15-252
More Great Ideas in Theoretical Computer Science

Course pages
http://www.cs.cmu.edu/~venkatg/teaching/15252-sp20/
piazza.com/cmu/spring2020/15252

Course Staff
Venkatesan Guruswami
Sai Sandeep

Office hours
Venkat: Thur 11am-12noon
Sandeep: Fri 11am-12noon
Other times available
upon request

Topics
• Mix of digging into more advanced version of 251 material, and some one-off topics.
• Happy to customize to some extent.
 The course is for your fun and intellectual enrichment.
• Feedback (on topics, level, speed, etc.) always welcomed.
Grading (Pass/Fail)

Class participation + Homeworks

- Weekly homework, one per lecture (roughly)
- Each with couple of problems (sometimes tricky)
- HW must be typeset in LaTeX.
- Collaboration and other rules specified in HW

Feature Presentation

Pancake Sorting

Feel free to ask questions

The chef in our place is sloppy; when he prepares pancakes they come out all different sizes.

When the waiter delivers them to a customer, he rearranges them (so that the smallest is on top, and so on, down to the largest at the bottom).

He does this by grabbing several from the top and flipping them over, repeating this (varying the number he flips) as many times as necessary.
How do we sort this stack? How many flips do we need?

2 flips sufficient
2 flips necessary
Developing Notation:
Turning pancakes into numbers

How do we sort this stack?
How many flips do we need?

5 2 3 4 1

4 flips are sufficient

Best way to sort this stack?

Let X be the smallest number of flips that can sort this specific stack.

$? \leq X \leq 4$
Is 4 a lower bound? What would it take to show that?

A convincing argument that every way of sorting the stack uses at least 4 flips.

\[? \leq X \leq 4 \]

Four Flips Are Necessary

If we could do it in three flips:
First flip has to put 5 on bottom, because…
Second flip has to bring 4 to the top, because…

Best way to sort?
Let \(X \) be the smallest number of flips that can sort this specific stack.

\[4 \leq X \leq 4 \]

Matching upper and lower bounds!

\[4 \leq X \leq 4 \]

\[X = 4 \]
5th Pancake Number

$P_5 =$ Number of flips required to sort when your worst enemy gives you a stack of 5 pancakes

$P_5 =$ MAX over all 5-stacks S of MIN # of flips to sort S

5th Pancake Number

Lower Bound $4 \leq P_5 \leq ?$

Upper Bound $P_5 = 5$

Fact: $P_5 = 5$

To show $P_5 \geq 5$?
1. Show a specific 5-stack.
2. Argue that every way of sorting this stack uses at least 5 flips.

To show $P_5 \leq 5$?
Give a way of sorting every 5-stack using at most 5 flips.

What is P_n for small n?

Can you do $n = 0, 1, 2, 3$?

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
To show $P_3 \geq 3$?

1. Show a specific 3-stack.
2. Argue that every way of sorting this stack uses at least 3 flips.

To show $P_3 \leq 3$?

- Biggest one to bottom using ≤ 2 flips.
- Smallest one to top using ≤ 1 flip.

Let’s start by thinking about an upper bound.

Upper Bound on P_n

Fix the biggest pancake.

nth Pancake Number

“What is the best upper bound and lower bound I can prove?”

n
Upper Bound on P_n

Fix the biggest pancake.

$P_n \leq 2n - 3$

assuming $n \geq 2$.

Bring-To-Top Method shows $P_n \leq 2n - 3$.

• • •

Fix pancake #n
\leq 2 flips

Fix pancake #n-1
\leq 2 flips

Fix pancake #n-2
\leq 2 flips

\ldots

Fix pancake #3
\leq 2 flips

Fix pancake #2
\leq 2 flips

Fix pancake #1
\leq 2 flips

Fix pancake #2
\leq 1 flip

\leq 2n - 3
Let’s think about a lower bound for P_n.

1. Show a specific n-stack.
2. Argue that every way of sorting this stack uses a lot of flips.

Breaking-Apart Argument

Suppose the stack has an adjacent pair which should not be adjacent in the end.

- Spatula must go between them at least once.
- (“Adjacent pair” includes bottom pancake and the plate.)

Each flip can achieve at most 1 “break-apart”.

Proof of $P_n \geq n$

Case 1: n is even.

S contains n adjacent pairs which need to be broken apart, each necessitating at least one flip.

Detail: Assuming $n > 4$.
Proof of $P_n \geq n$

Case 2: n is odd.

S contains n adjacent pairs which need to be broken apart, each necessitating at least one flip.

Detail: Assuming $n > 3$.

$n \leq P_n \leq 2n - 3$
(for $n > 2$)

Upper and lower bounds are within a factor of 2.

