Channel Coding Theorem

* The most fundamental theorem in inf. theory.
* Arguably the first application of the probabilistic method in math.

We suppose the message W is drawn from an index set $\{1, \ldots, M\}$, uniformly at random (turns out to be not different from worst-case).

- Encoder $X^n_i : \{1, \ldots, M\} \rightarrow \mathbb{X}^n$.

 $\text{Supp} (X^n_i) = \text{"Code book"}$.

 Each possible output is a "codeword".

- Decoder: Deterministic function

 $g: \mathbb{Y}^n \rightarrow \{1, \ldots, M\}$

- Rate: $R = \frac{\log_2 M}{n}$ bits/channel use.

* Error probability:

 Fix $i \in \{1, \ldots, M\}$, $X_i := \Pr (g(Y^n) \neq i \mid W = i)$.

 $P_e = \frac{1}{M} \sum_{i=1}^{M} X_i = \Pr_{(\text{uniform } W)} (g(Y^n) \neq W)$.
* Def: "Achievable rate" R is achievable if

\[P_e \to 0 \text{ as } n \to \infty. \]

\[\exists \text{ sequence of codes at rate } \geq R \text{ s.t.} \]

* Def: $R^* \triangleq \sup \{ R \mid R \text{ is achievable} \}$.

Channel Coding Theorem: $R^* = C$.

Achievable
* Achievability Proof: *

[Existence]

Fix some $R < C$ and $p(x)$.

[We create a random codebook and show it performs well.]

Codebook, $C = \begin{pmatrix} X_1(1) & \cdots & X_n(1) \\
 X_1(2) & \cdots & X_n(2) \\
 \vdots & \ddots & \vdots \\
 X_1(R^n) & \cdots & X_n(R^n) \end{pmatrix}$

* Each entry is iid according to $p(x)$.

[Sender and receiver use this code.]

* Suppose a uniform random $W \in \{1, \ldots, M\}$ is sent.

* Receiver uses "jointly typical decoding": Given Y^n, find X^n such that

 (X^n, Y^n) is jointly typical.

 If X^n is unique, decode to the corresponding index.

 Else, declare an error (output 0^n).
\[\text{def's } E: \text{ error event} \]

\[\Pr(E) = \sum_{\mathcal{E}} \Pr(C) \cdot P_E^{(n)}(C) \]

\[= \sum_{\mathcal{E}} \Pr(C) \cdot \frac{1}{2^n R} \sum_{w=1}^{2^n R} \lambda_w(C). \quad (1) \]

* Suppose now that \(W \) is fixed to \(W=1 \).

* def: \(E_i \): event that the \(i \)-th codeword \(\tilde{y}_i \) is jointly typical with \(y^n \).

\[\Rightarrow \Pr(E | W=1) \leq \Pr(\bigcup \neg E_i | W=1) + \]

\[\sum_{i=2}^{2^n R} \Pr(E_i | W=1). \]

* Take \(n \) large so that \(\Pr(\neg E_1 | W=1) \leq \varepsilon \) (by AEP)

* Also \(X^n_j(1) \) and \(X^n_i(i) \) for \(i \neq 1 \) are independent,

so by AEP, thus \(X^n_j(1) \perp X^n \)

by AEP, \(\Pr(E_i | W=1) \leq 2^{-n(I(X^n_j;Y)-3\varepsilon)} \)
\[\Pr(\mathcal{E}|W=1) \leq \varepsilon + \sum_{i=2}^{nR} 2^{-n(I(X;Y)-3\varepsilon)} \leq \varepsilon + 2^{-n(I(X;Y)-R)} \leq 2\varepsilon, \]
if \(R < I(X;Y) - 3\varepsilon \) and \(n \) large.

\[\text{Since this} \]
\[\text{True for all fixings of } W \Rightarrow \Pr(\mathcal{E}) \leq 2\varepsilon. \]

\[\text{Now take } p(x) \text{ to be } p^*(x) \text{ in capacity} \]
\[\Rightarrow R < C \text{ is achievable.} \]

\[\text{Fix the code. Can be found by exhaustive search.} \]

\[\text{Get worst case small } \Pr(\mathcal{E}). \]
\[(i.e., \text{for all } W). \]

\[\text{Markov: } \Pr(W \mid X \geq 4\varepsilon) \leq \frac{1}{2} \]

\[\text{Throw away half of the codewords} \]
\[\Rightarrow \text{New rate } = R - \frac{1}{n} \]
\[\frac{2^{-nk=1 \text{ codewords}}}{\text{[2}^{-nk=1 \text{ codewords]}}} \]