Comments about Polar Codes:

1) Polar Codes give an alternate proof of
 Shannon's Theorem for Symmetric Channels.

 NB: Polar Codes are linear.

2) Method has been generalized to prime
 alphabets. (and maybe also general ones?)

 Source Coding:

 Example: Take $Y = \text{null}$

 $X_0^{N-1} \rightarrow M_n X_0^{N-1} = U_0^{N-1}$

 but $H(U_i | U_0^{i-1}, Y_0^{N-1}) \rightarrow 0$ (for most indices)

 $\sum_{i=0}^{N-1} H(U_i | U_0^{i-1}) = H(U_0^{N-1}) = H(X_0^{N-1}) = N \cdot H(X)$.

 Only reveal U_i for which $H(U_i | U_0^{i-1})$ is not ≈ 0 \Rightarrow We get Compression $\approx n \cdot H(X)$.

 \Rightarrow Another proof for the Source Coding Theorem.
3) Which indices polarize to 0?

\[\sum H(U_i | U_0^{i-1}) = N \cdot H(X) \]

i.e., find the "Frozen bits".

It might "feel" reasonable that \(H(U_i | U_0^{i-1}) \)

is \(\approx 1 \) for small \(i \) and \(\approx 0 \) for large \(i \).

* But life is not so simple.

* There is an algorithm to figure out

which bits to freeze.

4) Polar Codes are Versatile!

Useful for Slepian-Wolf, Wyner-Ziv,
Gelfand-Finsker, etc.

References: Arikan's original paper,
Şasoglu's thesis (Chap 2)
Upcoming writeup with P. Xia.
Moser's "entropy compression" argument.

Of course, if \(\Pr(\overline{E_i}) \) is small

\[\Rightarrow \Pr(U \overline{E_i}) \text{ is small by union bound.} \]

\[\Rightarrow \bigcap E_i \text{ can happen.} \]

Lovasz Local Lemma (LLL) gives another criterion. (under limited dependence)

Boolean

k-SAT: \(n \) var's \(x_1, \ldots, x_n \), \(m \) clauses \(c_1, \ldots, c_m \)

\[c_i : x_{i_1} \lor x_{i_2} \lor \cdots \lor x_{i_k} \]

(possibly with negations)

Q: Given a k-SAT instance, is there a way of assigning \(x_i \) s.t. all clauses are satisfied?

Sufficient Condition for Satisfiability of k-SAT:

1) Clauses are disjoint. (don't share var's)
2) If clauses overlap a lot, may not be satisfiable.

(e.g., take all 2^k clauses) over k bits.

Theorem: Suppose an instance of k-SAT where each clause overlaps with $\leq \frac{k-c}{2}$ clauses is always satisfiable. (for some constant c) ($c=3$ works).

Algorithmic Proof (Moser 2009)

1) Pick a random assignment to the n vars.

If all satisfied, done!

else let T be the set of unsat clauses.

2) For each clause set S, Fix(S).

Fix(S) 1) If A satisfies S, do nothing.

2) Replace the bits of A on support of S by k random bits.

3) Find all clauses S' which overlap with S & which the new A violates. Call the set B.
(s may be still in B).

For each $S' \in B$ (in some fixed order),

$\text{Fix}(S')$.

* Claim: If $\text{fix}(S)$ terminates, then
 the new A satisfies S, and
 it will continue the old
 if S was satisfied by A before
 $\text{fix}(S)$ was called, then the
 new A will also satisfy S.

$(\Rightarrow$ each application of $\text{fix}(\cdot)$ decreases
the # of unsat clauses $)$.

Pf: Obvious!

* Corollary: If the main algo. terminates,
 the instance was satisfiable (A
 being a satisfying assignment).

* All that remains is to prove $\text{fix}(\cdot)$
terminates early enough.
Idea: (Entropy Compression)

Give the alg., a long tape R of random bits.

Each step consumes about k bits of randomness.

Q: Given A' and R', can you recover (A, R)?

$$A \rightarrow \boxed{\text{Step 2 of } \text{fix}()} \rightarrow A'$$

$$R \rightarrow \text{Step 2 of } \text{fix}() \rightarrow R' \text{ (rest of the tape)}$$

But if we knew which S was being fixed, we could reverse the process.

(since only a unique assignment fails to satisfy S).

* Now imagine a log file where you record the sequence of clauses on which fix is called:

Step 2 of Fix(): Suppose the alg. runs for more than M runs of Fix(): In M calls of Fix() (Step 2 of)

We consume $|R| = Mk$ bits of randomness.
Suppose the information in the log and A' (and $R' = \emptyset$ in the end) can be used to recover (A, R).

A Naive coding of history takes $M(\log m)$ bits. To get an "impossible compression" we need $M(\log m) < M \cdot k$

$\Rightarrow m < 2^k$. Not so good! (true but trivial to prove)

More clever way?

Knowing s, specifying s' needs only $k-c$ bits!

Big insight: Start by using $m \log m$ bit to encode clauses in T in the start. For other clauses s' called from $\text{fix}(s)$, record s' via $k-c$ bits which encodes neighbors of s.
* We also need termination symbols when Fix() returns.

\[|H'| = O(m \log m) + M(k - C) + O(1) \]

\[\Rightarrow \text{Total size of } \log = \]

\[n + M k \text{ bits} \leq n + O(m \log m) + M(k - C + O(1)) \]

\[\Rightarrow \text{We compress random } (A+R) \text{ to } (A', H') \]

\[\Rightarrow \text{We get an upper bound on } M. \]