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1 Recap

• Bergman’s bound on the permanent

• Shearer’s Lemma

• Number of triangles in a grpah with l edges.

2 Motivation and Definition of Graph Entropy

So far in this course, we have learned two aspects to coding theory - source coding and channel
coding. Graph entropy can be thought as a combinatorial extension of source coding.

Suppose that we are given a source which emits one symbol x ∈ V . The source coding theorem
says that if symbols are i.i.d. and the number of symbols is large, it is possible to achieve Rate ≈
H(X) and this is the best to hope for. This result is based on the requirement that whenever we
have two sequences of symbols (x1, ..., xt) and (y1, .., yt), which are different in at least one symbol,
the encoder should assign different codewords for them; otherwise at least one of them cannot be
recovered.

What does happen if we relax this strict requirement and allow some confusion (i.e. it is okay
to use the same codeword for certain pairs of strings)? As the requirement is relaxed, we might
hope for a better rate. The graph entropy studies this question by representing such requirements
by graphs.

2.1 1-symbol Case

We still have a source that emits a symbol in V , and a graph G = (V,E) such that {a, b} ∈ E
if a and b must be distinguished. This graph represents the requirement that for any encoder
Enc : V → {0, 1}R,

∀ {a, b} ∈ E : Enc(a) 6= Enc(b)

How small R can be in this setting? This setting is exactly equal to the well-studied graph
(vertex) coloring problem, where the goal is to color each vertex so that no edge has both endpoints
with the same color (each color corresponds to a codeword).

Let χ(G) be the minimum number of colors needed for G. The best R = dlogχ(G)e. If G = Kn,
which means every symbol must be distinguished, χ(G) = n and ROPT = dlog ne.
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2.2 Multi-symbol Case

We now assume that the source emits t i.i.d. symbols, each according to distribution p on V .

Definition 2.1. (x1, ..., xt) is distinguishable from (y1, ..., yt) if ∃i ∈ [t] such that (xi, yi) ∈ E.

Let Gt = (V t, Et) where

• V t = {(v1, ..., vt) : vi ∈ V }

• {(v1, ..., vt), (w1, ..., wt)} ∈ E if and only if ∃i such that {vi, wi} ∈ E.

We can see (v1, ..., vt) and (w1, ..., wt) are distinguishable when {(v1, ..., vt), (w1, ..., wt)} ∈ Et.
Let pt(v1, ..., vt) = Πi∈[t]p(vi) be the probability of (v1, ..., vt). As in the original source coding
theorem, we might decide to ignore small fraction of vertices according to this distribution and
color the rest of the graph with a small number of colors. Asymptotically, we take t → ∞ and
allow an error parameter ε. If ε = 0 (i.e. error-free code), the best achievable rate is

lim
t→∞

logχ(Gt)

t

If ε > 0, we define entropy of G as the best achievable rate allowing ε error, namely

H(G, p) = lim
t→∞

min
U⊆V t

pt(U)≥1−ε

logχ(Gt(U))

t

where Gt(U) is the subgraph of Gt induced by U . Körner, who introduced this definition,
proved that

1. Limit exists

2. Limit is independent of ε ∈ (0, 1).

3.
H(G, p) = min

(X,Y )
I(X;Y )

where X ∈ V is a random vertex whose marginal distribution is p, and Y ⊆ V is an random
independent set of vertices such that X ∈ Y always. Y is an independent set if for all
v, v′ ∈ Y , {v, v′} /∈ E. Note that 3 implies 1 and 2.

One rough intuition is that any coloring of G partitions V into independent sets, and as we use
a fewer number of colors, the size of each independent set will be larger. This coloring naturally
defines the joint distribution (X,Y ) - pick X ∈ V according to p, and let Y be the set of vertices
with the same color with X. I(X;Y ) = H(X)−H(X|Y ) also gets smaller as the size of Y increases,
so this roughly explains how coloring is related to a I(X;Y ).

3 Examples of Graph Entropy

From now on, p is the uniform distribution on V . In this case define H(G) to be H(G, uniform).
To prove an upper bound on H(G), it is enough to find a joint distribution (X,Y ) such that I(X;Y )
is small.
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3.1 Empty Graph

• In a graph with no edge, Y can be V always regardless of X.

• H(G) ≤ I(X;Y ) ≤ H(Y ) = 0

• Since H(G) ≥ 0 by definition, H(G) = 0.

3.2 Complete Graph

• In a complete graph Kn, given X, Y has to be {X} since it is the only set that contains X
and is independent.

• This unique distribution gives H(G) = I(X;Y ) = H(X)−H(X|Y ) = H(X) = log n.

