$NP \subseteq \text{LENP} \iff \exists \text{ poly-time verifier } V$ s.t. $x \in L \implies \exists y, \|y\| \leq \text{poly}(|x|) \text{ st. } V(x, y) \text{ accept}$

$x \notin L \implies \forall y, \textit{V}(x, y) \text{ reject}.$

Claim: $L = 3\text{-COLOR} \iff x = G \text{ and } y = 3\text{-coloring of } G$

Only valid claims have proofs.

For invalid claims, ($x \notin L$), every proof will be rejected.

Requires reading pt. in entirety.

Lazy grader/TAs dream: Can you get by with good confidence by just "spot-checking" y?

Goal: Develop robust proof system/proof writing system s.t. for false claims, there are bugs in the proof everywhere.
PCP Theorem: If \(\exists \text{ finite } q \text{ (integer)} \) s.t. a polytime randomized verifier \(V \):
- If \(x \in L \), \(\exists y, |y| \leq \text{poly} \left(|x| \right) \) s.t. \(V(x, y) \) accepts with prob. 1 (Certainly)
- If \(x \notin L \), \(\forall y, |y| \leq \text{poly} \left(|x| \right) \), \(V(x, y) \) rejects with prob. \(\geq 1/3 \)

Furthermore, \(V \) only probes/reads \(q \) locations of the proof \(f \).

\(f \) (randomly chosen)

\[(P\!P) \quad V \quad (P\!P) \]

\(2L \!\in \! L \!\in \! \Sigma \!) \]

\(P\!P = \text{ probabilistically checkable proof} \)

Go from reading full proof to a tiny sample of the pf.

\(q \) is independent of \(|x|, |y| \).

In fact, can take \(q \leq 3 \).
Connection to Approximation

3SAT is NP-complete. So given a satisfiable 3SAT formula, there is likely no polynomial algo to find a satisfying assignment.

How about finding an approximately good satisfying assignment? Say satisfies 99% of the clauses. Also seems hard.

How might one prove such a hardness?

A "gap property" reduction:

\[\text{CircuitSAT} \leq_p \text{APPROX-3SAT} \]

Circuit \(C \) \(\rightarrow \) formula \(\phi = \text{GapRed}(C) \)

\(C \) satisfiable \(\Rightarrow \) \(\phi \) satisfiable
\(C \) not satisfiable \(\Rightarrow \) \(\phi \) is not 99% satisfiable

(C i.e. no assignment gets even 99% of the clauses satisfied in \(\phi \))

Exercise: Such a reduction implies finding a 99% satisfying assignment to a fully satisfiable formula is also hard.
In the usual reduction, you can just violate one gate of circuit & make it satisfiable.

PCP Theorem \iff Existence of such a gap producing reduction

(\approx\text{approximately satisfyin 2SAT is NP-hard})

Hardness of approximation
Let $L = \text{CircuitSAT}$ and $C \in L$ be a circuit.

PCP proof: A purported satisfying assignment σ to $\phi = \text{GapRed}(C)$.

Verifier:
- Pick a random clause of ϕ.
- Check that it is true under σ.

- **Reads 3 bits**
- If $C \not\leq L$, write proper σ & ϕ.
- Verifier will surely accept σ.
- If $C \leq L$, verifier reject with $\geq 1\%$ probability.
- To reject with $\text{prob} \geq \frac{1}{2}$, just repeat $O(1)$ times.

$(0.99)^t \leq \frac{2}{3}$

3t queries.
Once you have hardness of approx result for 3SAT, can prove further "inapproximability" result is via reductions.

Eq: 3SAT ≤ₚ CLIQUE
 \(\forall \rightarrow \langle G, k \rangle \)

Inspection of the reduction shows:

Maximum Clique size of \(G \)

\[= \text{Max } \# \text{ clauses of } \phi \text{ that can be satisfied} \]

\(\implies \) Finding a 99\% approx clique is \(\text{NP-hard} \)

\(\Downarrow \) Finding a 1\% approx clique is \(\text{NP-hard} \)