
15-859: Information Theory and Applications in TCS Spring 2013

Lecture 15: Applications of Graph Entropy

March 22, 2013

Lecturer: Mahdi Cheraghchi Scribe: Euiwoong Lee

1 Recap

• Graph Entropy: Given G = (V,E), we define H(G) = min I(X;Y) over joint distributions
(X,Y) where X is a uniformly random vertex in V , and Y is an independent subset of V
that contains X.

• H(G1 ∪G2) ≤ H(G1) +H(G2).

• H(G1) ≤ H(G1 ∪G2)

• If G1, ..., Gk are connected component of G, H(G) =
∑

i∈[k] ρiH(Gi) where ρi := |V (Gi)|
|V (G)| .

2 Number of bipartite graphs to cover the complete graph

Suppose that we have the complete graph Kn = (V,
(
V
2

)
). We want to cover Kn by l bipartite

graphs, G1, ..., Gl in a sense that

• For each i, Gi = (V,Ei) is a bipartite graph.

• For each (u, v) ∈
(
V
2

)
, (u, v) ∈ Ei for some i. In other words, Kn = G1 ∪ ... ∪Gl.

Question: What is the minimum number l of bipartite graphs needed to cover Kn?

Construction: Identify each vertex with a binary string of length dlog ne. The ith bipartite
graph connects every two vertices whose binary representations differ at the ith position. It is easy
to see that these dlog ne bipartite graphs cover all the pairs.

Lower bound: In the previous lecture, we saw that

• H(Kn) = logn

• Kn = G1 ∪ ... ∪Gl implies H(Kn) ≤
∑

iH(Gi)

• H(Gi) ≤ 1

Therefore, log n = H(Kn) ≤
∑

iH(Gi) ≤ l ≤ dlog ne. Generally, given a graph G = (V,E), the
same upper and lower bound techniques work to show that H(G) ≤ l ≤ dlogχ(G)e (for the upper
bound, identify each color with a binary string). logχ(G), which is always at least H(G), gives one
intuition about H(G), even though the difference can be made arbitrarily large.

1

3 Perfect Hash Families

Setting: A database where each file is an element of [N]. A hash function maps a file to a much
smaller domain; h : [N]→ [b] where b� N .

Suppose we have a hash family H = {h1, ..., ht} where for each i, hi : [N] → [b] is a hash
function. Our goals is to design H such that it can differentiate between up to k files (k < b). In
other words,

∀S ⊆ [N], |S| = k : ∃h ∈ H such that h is injective on S

If we think H as a N × t matrix (each row corresponds to a file x, each column corresponds to a
hash function h, and H(x, h) = h(x)), we require that for every choice of k rows (x1, ..., xk), there
exists a column h such that h(x1), ..., h(xk) are pairwise distinct. We call H k-perfect hash familiy
if the above condition is satisfied. The question is, how small can t be?

3.1 Upper bound

Claim 3.1. Assume b ≥ k2. Then t = O(k log N
k) suffices.

Proof. Pick each hi : [N]→ [b] uniformly and independently at random. Fix S ⊆ [N], |S| = k.

Pr[h1 is injective on S] = 1 · b− 1

b
· ... · b− k + 1

b
≥ (1− k

b
)k ≥ (1− 1

k
)k ≥ 1

4

⇒ Pr[∀i, hi is not injective on S] ≤ (
3

4
)t

⇒ Pr[H is not k-perfect] ≤
(
N

k

)
(
3

4
)t ≤ (

Ne

k
)k(

3

4
)t = 2O(k log(N/k))−Ω(t)

The probability can be made less than 1 for some t = O(k log N
k).

3.2 Lower bound

Claim 3.2. For all k ≥ 2, t ≥ logN
log b

Proof. It follows from the pigeonhole principle: ∀x1 6= x2 ∈ [N], we must have (h1(x1), ..., ht(x1)) 6=
(h2(x1), ..., ht(x2)). Therefore, N ≤ bt ⇒ t ≥ logN

log b .

There is a stronger lower bound due to Fredman Komlós in 1984.

Theorem 3.3. t ≥ bk−1

b(b−1)...(b−k+2)
log(N−k+2)
log(b−k+2)

Proof. Assume b|N . Define G = (V,E) such that

• V = {(D,x) : D ⊆ [N], |D| = k − 2, x ∈ [N]−D}.

• E = {((D,x1), (D,x2)) : ∀D,x1 6= x2}.

2

G has
(

N
k−2

)
connected components, each is a clique (of size N − k + 2) corresponding to some

D. From the last lecture, H(G) = H(each component) = log(N − k + 2).

Given a k-perfect hash family H, we construct {Gh} such that G = ∪h∈HGh. The construction
is as the following.

• V (Gh) = V (G).

• E = {((D,x1), (D,x2)) : h is injective on D ∪ {x1, x2}}.

Every {(D,x1), (D,x2)} ∈ E(G) is covered by Gh where h is injective on D ∪ {x1, x2}, so
G = ∪h∈HGh.

Now we want to argue that each H(Gh) is small. Fix h. For a choice of D,

• If h is not injective on D, H(Gh,D) = 0 where Gh,D indicates the connected component of
Gh corresponding to D.

• If h is injective on D, Gh,D is (b − k + 2)-partite. This can be shown by defining Ai :=
{(D,x) : h(x) = i} for each i /∈ h(D). Since h is injective there are exactly b−k+2 choices of
i, and there is no edge between (D,x1) and (D,x2) if h(x1) = h(x2). From the last lecture,
H(Gh, D) ≤ log(b− k + 2).

In any case, H(Gh, D) ≤ log(b − k + 2) and H(Gh) ≤ log(b − k + 2). Together with H(G) =

log(N − k + 2), we can conclude that t ≥ log(N−k+2)
log(b−k+2) .

To get a better bound, we want to show that Gh has a large fraction of isolated vertices. Define
p the probability that a uniform random vertex of Gh is isolated. Let E be the set of isolated
vertices. The same argument shows that H(Gh − E) ≤ log(b− k + 2) as well, so we have

H(Gh) = pH(E) + (1− p)H(Gh − E) ≤ (1− p) log(b− k + 2)

Therefore, an upper bound of 1 − p is needed to achieve a better lower bound on t. (D,x) is
isolated if and only if h is not injective on D ∪ {x}, so p is the probability over uniformly chosen
(k − 1)-subset S that h is not injective on S.

Claim 3.4. Without loss of generality, we can assume that |h−1(1)| = ... = |h−1(b)| = N
b . In other

words, maximum p (minimum 1− p) is achieved by |h−1(1)| = ... = |h−1(b)| = N
b .

Proof. Assume that |h−1(1)| > |h−1(2)| + 1. Take any x such that h(x) = 1 and change h such
that h(x) = 2.

p = Pr
S

[h is injective on S] = Pr(x ∈ S) Pr
S

[h is injective on S|x ∈ S] +

Pr(x /∈ S) Pr
S

[h is injective on S|x /∈ S]

Since we only changed h(x), the second term does not change. The first term increases since given
that x ∈ S, S − {x} needs to be disjoint from h−1(h(x)) and the size of it became smaller.

3

Now, 1− p ≤ 1 · b−1
b · ... ·

b−k+2
b and H(Gh) ≤ (1− p) log(b− k + 2) Therefore,

t ≥ H(G)

maxhH(Gh)
≥ log(N − k + 2)

(1− p) log(b− k + 2)
≥ bk−1

b(b− 1)...(b− k + 2)

log(N − k + 2)

log(b− k + 2)

4

