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Abstract

Given a multivariate polynomial .,/10325476�6�6�480,9	: over a finite field ;�< , let =>/?.@: denote the num-
ber of roots over ; 9 < . The modular root counting problem is given a modulus A , to determine
=CBD/E.@:GFH=I/?.@:�J�K	LMA . We study the complexity of computing =MBD/?.@: , when the polynomial is
given as a sum of monomials. We give an efficient algorithm to compute =�BD/E.@: when the modulus
A is a power of the characteristic of the field. We show that for all other moduli, the problem of com-
puting = B /?.@: is NPO -hard. We present some hardness results which imply that that our algorithm
is essentially optimal for prime fields. We show an equivalence between maximum-likelihood de-
coding for Reed-Solomon codes and a root-finding problem for symmetric polynomials.

1 Introduction

Given a polynomial QSRUTIVXWZYZYZY[W\T^]
_ of degree ` in a variables over a field b c of characteristic d in
sparse representation, i.e. written as a sum of e monomials, let fgRhQ3_ denote the number of solutions
to QSRUTiVXWZYZYZY$W\T^]&_kjml over b�c . The problem of computing fnRhQo_ exactly is known to be pGq -complete.
In this paper we study the complexity of the modular counting problem, which is given a modulus r ,
compute fos%RhQ3_tjufnRhQo_wv^x�y^r . We also study the related problem of deciding whether fgRhQ3_{z|l i.e.
if the equation Q}jul is feasible over b c .

1.1 Problem History and Motivation

The problem of counting roots of a polynomial over a finite field is a fundamental and well studied
problem in algebra with applications to several areas including coding theory and cryptography [13].
Ehrenfeucht and Karpinski showed that computing fgRhQ3_ is pGq complete even when we restrict the
degree to be three [4]. Hence one has to look for approximation algorithms, or algorithms that work
for some special class of polynomials.
~
Supported by NSF grant CCR-3606B64.�
Supported in part by NSF grant CCF-0343672 and a Sloan Research Fellowship.
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Randomized algorithms for computing fgRhQ3_ approximately were given by Karpinski and Luby
for b�� [9] and Grigoriev and Karpinksi for b c [5]. A more randomness efficient algorithm for b�� was
given by Luby, Velikovic and Wigderson [14]. The problem has been extensively studied for equations
in few variables. Schoof gives an exact algorithm to count the number of points on an elliptic curve
over b�c [19]. The counting problem for plane curves has been well studied [18, 1, 7]. Von zur Gathen
et.al show that the counting problem for sparsely represented curves is pGq -complete [21]. Huang and
Wong give probabilistic algorithms for both the feasibility and approximate counting problems [8].
Their algorithm is polynomial in the degree of Q but exponential in the number of variables a .

The related problem of computing the Zeta-function of an algebraic variety is well studied. Lauder
and Wan give a polynomial time algorithm for this problem when the characteristic d is small and the
number of variables is fixed [11]. There has been considerable work on this topic in computational
number theory, see [10, 12, 23] and the references therein for more details.

The problem of computing fGs%RhQ3_ has been studied in the literature in many different contexts.
A famous theorem due to Chevalley and Warning states that if Q is a polynomial over a field b c of
characteristic d and y�����RhQ3_�� a , then f
	
RhQ3_��ul [13]. This was considerably strengthened by Ax who
shows that if 
 j�� ]������� then f c�� RhQ3_Mj l (see [22]). This was extended to systems with many equa-
tions by Katz. Wan gives a simpler proof of the Ax-Katz theorem over b�	 [22]. Moreno and Moreno
observed that by reducing a system of equations over b c to a system over b�	 and then applying the
Ax-Katz bound for prime fields, one can get a bound that often beats the Ax-Katz bound over b c . They
introduced the notion of d -weight degree ��	
RhQ3_ of a polynomial which is upper bounded by y�����RhQ3_
(see Section 3). They showed that if � j d�� , and if 
 j���� ]��� "!$#&%(' ! #)%(' � then f 	$� RhQ3_,j l . Schoof’s algo-
rithm for counting the number of points on an elliptic curve proceeds by first computing f s RhQ3_ for
several small primes r and using Chinese Remaindering to recover fnRhQ3_ [19]. Wan describes meth-
ods to compute the reduction of the zeta-function of a curve modulo d+* [23]. Thus all these results
are related to the problem of computing f s%RhQ3_ for various moduli r . In this work, we address the
computational complexity of computing f^s	RhQ3_ .

