1 Recap

- Last class
 - \(R(\text{DISJ}) = \Omega(\sqrt{n}) \), where \(\text{DISJ}(x, y) = \land_i \text{NAND}(x_i, y_i) \). Achieved this bound by using product distribution.
 - Hellinger Distance: \(\Delta_{\text{Hel}}^2(p, q) = 1 - \sum_x \sqrt{p(x)q(x)} \).
 - \(\Delta_{\text{Hel}}^2(p, q) \leq \Delta_{\text{TV}}(p, q) \leq \sqrt{2} \Delta_{\text{Hel}}(p, q) \)

- Today
 - \(R(\text{DISJ}) = \Omega(n) \)

2 \(\Omega(n) \) DISJ bound

The high level idea is to find a distribution on the inputs, which gives a distribution on the transcript, and finding a way to get individual NANDs from the transcript.

2.1 Input distribution

The strings \((x_1, y_1) \ldots (x_n, y_n)\) will be independent across the \(n\) coordinates, but each \((x_i, y_i)\) are correlated.

Let \(\sigma \in \{A, B\}^n \).

\((x_i, y_i)\) is sampled independently from \(\eta_A \) if \(\sigma_i = A \) and from \(\eta_B \) if \(\sigma_i = B \), where:

\[
\begin{align*}
\eta_A(1, 0) &= \eta_A(0, 0) = 1/2, \eta_A(x, 1) = 0 \\
\eta_B(0, 1) &= \eta_B(0, 0) = 1/2, \eta_B(1, x) = 0
\end{align*}
\]

(In a sense, \(\sigma_i \) defines “who is active” for the \(i\)th bit.)

2.2 Bounding protocol information

Now suppose a protocol \(\Pi \) communicates with less than \(\delta n \) bits for some constant \(\delta \) and errs with probability at most \(1/2 - \varepsilon \). We can bound

\[
I(X, Y; \Pi) \leq H(\Pi) \leq \delta n,
\]

where we also use \(\Pi \) to refer to the transcript of this protocol. Also, \(I(X, Y; \Pi) \geq \sum_{k=1}^{n} I(X_k, Y_k; \Pi) \). Putting these together gives

\[
E_{\text{uniform}}[I(X, Y; \Pi)] \leq \delta
\]
So far nothing we have done depends on σ. Since the above is true for fixed σ, it is true for distributional σ. Thus we have

$$\implies E_{\sigma \text{unif}} E_k I(X_k, Y_k; \Pi) \leq \delta$$
$$\implies E_k E_{\sigma} I(X_k, Y_k; \Pi) \leq \delta$$

Thus there is a fixed k such that $E_{\sigma} I(X_k, Y_k; \Pi) \leq \delta$. We can decompose σ into coordinates; define $\sigma_{-k} := (\sigma_1, \ldots, \sigma_{k-1}, \sigma_{k+1}, \ldots, \sigma_n)$. Continuing,

$$\implies E_{\sigma_{-k}} E_{\sigma_k} I(X_k, Y_k; \Pi) \leq \delta$$
$$\implies \text{fixed } \sigma_{-k} \text{ such that } E_{\sigma_k} I(X_k, Y_k; \Pi) \leq \delta$$
$$\implies I(X_k, Y_k; \Pi | \sigma_k = A) + I(X_k, Y_k; \Pi | \sigma_k = B) \leq 2\delta$$

Intuitively, the protocol does not carry much information about x_k, y_k, which will give a contradiction if we try to compute NAND as the protocol should.

2.3 Computing NAND(x,y)

Alice and Bob receive 1 bit $x, y \in \{0, 1\}$ and want to compute NAND(x, y) using Π. Set $X_k = x, Y_k = y$, sample X_{-k}, Y_{-k} randomly from $\sigma_{-k}, \eta_A, \eta_B$.

Run Π on (X, Y) and note that $DISJ(X, Y) = NAND(x, y)$. By definition of protocol Π, Alice and Bob compute $NAND(x, y)$ with error at most $1/2 - \varepsilon$. Call this whole NAND protocol π.

By what we showed before,

$$I((X_k, Y_k); \pi(X_k, Y_k) | (X_k, Y_k) \sim \eta_A) + I((X_k, Y_k); \pi(X_k, Y_k) | (X_k, Y_k) \sim \eta_B) \leq 2\delta$$
$$\implies I(Z; \pi(Z, 0)) + I(Z; \pi(0, Z)) \leq 2\delta$$

where Z is uniform at random in $\{0, 1\}$.

