15-859: Information Theory and Applications in TCS CMU: Spring 2013

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy
March 26, 2013
Lecturer: Mahdi Cheraghchi Scribe: Shashank Singh

1 Recap

e Graph Entropy: Given G = (V, E), we define H(G) = min I(X;Y") over joint distributions
(X,Y), where X € V is uniformy random and X € Y C V. We showed Graph Entropy obeys
the following:

— Sub-additivity: H(G1 U Gs) < H(G1) + G(Gs).
— Monotonicity: If G; C Ga, then H(G1) < G(G2).
— Disjoint Union: If Gi,...,Gj are the connected components if G, then H(G) =
V(G)|
2 o H (G-

e Last time, we applied Graph Entropy to lower bound the size of

— a covering of a graph by bipartite graphs

— a perfect family of hash functions

2 Monotone Formula Lower Bounds via Graph Entropy
Today we examine an application of Graph Entropy to Circuit Complexity.
2.1 Monotone Boolean Functions

Definition 1 A boolean function is one mapping {0,1}™ — {0, 1}.

Remark 2 We can equivalently consider boolean functions as mapping P ([n]) — {0,1}, using
the obvious bijection between {0,1}" and P ([n]). Boolean functions are represented by (not nec-
essarily unique) boolean formulae or trees in which leaves variables and internal nodes are logical
connectives. We use these representations interchangeably.

Definition 3 A boolean function f : P ([N]) — {0,1} is monotone if S C T € P([n]) implies
f(S) < f(T). Furthermore, if f is a monotone boolean function, then the min-terms of f of size i
are

(i 2AS € P () £ 15| =./(8) =1, and ¥T € S, /(1) =0}, (N EJW:

Furthermore, a boolean formula is monotone if it contains only AND and OR connectives.

Example 4 The following are monotone boolean functions:

1. OR: xVy =0 < x = y = 0. The min-terms of OR are (OR); = {{0},{1}}, (OR); = 0 for
i# 1.

2. AND: z Ay =1<% 2z =y =1. The min-terms of AND are (AND)s = {{0,1}}, (AND); =0
for i # 2.

3. MAJs: MAJ3(.CI?1,J:‘2,SU3) = (ZCl A iL'Q) V (.%'1 A xg) V (.2132 A .%'3).

MAJ(X_1,X_2,X_3)

X
Y Y

Figure 1: Tree representations of AND, OR, and MAJ3

Proposition 5 A boolean function is monotone iff it can be represented by a monotone boolean
formula.

Proof: Clearly, monotone boolean formulae compute monotone boolean functions.

Let f be a monotone boolean function. Then, W C P ([n]), F(W) =1 if and only if 35 € (f)
with S C W. It follows that f is defined uniquely by (f) as follows:

flz1,...,2n) = \/ /\azj , V(z1,...,7,) €4{0,1}".

Se(f) \Jes

Note that this formula, called the Disjunctive Normal Form (DNF) of f, is also represented by a
binary tree, since many-input logic gates can be simulated by (linearly many) two-input gates. m

2.2 Size of a Boolean Function and Threshold Functions

Definition 6 The size size(¢)of a formula ¢ is the number of nodes in the tree representation of

¢.

The size of a boolean function f is

2 min size(¢).

size(f) |
¢ computing f

That is, size(f) is number of nodes in the smallest tree computing f.

Definition 7 For k € [n], the threshold function Th} : P ([n]) — {0,1} is defined for S € P ([n])

by
nan & [1 af|S| >k

Example 8 Threshold functions generalize AND, OR, and MAJ:

AND =Th; size(AND) =2n — 1
OR =ThY} size(OR) = 2n — 1

It can be shown that MAJ is the ‘most complex’ threshold, in that it maximizes size(Th}}) over k.

2.3 Bounding the Size of Threshold Functions

Consider the problem of bounding size(ThY). For general k, the bound size(ThY) € O(n>3) due to

(Valiant, 1984) is known, based on a probabilistic construction which we do not give here.

We analyze the case k = 2, for which the following upper bound is easy to demonstrate:
Claim 9 size(Th%) € O(n?).

Proof:
(Th3)2 = {{i,j} € P([n]) : 1 # j}.
Furthermore, Vi # 2, (T'h%); = (). Thus, the DNF of Th} is

Thy(z1,...,20) = \/ wiAaj,

{i.7}eP([n])
i#j

which (since size(AN D), size(OR) € O(n)) indicates size(Th}) € O(n?).

Remark 10 Consider the following Divide and Conquer construction:

Divide the input string x = (v1,...,2,) € {0,1}" intoy = (21, ..., T[n/21) and z = (T|5 /2, - - -

Then, we have the recursive formula

Th () = ThY" (y) v ThE? (2) v (TR (y) A TR (2)).

