15-859: Information Theory and Applications in TCS Spring 2013
Lecture 15: Applications of Graph Entropy
March 22, 2013

Lecturer: Mahdi Cheraghchi Scribe: Euiwoong Lee

1 Recap

e Graph Entropy: Given G = (V, E), we define H(G) = min I(X;Y’) over joint distributions
(X,Y) where X is a uniformly random vertex in V, and Y is an independent subset of V
that contains X.

o H(G1UG2) < H(G1)+ H(G2).
° H(Gl) < H(Gl UGQ)

o If Gy,..., Gy, are connected component of G, H(G) = ;. piH (Gi) where p; := |V(G')| .

2 Number of bipartite graphs to cover the complete graph

Suppose that we have the complete graph K, = (V, (‘2/)) We want to cover K, by [bipartite

graphs, G1, ..., G; in a sense that
e For each i, G; = (V, E;) is a bipartite graph.
e For each (u,v) € (‘2/), (u,v) € E; for some i. In other words, K,, = G1 U ... UG|.

Question: What is the minimum number [of bipartite graphs needed to cover K7

Construction: Identify each vertex with a binary string of length [logn]. The ith bipartite
graph connects every two vertices whose binary representations differ at the ith position. It is easy
to see that these [logn] bipartite graphs cover all the pairs.

Lower bound: In the previous lecture, we saw that
e H(K,)=Ilogn

e K, =G1U..UG implies H(K,,) <>, H(Gj)
e H(G;) <1

Therefore, logn = H(K,) <), H(G;) <1 < [logn]. Generally, given a graph G = (V, E), the
same upper and lower bound techniques work to show that H(G) <1 < [log x(G)] (for the upper
bound, identify each color with a binary string). log x(G), which is always at least H(G), gives one
intuition about H(G), even though the difference can be made arbitrarily large.

3 Perfect Hash Families

Setting: A database where each file is an element of [N]. A hash function maps a file to a much
smaller domain; h : [N] — [b] where b < N.

Suppose we have a hash family H = {hi,...,h;} where for each i, h; : [N] — [b] is a hash
function. Our goals is to design H such that it can differentiate between up to k files (k < b). In
other words,

VS C [N],|S| =k : 3h € H such that h is injective on S

If we think H as a N x t matrix (each row corresponds to a file x, each column corresponds to a
hash function h, and H(z, h) = h(x)), we require that for every choice of k rows (z1,...,xx), there
exists a column h such that h(x1),..., h(x) are pairwise distinct. We call H k-perfect hash familiy
if the above condition is satisfied. The question is, how small can t be?

3.1 Upper bound
Claim 3.1. Assume b > k?. Then t = O(klog %) suffices.

Proof. Pick each h; : [N] — [b] uniformly and independently at random. Fix S C [N],|S| = k.

b—1 b—k+1 k 1 1
Pr[h; is injective on S| =1 - AR b+ > (1—3)'C > (1—%)"3 > 1
= Pr[V¥i, h; is not injective on S| < (z)t
N N
= Pr[H is not k-perfect] < (§)t <(e)k(§)t — 90(klog(N/k))—(t)
k)4 k 4
The probability can be made less than 1 for some ¢ = O(klog &°). O

3.2 Lower bound

Claim 3.2. For all k > 2, t > &%
g

Proof. It follows from the pigeonhole principle: Va; # x2 € [N], we must have (hi(x1), ..., he(x1)) #

(ho(z1), ..., ht(22)). Therefore, N < b =t > lﬁ)gg];[.

O

There is a stronger lower bound due to Fredman Komlés in 1984.

pk—1 log(N—k+2)
(b—1)...(b—k+2) log(b—k+2)

Theorem 3.3. ¢t > 5
Proof. Assume b|N. Define G = (V, E) such that
e V={(D,z): DC[N],|Dl=k—2,2 € [N]-D}.
o E={((D,z1),(D,x2)) : VD, x1 # z2}.

G has (k]j 2) connected components, each is a clique (of size N — k + 2) corresponding to some
D. From the last lecture, H(G) = H(each component) = log(N — k + 2).

Given a k-perfect hash family H, we construct {Gj} such that G = UpeyGp. The construction
is as the following.

e V(Gh) =VI(G).
o E={((D,z1),(D,x2)) : h is injective on D U {z1,z2}}.

Every {(D,z1),(D,z2)} € E(G) is covered by G} where h is injective on D U {x, 22}, so
G = UpenGh-

Now we want to argue that each H(G}) is small. Fix h. For a choice of D,

e If h is not injective on D, H(Gp p) = 0 where G}, p indicates the connected component of
G}, corresponding to D.

e If h is injective on D, Gp p is (b — k + 2)-partite. This can be shown by defining A4; :=
{(D,x) : h(z) = i} for each ¢ ¢ h(D). Since h is injective there are exactly b—k+ 2 choices of
i, and there is no edge between (D, x1) and (D, x2) if h(z1) = h(x2). From the last lecture,
H(Gp, D) <log(b—Fk+2).

In any case, H(Gp, D) < log(b—k+2) and H(Gp) < log(b — k + 2). Together with H(G) =
log(N — k + 2), we can conclude that t > %.

To get a better bound, we want to show that GGj, has a large fraction of isolated vertices. Define
p the probability that a uniform random vertex of Gp, is isolated. Let £ be the set of isolated

vertices. The same argument shows that H(Gp — &) < log(b— k + 2) as well, so we have

H(Gp) =pH(E) + (1 —p)H(Gr — &) < (1 —p)log(b —k +2)

Therefore, an upper bound of 1 — p is needed to achieve a better lower bound on ¢. (D,) is
isolated if and only if h is not injective on D U {z}, so p is the probability over uniformly chosen
(k — 1)-subset S that h is not injective on S.

Claim 3.4. Without loss of generality, we can assume that |h=1(1)] = ... = |h1(b)| = % In other
words, mazimum p (minimum 1 — p) is achieved by |h=1(1)| = ... = [h=1(b)| = &.
Proof. Assume that |h=1(1)| > |h=!(2)| + 1. Take any x such that h(x) = 1 and change h such

that h(z) = 2.

p= P;r[h is injective on S] = Pr(z € 9) f;r[h is injective on S|z € S| +
Pr(z ¢ S) F;r[h is injective on S|z ¢ 5]

Since we only changed h(z), the second term does not change. The first term increases since given
that € S, S — {2} needs to be disjoint from h~!(h(z)) and the size of it became smaller.
O

Now, 1 —p <1521 . =KE2 and H(G)) < (1 —p)log(b— k + 2) Therefore,

H(G)

log(N — k+2) S pht log(N — k +2)

b= (I —p)log(b—k+2) ~ b(b—1)(b—k+2) logb—k +2)

>
maxy, H(Gp,)

