
15-859: Information Theory and Applications in TCS CMU: Spring 2013

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy

March 26, 2013

Lecturer: Mahdi Cheraghchi Scribe: Shashank Singh

1 Recap

• Graph Entropy: Given G = (V,E), we define H(G) = min I(X;Y) over joint distributions
(X,Y), where X ∈ V is uniformy random and X ∈ Y ⊆ V . We showed Graph Entropy obeys
the following:

– Sub-additivity: H(G1 ∪G2) ≤ H(G1) +G(G2).

– Monotonicity: If G1 ⊆ G2, then H(G1) ≤ G(G2).

– Disjoint Union: If G1, . . . , Gk are the connected components if G, then H(G) =∑
i
|V (Gi)|
|V (G)| H(Gi).

• Last time, we applied Graph Entropy to lower bound the size of

– a covering of a graph by bipartite graphs

– a perfect family of hash functions

2 Monotone Formula Lower Bounds via Graph Entropy

Today we examine an application of Graph Entropy to Circuit Complexity.

2.1 Monotone Boolean Functions

Definition 1 A boolean function is one mapping {0, 1}n → {0, 1}.

Remark 2 We can equivalently consider boolean functions as mapping P ([n]) → {0, 1}, using
the obvious bijection between {0, 1}n and P ([n]). Boolean functions are represented by (not nec-
essarily unique) boolean formulae or trees in which leaves variables and internal nodes are logical
connectives. We use these representations interchangeably.

Definition 3 A boolean function f : P ([N]) → {0, 1} is monotone if S ⊆ T ∈ P ([n]) implies
f(S) ≤ f(T). Furthermore, if f is a monotone boolean function, then the min-terms of f of size i
are

(f)i
4
= {S ∈ P ([n]) : |S| = i, f(S) = 1, and ∀T ⊆ S, f(T) = 0}, (f)

4
=

n⋃
i=1

(f)i.

Furthermore, a boolean formula is monotone if it contains only AND and OR connectives.

1

Example 4 The following are monotone boolean functions:

1. OR: x ∨ y = 0 ⇔ x = y = 0. The min-terms of OR are (OR)1 = {{0}, {1}}, (OR)i = ∅ for
i 6= 1.

2. AND: x ∧ y = 1⇔ x = y = 1. The min-terms of AND are (AND)2 = {{0, 1}}, (AND)i = ∅
for i 6= 2.

3. MAJ3: MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

Figure 1: Tree representations of AND, OR, and MAJ3

Proposition 5 A boolean function is monotone iff it can be represented by a monotone boolean
formula.

Proof: Clearly, monotone boolean formulae compute monotone boolean functions.

Let f be a monotone boolean function. Then, W ⊆ P ([n]), F (W) = 1 if and only if ∃S ∈ (f)
with S ⊆W . It follows that f is defined uniquely by (f) as follows:

f(x1, . . . , xn) =
∨
S∈(f)

∧
j∈S

xj

 , ∀(x1, . . . , xn) ∈ {0, 1}n.

Note that this formula, called the Disjunctive Normal Form (DNF) of f , is also represented by a
binary tree, since many-input logic gates can be simulated by (linearly many) two-input gates.

2.2 Size of a Boolean Function and Threshold Functions

Definition 6 The size size(φ)of a formula φ is the number of nodes in the tree representation of
φ.

2

The size of a boolean function f is

size(f)
4
= min

φ computing f
size(φ).

That is, size(f) is number of nodes in the smallest tree computing f .

Definition 7 For k ∈ [n], the threshold function Thnk : P ([n]) → {0, 1} is defined for S ∈ P ([n])
by

Thnk(S)
4
=

{
1 if |S| ≥ k
0 else

.

Example 8 Threshold functions generalize AND, OR, and MAJ:

AND = Thnn size(AND) = 2n− 1

OR = Thn1 size(OR) = 2n− 1

MAJ = Thndn/2e

It can be shown that MAJ is the ‘most complex’ threshold, in that it maximizes size(Thnk) over k.

2.3 Bounding the Size of Threshold Functions

Consider the problem of bounding size(Thnk). For general k, the bound size(Thnk) ∈ O(n5.3) due to
(Valiant, 1984) is known, based on a probabilistic construction which we do not give here.

We analyze the case k = 2, for which the following upper bound is easy to demonstrate:

Claim 9 size(Thn2) ∈ O(n2).

Proof:
(Thn2)2 = {{i, j} ∈ P ([n]) : i 6= j}.

Furthermore, ∀i 6= 2, (Thn2)i = ∅. Thus, the DNF of Thn2 is

Thn2 (x1, . . . , xn) =
∨

{i,j}∈P([n])
i 6=j

xi ∧ xj ,

which (since size(AND), size(OR) ∈ O(n)) indicates size(Thn2) ∈ O(n2).

Remark 10 Consider the following Divide and Conquer construction:

Divide the input string x = (x1, . . . , xn) ∈ {0, 1}n into y = (x1, . . . , xdn/2e) and z = (xbn/2c, . . . , xn).
Then, we have the recursive formula

Thn2 (x) = Th
dn/2e
2 (y) ∨ Thbn/2c2 (z) ∨ (Th

dn/2e
1 (y) ∧ Thbn/2c1 (z)).

