
15-859: Information Theory and Applications in TCS CMU: Spring 2013

Lecture 9-10: Concatenated codes; Polarization and polar codes

February 19 & 21, 2013

Lecturer: Venkatesan Guruswami Scribe: Patrick Xia

This is a conglomeration of two lectures (lecture 9 and lecture 10), with the subjects “Concatenated
codes and Introduction to Polarization” and “Arıkan’s recursive construction of a polarizing invertible
transformation.”

1 Previously. . .

Random linear codes allow for efficient codebook storage. We can specify an n× k matrix G such that our
code is

{Gu|u ∈ {0, 1}k}

However, this technique is deficient in some regards. G is not explicit: we only proved that a random
such G achieves the channel capacity with high probability. Decoding is also not efficient: the algorithm
is cubic for the BEC case, and in general NP-hard, so it is unlikely that we can come up with an efficient
algorithm to decode a random linear code.

So although linear codes are nice (they are structured; you can store the code compactly), the algo-
rithmic problems are still very difficult. How can we do better?

2 Concatenated codes

We will discuss the BSCp, 0 ≤ p < 1/2. Recall: BSCp is the binary-input channel that flips bits with
probability p and leaves them the same with probability 1− p.

The capacity is 1− h(p):

I(X;Y) = H(X)−H(X|Y)

= 1− h(p)

Fact. Fix p, ε > 0. Shannon’s theorem implies that ∀n ≥ Ω(1/ε2), there exists a linear code given by a
generator matrix G ∈ {0, 1}n×k, k = (1− h(p)− ε)n (so the rate is 1− h(p)− ε), such that ∀u,

Pr
BSC(p)

[Gu is closest to BSC(Gu)] ≥ 1− 2−Ω(ε2n).

Proof. The proof is left as an exercise. Bits of it are on the homework.

However, the aforementioned fact is a non-constructive result, as decoding this code is still very difficult.

Insight. Use Shannon’s existential code for small lengths q and combine it with explicit long codes. De-
coding is therefore done in constant time (a very large constant, but a constant in terms of n).

2.1 Construction

Take a linear code C ⊂ {0, 1}nc . Now consider the following adversarial channel model: given an input
string s of length n0, the channel flips up to γn0 bits (i.e., it outputs a string that is within Hamming
distance γn0 of the input), where γ > 0 is a small constant. We are expected to decode the original string
from the output of this adversarial channel model.

1

Assume we know how to construct explicitly (i.e., in deterministic poly(n0) time) a linear code C ⊆
{0, 1}n0 of rate 1 − γ1/3 that can correct worst-case γn0 errors for a small γ > 0. (Such codes typically
have an algebraic construction, so they are out of scope of an information theory discussion; e.g. the
Reed-Solomon codes).

What we’ll do is take our input string, encode via one of these codes, and split it into chunks of b bits,
where b ≈ O(1/ε2) log(1/γ). Each of these chunks, we will independently encode using a Shannon code
of rate 1 − h(p) − ε. We can find such a Shannon code by brute-force search (the matrix G that we are
brute-forcing over is constant-sized in terms of n). Each block will necessarily expand to b′ bits.

What’s our rate? It’s (1− γ1/3)(1−h(p)− ε/2), which is ≥ (1−h(p)− ε) for γ small enough compared
to ε.

What we have made here is a concatenated code where the inner code is Shannon coding and the outer
code is Reed-Solomon (or similar).

2.2 Decoding

For each block of b′ bits decode it to the b bit chunk whose encoding is closest (this is brute-force search,
which will take time γ−12O(1/ε2), but this doesn’t depend on n). Then decode the resulting string as per
the outer code (which we assume to exist via the assumption of the outer code).

The runtime of the brute-force part is poly(n0, 2
b), the runtime of the outer code decoder is poly(n0),

and combining this, we can say the whole construction runs in time poly(n021/ε2).

2.3 Correctness

If after the brute-force decoding step, the new string is within γn0 of the original string, then the outer
code will decode it successfully. So we need to write that

Pr(inner decodings produce a string with < γn0 errors compared to c)→ 1.

When we get a block right, we get all of the bits in the block right. So we want to say that the proportion
of blocks that are decoded incorrectly is less than γ, and in turn, we want each block to be decoded with
probability of error less than γ2. Each block is decoded incorrectly with probability 2−Ω(ε2b) ≤ γ2 � γ as
proven by our choice of b.