Recall from Problem Set 1, Problem 6 that

$$I(Z, \pi(Z, 0)) \geq \frac{1}{2} \left[\Delta_{TV}^2(\pi(Z, 0),\pi(0, 0)) + \Delta_{TV}^2(\pi(Z, 0),\pi(1, 0)) \right]$$

where $\Delta_{TV}(p, q) = \frac{1}{2} \sum_x |p(x) - q(x)| = \max_{S \subseteq \text{supp}(p)} |p(S) - q(S)|$. Coming this with Cauchy-Schwartz and the Triangle Inequality gives

$$I(Z; \pi(Z, 0)) + I(Z; \pi(0, Z)) \geq \frac{1}{2} \left[\Delta_{TV}^2(\pi(Z, 0),\pi(0, 0)) + \Delta_{TV}^2(\pi(Z, 0),\pi(1, 0)) \right]$$
$$+ \Delta_{TV}^2(\pi(0, Z),\pi(0, 0)) + \Delta_{TV}^2(\pi(0, Z),\pi(0, 1))$$
$$\geq \frac{1}{8} \left(\Delta_{TV}(\pi(Z, 0),\pi(0, 0)) + \Delta_{TV}(\pi(Z, 0),\pi(1, 0)) \right)$$
$$+ \Delta_{TV}(\pi(0, Z),\pi(0, 0)) + \Delta_{TV}(\pi(0, Z),\pi(0, 1))$$
$$\geq \frac{1}{8} \left[\Delta_{TV}(\pi(0, 0),\pi(1, 0)) + \Delta_{TV}(\pi(0, 0),\pi(0, 1)) \right]^2$$
$$\geq \frac{1}{8} \Delta_{TV}^2(\pi(1, 0),\pi(0, 1))$$

Actually, we could have worked directly with the Hellinger distance using:

Exercise: $I(Z, f(Z)) \geq \Delta_{Hell}^2(f(0), f(1))$ where f is any randomized function.
This exercise gives the bound
\[2\delta \geq I(Z, \pi(Z, 0)) + I(Z, \pi(0, Z)) \]
\[\geq \frac{1}{2} \Delta^2_{Hel} (\pi(1, 0), \pi(0, 1)) \]
\[= \frac{1}{2} \Delta^2_{Hel} (\pi(0, 0), \pi(1, 1)) \]
\[= \frac{1}{4} \Delta^2_{TV} (\pi(0, 0), \pi(1, 1)) \]
where the last equality is the lemma we showed last class. Now this is interesting because NAND is different on (0, 0) and (1, 1). In particular,
\[\Delta_{TV}(\pi(0, 0), \pi(1, 1)) \geq |\Pr(\pi(0, 0) = 0) - \Pr(\pi(1, 1) = 0)| \geq 2\varepsilon \]
Putting the last few inequalities together gives
\[2\delta \geq \varepsilon^2 \implies \delta \geq \frac{\varepsilon^2}{2} \]
This implies \(R_{1/2-\varepsilon}(DISJ) \geq \frac{\varepsilon^2}{4} n \), completing the proof.

In fact, it was recently showed that \(R_{1/2-\varepsilon}(DISJ) = \Omega(\varepsilon n) \) (Braverman, Moitra ’12)

3 Application: Moments in the streaming model

Setting: We have a sequence \(a_1, a_2, \ldots, a_m \). \(a_i \in [n] \) arrives as a stream. For all \(i \), \(f_i := |\{j \in [m], a_j = i\}| \) (frequency).

Goal: Compute \(\max_i f_i \). Not very hard (might want to compute other moments but turns out infinite moment is hardest).

Challenge: Use as little memory as possible. Obviously we can do it in linear memory, can we do better?

Theorem 1. Any streaming algorithm needs \(\Omega(n) \) memory.

Proof: We will reduce from DISJ. Given \((x, y)\) to DISJ and streaming algorithm \(A \), we can construct a protocol for computing DISJ:

Alice maps \(x \) to the stream \(a_x = \{i \mid x_i = 1\} \). She runs \(A \) on \(a_x \), and sends the state of \(A \) to Bob. Bob continues the execution of \(A \) with sequence \(b_y = \{i \mid y_i = 1\} \). Then the output \(\max_i f_i \) is 1 if \(DISJ(x, y) = 1 \), and 2 if \(DISJ(x, y) = 2 \).

The communication cost of this protocol is the memory footprint of \(A \), which must be \(\Omega(n) \) by the bound on DISJ. Note that this shows \(A \) can’t even estimate the answer probabilistically.

4 Information Cost

Def: \(IC_{ext}(\Pi, \mu) = I_{(X,Y) \sim \mu} (X,Y; \Pi) \), referring to the information cost for an external observer.

We can also define a similar idea about what Alice and Bob learn about each other’s input from \(\Pi \):

Def: \(IC(\Pi, \mu) = I(\Pi; Y|X) + I(\Pi; X|Y) \), where \((X,Y) \sim \mu\).