3.3 Bipartite and r-partite Graph

• Suppose we have a complete bipartite graph Km,n with partitions A and B such that |A| = m,
|B| = n. Given X, we take Y = A if x ∈ A, and Y = B if x ∈ B.

• Using this joint distribution,

H(G) ≤ I(X;Y ) = H(X)−H(X|Y ) = log(m+n)− m

m+ n
logm− n

m+ n
log n = h(

n

m+ n
)

where h is the binary entropy function.

• On the other hand, for any joint distribution (X,Y ), we see that Y ⊆ A if X ∈ A, and Y ⊆ B
if X ∈ B. Therefore,

H(X|Y ) ≤ Pr[X ∈ A] log |A|+ Pr[X ∈ B] log |B| = m

m+ n
logm+

n

m+ n
log n

This shows that H(G) ≥ h( n
m+n), and therefore H(G) = h( n

m+n)

• Generally, if we have r-partite graph where V = [n] × [r] and E = {(i, j), (k, l) : j 6= l},
following the same argument, we can conclude that H(G) = log r. The bipartite graph with
m = n is a special case with H(G) = h(12) = log 2 = 1.

4 Properties of Graph Entropy

4.1 Subadditivity

Lemma 4.1. Let G1 = (V,E1), G2 = (V,E2) and G = (V,E1∪E2). Then H(G) ≤ H(G1)+H(G2).

Proof. Take joint distribution (X,Y1, Y2) such that

• H(G1) = I(X;Y1)

• H(G2) = I(X;Y2)

• Conditioned on X, Y1 and Y2 are independent.
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Y1 ∩ Y2 is independent on G, and it contains X. Therefore, (X,Y1 ∩ Y2) is a valid distribution for
G.

H(G) ≤ I(X;Y1 ∩ Y2)
≤ I(X;Y1, Y2) (follows from data processing inequality)

= H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1, Y2)−H(Y1|X)−H(Y2|X) (Y1 ⊥ Y2 conditioned on X)

≤ H(Y1) +H(Y2)−H(Y1|X)−H(Y2|X)

= H(G1) +H(G2)

4.2 Monotonicity

Lemma 4.2. Let G = (V,E), F = (V,E′), E ⊆ E′. Then H(G) ≤ H(F ).

Proof. Since G has fewer edges (less strict requirements) than F , (X,Y ) achieving H(F ) is feasible
for H(G).

4.3 Disjoint Union

Lemma 4.3. Let G1, ..., Gt are connected components of G and ρi := |V (Gi)|
|V (G)| . Then

H(G) =
∑
i∈[k]

ρiH(Gi)

Proof. First we show that H(G) ≥
∑
ρiH(Gi). Take a joint distribution (X,Y ) such that H(G) =

I(X;Y ), and let Yi = Y ∩ V (Gi). Define l(x) : V (G)→ [k] such that l(x) = i iff x ∈ V (Gi).

H(G) = I(X;Y1, ..., Yk)

= I(X, l(X);Y1, ..., Yk) (X determines (X, l(X)))

= I(l(X);Y1, ..., Yk) + I(X;Y1, ..., Yk|l(X)) (Chain rule)

≥
∑
i∈[k]

Pr[l(X) = i]I(X;Y1, ..., Yk|l(X) = i) (Expand only the second term)

=
∑
i∈[k]

ρi(I(X;Yi|l(X) = i) + I(X;Y1, ..., Yi−1, Yi+1, ..., Yk|l(X) = i, Yi)) (Chain rule)

≥
∑
i∈[k]

ρiI(X;Yi|l(X) = i) (Ignore the second term)

≥
∑
i∈[k]

ρiH(Gi) (Definition of H(Gi))

which completes the proof that H(G) ≥
∑
ρiH(Gi). For the other direction, let pi be a joint

distribution (X,Yi) that achieves H(Gi) = I(X;Yi). We define a joint distribution (X,Y ) such
that
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1. Pick Y1, ..., Yk independently according to p1, ..., pk.

2. Pick i ∈ [k] with probability ρi.

3. Sample X according to pi(X|Yi).

We want to show that I(X;Y ) =
∑
ρiH(Gi). We are going to use the same proof; we only

need to check that the three ineqaulities above indeed hold as equalities.

1. We chose i = l(X) independently from Y1, ..., Yk; so I(l(X);Y1, ..., Yk) = 0 and the first
inequality holds with equality.

2. Our choice of X only depends on i and Yi, so I(X;Y1, ..., Yi−1, Yi+1, ..., Yk|l(X) = i, Yi) = 0
and the second ineqaulity holds with equalty.

3. By the choice of pi, I(X;Yi) = H(Gi) for each i.

Therefore, H(G) ≤ I(X;Y ) =
∑
ρiH(Gi). With the lower bound above, we can conclude

that H(G) =
∑

ρi
H(Gi).
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