3 Polarization

It’d be nice to have an explicit linear code that achieves capacity. Let’s go back to BECα (recall: the
capacity is 1− α).

Let’s take a matrix G (of size N ×K) that generates a capacity-achieving linear code. Let’s examine
the properties such a G must have.

What does “G is capacity-achieving” mean? Consider the following world where we take G, encode a
vector (u0, . . . , uk−1) and obtain a codeword (x0, . . . , xn−1). We send the codeword through a BECα, and
obtain (y0, . . . , yn−1). The situation looks like the following:

2

Claim. Take x = Gu and send it through a BECα and obtain y. G is capacity-achieving if G allows
recovery of u from y with high probability. Fano’s inequality implies

H(uk−1
0 |yN−1

0)→ 0.

where uji means (ui, ui+1, . . . , uj).

By the chain rule, we have

H(U0|Y N−1
0) +H(U1|U0, Y

N−1
0) + · · · → 0

which is just a statement that “if you get the full message, you can also get the ith bit.”
Let’s add some columns to G, call it GN = A ◦ G, such that the columns of A together with those of

G form a basis of FN2 . (We can choose some canonical elements). This makes GN an invertible matrix (as
the rank of G is k and the rank of GN is N).

Now let’s say X = GNU and we send X through a BECα to form Y .

H(UN−1
0 |Y N−1

0) = H(XN−1
0 |Y N−1

0) = NH(X0|Y0) = Nα

where the first equality is because there’s a bijection between U and X.
Expanding via the chain rule, obtain

H(U0|Y N−1
0) +H(Y1|U0, Y

N−1
0) + · · ·+H(UN−1|UN−2

0 Y N−1
0) = αN.

The question is how are the terms on the left distributed. They could each be of value α. . . but the
claim here is that α of them are near 1 and 1− α of them are near 0. This is “polarization.”

By virtue of the fact that G is capacity achieving,

H(UN−1
N−K |Y

N−1
0 , UN−K−1

0)→ 0.

which means that the first N −K guys are close to 1, and the last K guys are approximately 0.
Summarizing,

H(Ui|Y N−1
0 , U i−1

0) ≈

{
1 i < (1−R)N

0 i > (1−R)N

whereas if we look at H(Xi|Y N−1
0 , Xi−1

0), this is a memoryless chanel, so the only information you get is
from Yi, so

H(Xi|Y N−1
0 , Xi−1

0) = H(X|Y).

3

So the way this works is that you are very unsure at the beginning, but then you become more and more
sure. Keep in mind we have to preserve entropy or “surprise.” The conclusion is that if we are building
a capacity-achieving code, we have to have these properties, because we can take any capacity-achieving
code and pad the matrix to obtain these results.

Arıkan’s contribution is two-fold, and essentially shows us that a matrix with this property is sufficient
for a capacity-achieving code. The insights in polar coding are therefore:

• Reversing the direction: i.e., getting codes from such invertible matrices. Arıkan will make a matrix
that doesn’t have such a nice property (it’s not like the first x columns are nice and the remaining
are bad), but we will build a matrix, and then freeze some of the input bits when the H(Ui| . . .) ≈ 1.

• A recursive construction of such polarizing GN . Clearly not all matrices GN polarize: the identity
matrix doesn’t do any polarization at all (the entropy is still smeared over the input elements).

What is the “such” property for the matrix? Formally, we can write that there exists a set F of indices
F ⊂ [n− 1], |F | ≈ H(X|Y)N , such that if you take H(Ui|Y N−1

0 , U i−1
0), this value is ≈ 1 if i ∈ F , and ≈ 0

if i ∈ F .
Instead of telling you how to transform U to X, we will tell you how to transform X to U . (Since this

is an invertible map, it doesn’t really matter, and we are looking essentially at the decoding process) for
the BECα.

N = 2 case:

We have H(Xi|Yi) = α, and our goal is to transform (X0, X1) into (U0, U1), G2x = U , such that U0 is
more uncertain and U1 is less uncertain (and the total uncertainty needs to be the same because this is an
invertible map). We notice that the matrix1

G2 =

(
1 1
0 1

)
has this property: U0 = X0 ⊕X1 and U1 = X1. Let’s examine H(U0|Y0, Y1): this is the probability that
either Y0 and Y1 are erased; because we have no idea what U0 is. (Clearly we know what U0 is if neither
Y0 nor Y1 are erased; just xor them together), and this is 1− (1− α)2 = 2α− α2.

