15-859: Information Theory and Applications in TCS

Spring 2013

Lecture 14: Graph Entropy

March 19, 2013

Lecturer: Mahdi Cheraghchi Scribe: Euiwoong Lee

1 Recap

• Bergman's bound on the permanent

• Shearer's Lemma

• Number of triangles in a graah with l edges.

2 Motivation and Definition of Graph Entropy

So far in this course, we have learned two aspects to coding theory - source coding and channel coding. Graph entropy can be thought as a combinatorial extension of source coding.

Suppose that we are given a source which emits one symbol $x \in V$. The source coding theorem says that if symbols are i.i.d. and the number of symbols is large, it is possible to achieve $Rate \approx H(X)$ and this is the best to hope for. This result is based on the requirement that whenever we have two sequences of symbols $(x_1, ..., x_t)$ and $(y_1, ..., y_t)$, which are different in at least one symbol, the encoder should assign different codewords for them; otherwise at least one of them cannot be recovered.

What does happen if we relax this strict requirement and allow some *confusion* (i.e. it is okay to use the same codeword for certain pairs of strings)? As the requirement is relaxed, we might hope for a better rate. The graph entropy studies this question by representing such requirements by graphs.

2.1 1-symbol Case

We still have a source that emits a symbol in V, and a graph G = (V, E) such that $\{a, b\} \in E$ if a and b must be distinguished. This graph represents the requirement that for any encoder $Enc: V \to \{0,1\}^R$,

$$\forall \{a,b\} \in E : Enc(a) \neq Enc(b)$$

How small R can be in this setting? This setting is exactly equal to the well-studied graph (vertex) coloring problem, where the goal is to color each vertex so that no edge has both endpoints with the same color (each color corresponds to a codeword).

Let $\chi(G)$ be the minimum number of colors needed for G. The best $R = \lceil \log \chi(G) \rceil$. If $G = K_n$, which means every symbol must be distinguished, $\chi(G) = n$ and $R_{OPT} = \lceil \log n \rceil$.

2.2 Multi-symbol Case

We now assume that the source emits t i.i.d. symbols, each according to distribution p on V.

Definition 2.1. $(x_1,...,x_t)$ is distinguishable from $(y_1,...,y_t)$ if $\exists i \in [t]$ such that $(x_i,y_i) \in E$.

Let $G^t = (V^t, E^t)$ where

- $V^t = \{(v_1, ..., v_t) : v_i \in V\}$
- $\{(v_1, ..., v_t), (w_1, ..., w_t)\} \in E$ if and only if $\exists i$ such that $\{v_i, w_i\} \in E$.

We can see $(v_1, ..., v_t)$ and $(w_1, ..., w_t)$ are distinguishable when $\{(v_1, ..., v_t), (w_1, ..., w_t)\} \in E^t$. Let $p^t(v_1, ..., v_t) = \prod_{i \in [t]} p(v_i)$ be the probability of $(v_1, ..., v_t)$. As in the original source coding theorem, we might decide to ignore small fraction of vertices according to this distribution and color the rest of the graph with a small number of colors. Asymptotically, we take $t \to \infty$ and allow an *error* parameter ϵ . If $\epsilon = 0$ (i.e. error-free code), the best achievable rate is

$$\lim_{t \to \infty} \frac{\log \chi(G^t)}{t}$$

If $\epsilon > 0$, we define entropy of G as the best achievable rate allowing ϵ error, namely

$$H(G, p) = \lim_{t \to \infty} \min_{\substack{U \subseteq V^t \\ p^t(U) > 1 - \epsilon}} \frac{\log \chi(G^t(U))}{t}$$

where $G^t(U)$ is the subgraph of G^t induced by U. Körner, who introduced this definition, proved that

- 1. Limit exists
- 2. Limit is independent of $\epsilon \in (0,1)$.

3.

$$H(G,p) = \min_{(X,Y)} I(X;Y)$$

where $X \in V$ is a random vertex whose marginal distribution is p, and $Y \subseteq V$ is an random independent set of vertices such that $X \in Y$ always. Y is an independent set if for all $v, v' \in Y$, $\{v, v'\} \notin E$. Note that 3 implies 1 and 2.

One rough intuition is that any coloring of G partitions V into independent sets, and as we use a fewer number of colors, the size of each independent set will be larger. This coloring naturally defines the joint distribution (X,Y) - pick $X \in V$ according to p, and let Y be the set of vertices with the same color with X. I(X;Y) = H(X) - H(X|Y) also gets smaller as the size of Y increases, so this roughly explains how coloring is related to a I(X;Y).

3 Examples of Graph Entropy

From now on, p is the uniform distribution on V. In this case define H(G) to be H(G, uniform). To prove an upper bound on H(G), it is enough to find a joint distribution (X, Y) such that I(X; Y) is small.

3.1 Empty Graph

- In a graph with no edge, Y can be V always regardless of X.
- $H(G) \le I(X;Y) \le H(Y) = 0$
- Since $H(G) \ge 0$ by definition, H(G) = 0.

3.2 Complete Graph

- In a complete graph K_n , given X, Y has to be $\{X\}$ since it is the only set that contains X and is independent.
- This unique distribution gives $H(G) = I(X;Y) = H(X) H(X|Y) = H(X) = \log n$.