Slight Digression

From any n-stack to sorted n-stack in $\leq P_n$.
From sorted n-stack to any n-stack in $\leq P_n$?

Reverse the sequence of flips used to sort!
Hence: any n-stack to any n-stack in $\leq 2P_n$

Is there a better way?

Any Stack S to Any Stack T in $\leq P_n$

S: 4,3,5,1,2
T: 5,1,4,3,2

3,4,1,2,5
1,2,3,4,5

“new S”

Rename the pancakes in T to be 1,2,3,…,n
Rewrite S using the new naming scheme

In $\leq P_n$ flips can sort “new S”.
The same sequence of flips also brings S to T.
The Known Pancake Numbers

<table>
<thead>
<tr>
<th>n</th>
<th>P_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
</tr>
</tbody>
</table>

P_{20} is unknown

It is either 23 or 24, we don’t know which.

\[20 \cdot 19 \cdot 18 \cdot \ldots \cdot 2 \cdot 1 = 20!\] possible 20-stacks

\[20! = 2.43 \times 10^{18}\]

(2.43 exa-pancakes)

Brute-force analysis would take forever!

Is This Really Computer Science?

AKA Jacob Goodman,
a computational geometer.
In 1977, the observations we have made so far were published by Mike Garey, David Johnson, & Shen Lin

Bounds For Sorting By Prefix Reversal
Discrete Mathematics 27(1), 1979

\[(17/16)n \leq P_n \leq (5/3)n+5/3\]

by: William H. Gates (Microsoft, Albuquerque NM)
Christos Papadimitriou (UC Berkeley)

upper bound also by Győri & Turán

“On the Diameter of the Pancake Network”
Journal of Algorithms 25(1), 1997

\[(15/14)n \leq P_n \leq (5/3)n+5/3\]

by Hossain Heydari and Hal Sudborough

“An (18/11)n Upper Bound For Sorting By Prefix Reversals”
Theoretical Computer Science 410(36), 2009

\[(15/14)n \leq P_n \leq (18/11)n\]

by B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough, W. Voit @ UT Dallas
Worst Case: There is an algorithm using \(\leq \frac{18}{11}n \) flips, even when your worst enemy gives you stack of \(n \) pancakes.

Average Case: There is an algorithm using \(\leq \frac{17}{12}n \) flips on average when given a random stack of \(n \) pancakes.

(Josef Cibulka, 2009)

Burnt Pancakes

\[(3/2)n - 1 \leq B_P n \leq 2n + 3 \]

"On The Problem Of Sorting Burnt Pancakes”
Discrete Applied Math. 61(2), 1995

by David X. Cohen and Manuel Blum

Applications
“The Pancake Network” on $n!$ nodes

Nodes are named after the $n!$ different stacks of n pancakes

Put a link between two nodes if you can go between them with one flip

Pancake Network, $n = 3$

Pancake Network, $n = 4$

Pancake Network: Message Routing Delay

What is the maximum distance between two nodes in the pancake network?

P_n
Pancake Network: Reliability

If up to \(n-2 \) nodes get hit by lightning, the network remains connected, even though each node is connected to only \(n-1 \) others.

The Pancake Network is optimally reliable for its number of nodes and links.

Computational Biology

Transforming Cabbage Into Turnip:
polynomial algorithm for sorting signed permutations by reversal
by S. Hannenhalli & P. Pevzner

Of Mice And Men:
algorithms for evolutionary distances between genomes with translocation
by J. Kececioglu and R. Ravi

Lessons

- Simple puzzles might be hard to solve and hold exciting mysteries.
- Simple puzzles can have unforeseen applications.
- By studying pancakes (theory puzzles) you may become a billionaire.
Analogy with computation

- **Input**: initial stack
- **Output**: sorted stack
- **Computational problem**: (input, output) pairs
 - pancake sorting problem
- **Computational model**: specified by allowed operations on input (flip top segment of stack)
- **Algorithm**: a precise description of how to obtain output from input (precise sequence of flips)
- **Computability**: is it always possible to sort the stack?
- **Complexity**: how many operations (flips) are needed?

High Level Point

Computer Science is not merely about computers or programming — it is about *mathematically modeling* computational scenarios in our world, about finding *better and better ways* to solve problems, and understanding *fundamental limits* of how well we can solve problems.

Today’s lecture is a microcosm of this.

Study Guide

Definitions of:
- n^{th} pancake number
- upper bound
- lower bound

Proof of:
- Bring-To-Top
- Breaking-Apart
- ANY to ANY in $\leq P_n$

HW 1 will be posted on course webpage by tomorrow. Due midnight next Friday (Jan 24).