Of course, H(U1|U0, Y0, Y1) can be computed with conservation of entropy, but as a sanity check, let’s
compute it: we are only uncertain when both Y0 and Y1 are erased, because with a single one of those and
U0 we can recover U1. So this is α2, which works out, as the sum of the entropies is now 2α.

A interesting note is that G2 is its own inverse, so we can easily map U to X and vice-versa.

Punchline. If α ∈ (0, 1), one channel becomes worse, and the other becomes better.

The idea about getting more polarization is to iterate this. But this is tricky, so we’re going to do one
more example and then do the general case.

Here is what the 4× 4 case looks like:

1If you look in the polar coding literature, you’ll find the transpose of this matrix because multiplication with the input
vector is typically done on the left, whereas in the CS community it is typically the other way around

4

So at the end of the day, we are going to have to grunge through this 4x4 matrix of equations:

U0 = V0 ⊕W0

U1 = W0

U2 = V1 ⊕W1

U3 = W1

H(U0|Y 3
0) = Pr(U0 can’t be determined)

= Pr(either V0 or W0 are not determined)

= (1− (1− (2α− α2)))2

= 1− (1− α)4

H(U1|Y 3
0 , U0) = Pr(V0,W0 are both unknown)

= (2α− α2)2

H(U2|U0, U1, Y
3

0) = Pr(either V1 or W1 is unknown given Y 3
0 , V0 and W0)

= Pr(V1 is ? given Y0 and V0 ∨W1 is ? given Y2, Y3,W0)

= 1− (1− α2)2

H(U3|U2
0 , Y

3
0) = Pr(V1 is ? given Y0 and V0 ∨W1 is ? given Y 3

2 ,W0)

= α2 · α2 = α4

So if we keep recursing this, we will go to 0 and 1 because 0 and 1 are the only fixed points. Let’s do
this!

5

3.1 Recursive construction

Again, we will start analysis from the right.
And we can build this transformation matrix Mn out of a Kronecker product of 2×2 matrices. . . almost:

Mn = G⊗n2

where the transformation Mn is given by(
Mn−1 Mn−1

0 Mn−1

)(
x
N/2−1
0

xN−1
N/2

)

This would suggest that Mn = G2⊗Mn−1, leading to Mn = G⊗n2 . But actually in building Mn from Mn−1,
we place the second half of the bits Mnx

N−1
N/2 at the odd indices of UN−1

0 . (This becomes crucial when we

attempt to decode the bits in the order U0, U1, . . . , UN−1.)
It can be checked (we leave this as an exercise) that because of this the matrix Mn is given by BnG

⊗n
2 ,

where Bn is a bit reversal permutation matrix:

(Bns)b1,b2,...,bn = sbn,bn−1,...,b1

where s ∈ R2n .
Note that the matrix transforming UN−1

0 to XN−1
0 (from left to right in the picture) is M−1

n = G⊗n2 Bn.
That is, XN−1

0 = G⊗n2 BnU
N−1
0 .

Recovering the bits Ui. We have

U2i = Vi ⊕Wi

U2i+1 = Wi

6

If you know (U0, . . . , U2i−1), then you know (V0, . . . , Vi−1) and (Wi, . . . ,Wi−1). And we have

H(U2i|Y N−1
0 , U2i−1

0) = Pr[Vi is undetermined given Y N−1
0 , V i−1

0 , W i−1
0 or

Wi is undetermined given Y N−1
0 and V i−1

0 and W i−1
0].

The two events are independent and we can split it, so we obtain

αn(2i) = Pr(Vi = ? given Y
N/2−1

0 , V i−1
0 or Wi = ? given Y N−1

N/2 , W i−1
0)

= 1− (1− αn−1(i)2

= 2αn−1(i)− αn−1(i)2

Now let’s do the other half. We need either Vi or Wi to get U2i+1.

H(U2i+1|Y N−1
0 , U2i

0) = Pr(Vi = ? given Y
N/2−1

0 , V i−1
0 and Wi = ? given Y N−1

N/2 and W i−1
0)

= αn−i(i)αn−1(i)

7