1.2 Our Results

We give a simple algorithm for computing f 	 � RhQ3_ given QSRUT V WZYZYZY[W\T ] _ in sparse representation over
a field b c where �>j d,� . The running time of our algorithm is -SRUa�e � c * _ where e is the sparsity of
the polynomial i.e. the number of monomials with non-zero coefficients. The algorithm proceeds
in two steps. There is a lifting step, where we define an indicator polynomial for the zeroes of the
polynomial over b ] c , and lift it to an indicator polynomial modulo d over a ring of characteristic l . We
then amplify this polynomial to get an indicator modulo d.* and sum each monomial modulo d�* over
the lift of b ] c . This high level structure is similar to the proof of the Chevalley-Warning theorem [13]
and Wan’s proof of the Ax-Katz theorem over prime fields [22]. For a prime field, we lift the problem
from b/	 the integers. For non-prime fields, the lifting is from b c to an appropriate ring of algebraic
integers.

We also present a more naive algorithm to compute f 	$� RhQo_ for a polynomial over b c , which works
by reducing the problem to the b0	 case. While the running time of this algorithm is exponential in
the degree of the polynomial, it is only singly exponential in the extension degree � of b$c over b 	 , as
opposed to the previous algorithm which is doubly exponential in � . This suggests that there might
be an algorithm over b c with running time singly exponential in � and polynomial in the degree. Such
an algorithm has been found subsequently by Wan [25], see the discussion in Section 6.
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The amplification step of our algorithm uses constructions of low-degree modulus amplifying
polynomials from complexity theory. Such polynomials were first constructed for the proof of Toda’s
theorem [20]. Subsequently, better constructions were given by Yao [26] and by Beigel and Tarui
[3] to prove upper bounds on a circuit class called ACC. Ours appears to be the first work to make
algorithmic use of these polynomials. The construction of Beigel et.al gives degree � 
���� . We show a
matching lower bound on the degree of any such polynomial using Mason’s theorem.

On the hardness side, we show that over any field b�c of characteristic d , if r is not a power of d ,
the problem of computing fGs%RhQo_ given the polynomial Q in sparse representation is �Mq -hard under
randomized reductions. More precisely, the problem of deciding whether f s	RhQ3_ belongs to a par-
ticular congruence class modulo r is �Mq -hard. We study the related feasibility problem for sparse
polynomials, which is to decide if fgRhQ3_oz l . While the problem is easy for constant size fields, we
show that it becomes NP-complete, when either the characteristic d or the extension degree � becomes
large. As consequence of this, we show that exponential dependence on d and � in our algorithms is
unavoidable, since the corresponding counting problems are hard when these parameters are large.
Also, when 
 j a , then f 	 � RhQ3_ jmfnRhQ3_ hence having 
 in the exponent is also unavoidable. Thus our
algorithm for b�	 with running time is - RUa�e � 	 *%_ is asymptotically optimal.

Finally we pose the problem of feasibility for symmetric polynomials over b c , which are sparsely
represented over the basis of elementary symmetric polynomials. Our motivation for studying this
problem comes from the maximum-likelihood decoding problem for Reed-Solomon codes. Building
on work of Guruswami and Vardy [6], we show that this decoding problem is equivalent to a certain
root-finding problem for symmetric multilinear polynomials over b c .

This paper is organized as follows: in Section 2 we discuss modulus amplifying polynomials.
We present our algorithmic results in Section 3 and our hardness results in Section 4. We discuss
maximum-likelihood decoding of Reed-Solomon codes in Section 5. An extended abstract of this
paper appears in LATIN 2006.

2 On Modulus Amplifying Polynomials

Definition 1 A univariate integer polynomial � * RUT _ is 
 -modulus amplifying if for every integer r , the fol-
lowing condition holds:

� �ml v^x�yGr � � * R � _��ul v^x�yGr * (1)� �	�@v^x�yGr � � * R � _��
�@v^x�yGr *
We use the following Lemma by Beigel and Tarui.

Lemma 1 [3] The polynomial � * RUT _���
�� T�� is 
 -modulus amplifying iff:

� * RUT _ �
� l v^x�y T *� v^x�y RUT����D_ * (2)

Beigel et.al derive the polynomial � * RUT _ by truncating the power series expansion of R���� T _ � * . We
give an alternate derivation of their construction below.

3



Lemma 2 [3] The following polynomial is 
 -modulus amplifying:

� * RUT _ j T * *
��V� � ��� � � 
����
��	��
 T

�
R�� � T _ * ��V �

�
PROOF: Note that T��mR�� � T _ j
� . Raising both sides to power � 
 ��� , we get

� j RUT
�mR�� � T _\_ � * ��V j
� * ��V� � ��� � � 
����� 
 T

�
R�� � T _ � * ��V �

�
We divide the summation into two parts based on �
� 
 and ��� 
 . In these two parts the power of
R�� � T _ and T respectively is at least 
 .

