1. (a) For a (simple, undirected) graph $G = (V, E)$, define its “square” G^2 as follows. The vertices of G^2 consist of ordered pairs of vertices of G, i.e., the vertex set is $V \times V$. Two pairs (u_1, u_2) and (v_1, v_2) are adjacent in G^2 if any of the following hold:

i. Both $(u_1, v_1) \in E$ and $(u_2, v_2) \in E$.

ii. $u_1 = v_1$, $(u_2, v_2) \in E$.

iii. $u_2 = v_2$, $(u_1, v_1) \in E$.

Is the following statement true or false: For every graph G, the size of the largest clique in G^2 is equal to the square of the size of the largest clique is G. Prove your answer.

(b) Suppose that there is a polynomial time algorithm A that on any input graph G, finds a clique of size at least 1% of the largest clique in G. Show how can one use A as a subroutine and design a polynomial time algorithm B that finds a clique of size at least 99% of the largest clique in any input graph.

Hint: Use the previous part.

2. In this exercise, you will see a general form of the reduction from 3-SAT to CLIQUE that works with any constraint satisfaction problem in the place of 3-SAT.

Let $P : \{0, 1\}^k \rightarrow \{0, 1\}$ be a predicate and CSP(P) be the associate constraint satisfaction problem. An instance I of CSP(P) consists of a set of variables V and a collection C of m constraints (for some positive integer m and indexed by $j \in \{1, 2, \ldots, m\}$) of the form $P(\tau^{(j)}_1, \tau^{(j)}_2, \ldots, \tau^{(j)}_k)$ for some tuple $\tau^{(j)} \in V^k$ of k variables from V. For any assignment $\sigma : V \rightarrow \{0, 1\}$, we can count the number of constraints, call it $N(I, \sigma)$, of I that are satisfied by the values assigned by σ to its variables. Let OPT(I) be the maximum over all assignments $\sigma : V \rightarrow \{0, 1\}$ of $N(I, \sigma)$.
We now map an instance \mathcal{I} of CSP(P) to a graph $H = (W, E)$ as follows. Suppose \mathcal{I} has m constraints. The vertex set W will consist of m disjoint parts W_1, W_2, \ldots, W_m, one corresponding to each of the m constraints of \mathcal{I}.

The vertices in $W_j, 1 \leq j \leq m$, will correspond to assignments to the k-tuple $\tau^{(j)}$ of variables that satisfy the j'th constraint of \mathcal{I}. (So all W_j's will have equal size, equal to $|P^{-1}(1)|$, the number of assignments in $\{0, 1\}^k$ that satisfy P.)

There will be no edges amongst vertices in the same W_j, i.e., each W_j is an independent set. A vertex $a \in W_j$ and $b \in W_{j'}$ for two parts $j \neq j'$ are adjacent in H if the assignments corresponding to a and b are consistent on the variables that belong to both the tuples $\tau^{(j)}$ and $\tau^{(j')}$. (In particular, if the tuples $\tau^{(j)}$ and $\tau^{(j')}$ are disjoint, then all edges between W_j and $W_{j'}$ are present in H.)

Prove that the size of the largest clique in H equals $\text{OPT}(\mathcal{I})$.