(G_f) + \frac{|(f)_1|}{n} \le H(G_h) + H(G_h) + \frac{|(g)_1| + |(h)_1|}{n} = \mu(h) + \mu(g).$$

Case 2: $f = g \wedge h$. This time, $(f)_1 = (g)_1 \cap (h)_1$. Thus,

$$\mu(f) = H(G_f) + \frac{|(f)_1|}{n} \le H(G_h) + H(G_h) + H(T_{g,h}) + \frac{|(g)_1 \cap (h)_1|}{n}$$

$$\le H(G_h) + H(G_h) + \frac{|(g)_1 \triangle (h)_1|}{n} + \frac{|(g)_1 \cap (h)_1|}{n}$$

$$= H(G_h) + H(G_h) + \frac{|(g)_1| + |(h)_1|}{n} = \mu(g) + \mu(h).$$

Note that each leaf has $\mu(x_i) = \frac{1}{n}$ and the root has $\mu(Th_2^n) = \log n$. Hence, by subadditivity and the preceding claim, there must be at least $\lceil n \log n \rceil$ leaves. Since each gate has two inputs and one output, it follows that there are at least $\lceil n \log n \rceil - 1$ internal nodes, for a total lower bound of

$$\operatorname{size}(Th_2^n) \ge 2\lceil n \log n \rceil - 1.$$