� j R�� � T _ * � ���
*

� � 
�� �� 
 T
�
R�� � T _ * ��V �

�
�|T * � ���

*

� � 
 ���� 
 T
�
� * R�� � T _ � * ��V �

�
j � RUT _5RUT ���D_ * ���GRUT _ T *

We set � * RUT _tj��GRUT _ T * j
����� RUT _5RUT � �D_ *
It has degree � 
���� and satisfies Equation (2). �

Since � * RUT _ must be divisible by T * , it must have degree at least 
 . The running time of our
algorithms depends exponentially on the degree of � * RUT _ so even a factor � saving in the degree
would be significant. But we will show that the degree needs to be � 
 � � . The proof uses Mason’s
theorem which proves the ABC-conjecture for polynomials [15]. Let ��RhQo_ denote the number of distinct
roots of a polynomial over the complex numbers.

Mason’s Theorem. [15] Given polynomials �GRUT _7W�� RUT _7W�� RUT _ � 
�� T�� which are relatively prime such that�GRUT _��	� RUT _ j�� RUT _ ,
v! #"�$Dy���� R ��_7W-y���� R%� _7W-y���� R&� _('*)+��R �,�!� _ � �

Here ��R �-�.�3_ is the number of distinct complex roots of �GRUT _/� RUT _0�SRUT _ .

Lemma 3 If � * RUT _ is 
 -modulus amplifying, then y���� R � * _1� � 
�� � .
PROOF: Note that �GRUT _tj��GRUT _ T * j�� RUT _5RUT ���D_ *2� � by Lemma 1. Hence�^RUT _ T * �	�SRUT _5RUT�� �D_ * j	�
Assume that y�����R3� _�j ` . Since the leading term cancels out with the leading term of �SRUT _5RUT � �D_ * ,
we have y���� R&�3_ jm` . We set

�GRUT _Pj��GRUT _ T * W4� RUT _ j�� RUT _5RUT ���D_ * W5� RUT _tj
�
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It is clear that these are relatively prime, so we can apply Mason’s theorem. Note that the maximum
degree is ` � 
 . The product polynomial is

�GRUT _/� RUT _0�SRUT _ j �GRUT _0�iRUT _ T * RUT����D_ *
which can have at most �,� �%` distinct roots over the complex numbers. Hence

`�� 
 )��%`�� ����� � 
�� � )|`
This shows that the degree of � * RUT _ j��GRUT _ T * is at least � 
���� . �

We note that modulus amplifying polynomials work for every modulus r . In our algorithms,
it suffices that the polynomial is amplifying for a specific modulus d , the characteristic of b c . It is
interesting to ask if the same lower bound holds asymptotically for polynomials that are amplifying
only for the modulus d .

3 Algorithms for Counting Roots

We use the notation
� j RUT V WZYZYZY$W\T ] _ for a vector of variables and � j R � V WZYZYZY�W � ] _ for a vector of

constants. Given a vector � j Rh` V WZYZYZY$W-` ] _ in 
 ] , we use
���

to denote the monomial �
�
T ���� .

3.1 Modular Counting over Prime Fields

We define a lift of b�	 to 
 which maps � �ib�	 to the integer � . We use the same notation for � �Ib0	 and
its lift in 
 , whether � belongs to b0	 or 
 will be clear from the context. We can similarly lift vectors
(polynomials) over b�	 to vectors (polynomials) over 
 .

The input to the algorithm is a polynomial QSR � _{j
	 ��� � � � over b/	 . We first lift it to 
�� � � and
then define a polynomial 
SR � _ � 
�� � � using:


 R � _ j � * R�� � QSR � _ 	 ��V _
Let 
 R � _�j�	�� � � � � where the sum is over at most � 
�e # 	 ��V '�# � * ��V ' monomials. 
SR � _ satisfies the
following relations for � � b ]	 :

QSR��$_tjul over b�	 � 
 R��$_ �	�@v^x�yMd * over 

QSR��$_��jul over b�	 � 
 R��$_ �ml v^x�yMd * over 


Hence fnRhQ3_ � �
�������! 
SR��$_ � �

�������!
�
� � � � � � �

� � � ��������! � � v^x�y�d *

where the sum is over the lift of b ]	 to 
 ] . To sum each monomial, observe that�
�������! �

� �
]�� � V � 	 ��V�� � ��� �! ��#"