3.3 Bipartite and r-partite Graph

- Suppose we have a complete bipartite graph $K_{m,n}$ with partitions A and B such that |A| = m, |B| = n. Given X, we take Y = A if $x \in A$, and Y = B if $x \in B$.
- Using this joint distribution,

$$H(G) \le I(X;Y) = H(X) - H(X|Y) = \log(m+n) - \frac{m}{m+n} \log m - \frac{n}{m+n} \log n = h(\frac{n}{m+n})$$

where h is the binary entropy function.

• On the other hand, for any joint distribution (X,Y), we see that $Y \subseteq A$ if $X \in A$, and $Y \subseteq B$ if $X \in B$. Therefore,

$$H(X|Y) \le Pr[X \in A] \log |A| + Pr[X \in B] \log |B| = \frac{m}{m+n} \log m + \frac{n}{m+n} \log n$$

This shows that $H(G) \ge h(\frac{n}{m+n})$, and therefore $H(G) = h(\frac{n}{m+n})$

• Generally, if we have r-partite graph where $V = [n] \times [r]$ and $E = \{(i, j), (k, l) : j \neq l\}$, following the same argument, we can conclude that $H(G) = \log r$. The bipartite graph with m = n is a special case with $H(G) = h(\frac{1}{2}) = \log 2 = 1$.

4 Properties of Graph Entropy

4.1 Subadditivity

Lemma 4.1. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$ and $G = (V, E_1 \cup E_2)$. Then $H(G) \leq H(G_1) + H(G_2)$.

Proof. Take joint distribution (X, Y_1, Y_2) such that

- $H(G_1) = I(X; Y_1)$
- $H(G_2) = I(X; Y_2)$
- ullet Conditioned on $X,\,Y_1$ and Y_2 are independent.

 $Y_1 \cap Y_2$ is independent on G, and it contains X. Therefore, $(X, Y_1 \cap Y_2)$ is a valid distribution for G.

$$\begin{array}{lll} H(G) & \leq & I(X;Y_1\cap Y_2) \\ & \leq & I(X;Y_1,Y_2) \text{ (follows from data processing inequality)} \\ & = & H(Y_1,Y_2) - H(Y_1,Y_2|X) \\ & = & H(Y_1,Y_2) - H(Y_1|X) - H(Y_2|X) \text{ } (Y_1 \perp Y_2 \text{ conditioned on } X) \\ & \leq & H(Y_1) + H(Y_2) - H(Y_1|X) - H(Y_2|X) \\ & = & H(G_1) + H(G_2) \end{array}$$

4.2 Monotonicity

Lemma 4.2. Let $G = (V, E), F = (V, E'), E \subseteq E'$. Then $H(G) \leq H(F)$.

Proof. Since G has fewer edges (less strict requirements) than F, (X,Y) achieving H(F) is feasible for H(G).

4.3 Disjoint Union

Lemma 4.3. Let $G_1, ..., G_t$ are connected components of G and $\rho_i := \frac{|V(G_i)|}{|V(G)|}$. Then

$$H(G) = \sum_{i \in [k]} \rho_i H(G_i)$$

Proof. First we show that $H(G) \ge \sum \rho_i H(G_i)$. Take a joint distribution (X,Y) such that H(G) = I(X;Y), and let $Y_i = Y \cap V(G_i)$. Define $I(x) : V(G) \to [k]$ such that I(x) = i iff $x \in V(G_i)$.

$$\begin{split} H(G) &= I(X;Y_1,...,Y_k) \\ &= I(X,l(X);Y_1,...,Y_k) \; (X \; \text{determines} \; (X,l(X))) \\ &= I(l(X);Y_1,...,Y_k) + I(X;Y_1,...,Y_k|l(X)) \; \text{(Chain rule)} \\ &\geq \sum_{i \in [k]} Pr[l(X) = i]I(X;Y_1,...,Y_k|l(X) = i) \; \text{(Expand only the second term)} \\ &= \sum_{i \in [k]} \rho_i (I(X;Y_i|l(X) = i) + I(X;Y_1,...,Y_{i-1},Y_{i+1},...,Y_k|l(X) = i,Y_i)) \; \text{(Chain rule)} \\ &\geq \sum_{i \in [k]} \rho_i I(X;Y_i|l(X) = i) \; \text{(Ignore the second term)} \\ &\geq \sum_{i \in [k]} \rho_i H(G_i) \; \text{(Definition of} \; H(G_i)) \end{split}$$

which completes the proof that $H(G) \ge \sum \rho_i H(G_i)$. For the other direction, let p_i be a joint distribution (X, Y_i) that achieves $H(G_i) = I(X; Y_i)$. We define a joint distribution (X, Y) such that

- 1. Pick $Y_1, ..., Y_k$ independently according to $p_1, ..., p_k$.
- 2. Pick $i \in [k]$ with probability ρ_i .
- 3. Sample X according to $p_i(X|Y_i)$.

We want to show that $I(X;Y) = \sum \rho_i H(G_i)$. We are going to use the same proof; we only need to check that the three inequalities above indeed hold as equalities.

- 1. We chose i = l(X) independently from $Y_1, ..., Y_k$; so $I(l(X); Y_1, ..., Y_k) = 0$ and the first inequality holds with equality.
- 2. Our choice of X only depends on i and Y_i , so $I(X; Y_1, ..., Y_{i-1}, Y_{i+1}, ..., Y_k | l(X) = i, Y_i) = 0$ and the second inequality holds with equalty.
- 3. By the choice of p_i , $I(X;Y_i) = H(G_i)$ for each i. Therefore, $H(G) \leq I(X;Y) = \sum \rho_i H(G_i)$. With the lower bound above, we can conclude that $H(G) = \sum_{\rho_i} H(G_i)$.