3

This recurrence gives an upper bound: defining Sn = size(Thn2), the recurrence gives

Sn ≤ 2Sn−1 +O(n),

since clearly size(Thn1) ∈ O(n). The solution of this standard recurrence (think mergesort) is

Sn ≤ (2n+ dlog ne+ 1)(dlog ne) and so Sn ∈ O(n log n).

Exercise: Refine this bound to size(Thn2) ≤ 2ndlog ne−1. The lower bound we now give shows
this is tight.

We now apply Graph Entropy to prove the lower bound size(Thn2) ≥ 2dn log ne − 1, following
(Newman, Ragde, and Wigderson 1990). In order to use graph entropy we’re going define a graph
Gf for a boolean function f . Consider defining the following:

Definition 11
Gf

4
= (V,E), where V

4
= [n], and E

4
= (f)2.

Note that n is from Thn2 and is not necessarily the number of variables in f .

Example 12 GThn2 = Kn. For a single variable xi, Gxi is the empty graph on n vertices.

4

It helps now to have a few lemmas about how graph entropy evolves with AND and OR oper-
ations.

Lemma 13 Suppose f = g ∨ h. Then, Gf ⊆ Gg ∪Gh, and hence H(Gf) ≤ H(Gg) +H(Gh).

Proof: Suppose e = {i, j} ∈ E(Gf). Then, 1 = f(e) = g(e) ∨ h(e); without loss of generality,
g(e) = 1. By construction of Gf , e ∈ (f)2, so f({i}) = f({j}) = 0. Then, g({i}) = g({j}) = 0, so
e ∈ (g)2 = E(Gg).

It would be nice if we also had this property for AND, but it doesn’t hold, as the following
example shows:

Example 14 Suppose g(x1, x2) = x1, h(x1, x2) = x2. Then, {1, 2} ∈ E(Gf), but {1, 2} /∈
E(Gg), E(Gh).

Thus, we need a weaker statement:

Gg∧h ⊆ Gg ∪Gh ∪ Tg,h.

Lemma 15 Tg,h is the subgraph of Gf induced by edges in

(g)14(h)1
4
= ((g)1 − (h)1)× ((h)1 − (g)1).

Proof: Let e = {i, j}, and let f ′, g′, h′ : {0, 1}2 → {0, 1} denote the restrictions of f, g, h, respec-
tively, to e (since the formulae are monotone, we can think of this as setting the other coordinates
to 0). Then, we have

f ′(xi, xj) = xi ∧ xj
g′(xi, xj) 6= xi ∧ xj
h′(xi, xj) 6= xi ∧ xj

f ′ = g′ ∧ h′

by inspection

{
g′(x1, x2) 6= xi ∨ xj
h′(x1, x2) 6= xi ∨ xj


⇒ possible cases are

{
g′ = xi, h′ = xj
g′ = xj , h′ = xi

(here, we make the simplifying assumption that f, g, h are non-constant functions; these cases can

be analyzed separately) which in turn implies that e ∈ ((g)1− (h)1)× ((h)1− (g)1)
4
= (g)14(h)1.

Remark 16 Since (g)1 − (h)1 and (h)1 − (g)1 are disjoint, Tg,h is bipartite. We showed in a
previous lecture that this implies H(Tg,h) ≤ 1. Using subadditivity and the facts

H(Gg∨h) ≤ H(Gg) +H(Gh)
H(Gg∧h) ≤ H(Gg) +H(Gh) + 1
H(Gxi) = 0

H(GThn2) = H(Kn) = log n,

we see that any monotone formula for Thn2 has at least dlog ne AND gates, and hence size(Thn2) ≥
dlog ne.

5

We can get an even tighter lower bound by tightening the upper bound on H(Tg,h):

Observe that, while V (Tg,h) = [n], E(Tg,h) ⊆ (g)14(h)1, which implies, by the disjoint union
property,

H(Tg,h) ≤ |(g)14(h)1|
n

.

Let’s define a potential function:

Definition 17

µ(f)
4
= H(Gf) +

|(f)1|
n

.

Claim 18 For both f = g ∨ h and f = g ∧ h, µ(f) ≤ µ(g) + µ(h).

Proof: Case 1: f = g ∨ h. Assuming no gate computes a constant function,

(f)1 = {i : f({i}) = 1} = (g)1 ∪ (h)1.

Thus,

µ(f) = H(Gf) +
|(f)1|
n
≤ H(Gh) +H(Gh) +

|(g)1|+ |(h)1|
n

= µ(h) + µ(g).

Case 2: f = g ∧ h. This time, (f)1 = (g)1 ∩ (h)1. Thus,

µ(f) = H(Gf) +
|(f)1|
n
≤ H(Gh) +H(Gh) +H(Tg,h) +

|(g)1 ∩ (h)1|
n

≤ H(Gh) +H(Gh) +
|(g)14(h)1|

n
+
|(g)1 ∩ (h)1|

n

= H(Gh) +H(Gh) +
|(g)1|+ |(h)1|

n
= µ(g) + µ(h).

Note that each leaf has µ(xi) = 1
n and the root has µ(Thn2) = log n. Hence, by subadditivity

and the preceding claim, there must be at least dn log ne leaves. Since each gate has two inputs and
one output, it follows that there are at least dn log ne− 1 internal nodes, for a total lower bound of

size(Thn2) ≥ 2dn log ne − 1.

6