) Tn).-

This recurrence gives an upper bound: defining S,, = size(Thy), the recurrence gives
Sn <2821+ O(n),
since clearly size(Th}) € O(n). The solution of this standard recurrence (think mergesort) is
Sp < (2n+ [logn] +1)([logn]) and so S, € O(nlogn).
Exercise: Refine this bound to size(Th%) < 2n[logn]|—1. The lower bound we now give shows
this is tight.

We now apply Graph Entropy to prove the lower bound size(Thy) > 2[nlogn]| — 1, following
(Newman, Ragde, and Wigderson 1990). In order to use graph entropy we'’re going define a graph
Gy for a boolean function f. Consider defining the following:

Definition 11 A A A
Gy=(V,E), where V =[n], and E = (f)s.

Note that n is from ThS and is not necessarily the number of variables in f.

Example 12 Grpp = K. For a single variable z;, Gz, is the empty graph on n vertices.

It helps now to have a few lemmas about how graph entropy evolves with AND and OR oper-
ations.

Lemma 13 Suppose f =gV h. Then, Gy C G4 UGy, and hence H(Gy) < H(Ggy) + H(G},).

Proof: Suppose e = {i,j} € E(Gy). Then, 1 = f(e) = g(e) V h(e); without loss of generality,

g(e) = 1. By construction of Gy, e € (f)2, so f({i}) = f({s}) = 0. Then, g({i}) = g({s}) =0, so
e € (9)2 = E(Gy). -

It would be nice if we also had this property for AND, but it doesn’t hold, as the following
example shows:

Example 14 Suppose g(x1,22) = x1,h(x1,22) = x2. Then, {1,2} € E(Gy), but {1,2} ¢
E(Gy), E(Gh).

Thus, we need a weaker statement:

Ggrn CGgUGRUTy .

Lemma 15 T, is the subgraph of Gy induced by edges in

A

(@A) = ((9)r = ()1) x ((h)1 = (9)1)-

Proof: Let e = {i,j}, and let f',¢’,h’ : {0,1}2 — {0,1} denote the restrictions of f,g, h, respec-
tively, to e (since the formulae are monotone, we can think of this as setting the other coordinates
to 0). Then, we have

f/(.%'i,l'j) =x; N\ xj
9'(xi, ;) # i Nw;
h'(xz-,:nj) £ x; A Tj
=g AN
g (w1, 22) # x; V x;
h’(xl,xg) #x;V T;

!/ !
g =z, N=ux;

= possible cases are
b { g = x;, B =

/

by inspection {

(here, we make the simplifying assumption that f, g, h are non-constant functions; these cases can

be analyzed separately) which in turn implies that e € ((g)1 — (h)1) x ((h)1 — (9)1) 2 (91 A(R). =

Remark 16 Since (9)1 — (h)1 and (h)1 — (g)1 are disjoint, T, is bipartite. We showed in a
previous lecture that this implies H(T,) < 1. Using subadditivity and the facts

H(Ggvn) < H(Gy)+ H(Gh)
H(Gynn) < H(Gy)+H(Gp)+1
H(Gy) =0
H(Grpp) = H(K,) =logn,

A

we see that any monotone formula for ThY has at least [logn] AND gates, and hence size(Thy) >
[logn].

We can get an even tighter lower bound by tightening the upper bound on H (T} 4):
Observe that, while V(T 5) = [n], E(Tyh) € (9)12A(h)1, which implies, by the disjoint union

property,
[ORGOn

H(Tg,h) < n

Let’s define a potential function:

Definition 17

sl

n

u(f) 2 H(Gy) +
Claim 18 For both f =gV h and f =g Ah, u(f) < u(g) + p(h).

Proof: Case 1: f =gV h. Assuming no gate computes a constant function,

(Nr=Ai:f{i}) =13 = (9 U (W)

o p(f) :H(Gf)‘f'K'};)l’ §H(Gh)+15r(Gh)+|(g)1|+n|(h)1| = p(h) + pu(g)-
Case 2: f =g A h. This time, (f); = (¢)1 N (h)1. Thus,
p(f) = H(Gy) + ’(J;)l’ < H(Gp) + H(Gp) + H(Typ) + Kg)lz(h)l’
< 1(G) + @) + DO on 00
= (G + (G + O)

Note that each leaf has p(2;) = 2 and the root has u(Th%) = logn. Hence, by subadditivity
and the preceding claim, there must be at least [nlogn| leaves. Since each gate has two inputs and
one output, it follows that there are at least [nlogn]| — 1 internal nodes, for a total lower bound of

size(Thy) > 2[nlogn] — 1.