Each $
�

is at most �7d,
 . Note that we cannot use the substitution T 	 j T since this need not hold
modulo d,* . Thus the time to compute the sum for each monomial is bounded by - RUa�d � 
 � _ . Hence
we can compute f 	$� RhQ3_ in time -SR � 
�e # 	 ��V '�# � * ��V ' a�d � 
 � _�j - RUe � 	 * a$_ . We summarize the algorithm
below.
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Computing f 	$� RhQ3_ over b�	 .���������
	 QSR � _ j 	 � � � � ����
���� b 	��� � � ��� ����� � ��� ��� ��� ������� � ����� � ��� �"!��


 R � _ j � * R�� � QSR � _ 	 ��V _ j � � � � �
# � � ��� ����� � � � 	 ���! � � v x�yMd *%$ ���&��!�' ��( ! �*) � ���"�����+��� �-, � � �

Theorem 1 Given a polynomial QSR � _ � b�	 � � � in a variables with e monomials, there is an -SRUe � 	 * a$_
algorithm to compute f 	 � RhQ3_ . For fixed d and 
 , f 	 � RhQ3_ can be computed in polynomial time.

3.2 Modular Counting over Arbitrary Fields

Let �^jud � and let b c j b�	[R/. _ be a degree � field extension of b0	 generated by . . Let 0gRUT _ � b�	 � T��
be the monic irreducible polynomial of degree � so that QSR/.w_ j l over b c . We will assume that the
0gRUT _ is given as input. We lift 0nRUT _ to the integers, and then define the quotient


 R/.w_[j 
�� T �
R10gRUT _\_

where . is a formal root of 0gRUT _ over 
 . In fact 0nRUT _ is irreducible over 
 , but we will not use this
fact.

Lemma 4 There is an isomorphism between 
��2. �43�R d�_ and b c .

PROOF: Note that 
��2. �
R d _ j 
�� T �

R10gRUT _7Whd _ j b/	 � T �
R10nRUT _\_

where in the last expression, 0gRUT _ is taken to be a polynomial over b�	 . By our choice of 0nRUT _ , this
quotient is precisely b c j b/	[R/.w_ . It is easy to check that mapping . � 
��2. �43�R d _ to . � b c gives an
isomorphism. �

Note that this idea of first going modulo d is used to characterize primes in the ring of Gaussian
integers [2]. We can lift b c to 
 R/. _ by sending . � b c to . ��
 R/. _ and sending � �ib0	 to � ��
 . We now
describe the algorithm for computing f 	 � RhQ3_ over b c . Given a polynomial QSR � _Mj�	 � � � � � over
b c , lift it to 
 R/.w_ � � � and then define a polynomial 
 R � _ ��
 R/. _ � � � using:


 R � _ j}R�� � QSR � _ 	 ��V _
Let 
 R � _ij 	�� � � � � where the sum is over at most e # 	 ��V '�# � * ��V ' monomials. 
SR � _ satisfies the
following conditions

Q R��$_ jul over b c � 
 R��$_��
�@v^x�yMd over 
 R/.w_
Q R��$_ �jul over b c � 
 R��$_��ul v^x�yMd over 
 R/.w_

Finally define 5 R � _���
 R/. _ � � � as
5 R � _tj � * R 
 R � _\_
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It is easy to see that � * RUT _ is modulus amplifying even for 
 R/.w_ . Hence

QSR��$_tjul over b c � 5 R��$_ �
� v x�y�d * over 
 R/.w_
QSR��$_��jul over b�c � 5 R��$_ �ul,v x�y�d * over 
 R/.w_

Hence fnRhQo_ � �
����� �� 5 R��$_wv x�yMd *

We can compute this sum by writing 5 R � _,j 	�� � � � � and summing each monomial individually
over the lift of b c . It is easy to see that 5 R � _ has at most � 
�e # � * ��V '�# c ��V ' monomials. So the running
time is bounded by -SRUa�e � c * _ .

Computing f 	$� RhQ3_ over b�c .���������
	 b c j b�	�R/.w_ � � 
�� ��� � ��� ��������� )"� '�� � ��� � ���"� � ��� ��!�� 0gRUT _ � $ . �"
���� b�	 �
QSR � _ j 	 � � � � � �"
���� b c �� � � � � . ,"! � ��, $ � 0gR/.w_tjul �"
���� 
 ��� � $ � QSR � _ � � 
 R/.w_ � � � �# � � ��� ����� � ��� � � ���"� � ��� ��!�� 5 R � _ � 
 R/.w_ �*� 
�� ��� �

5 R � _ j � * R�� � QSR � _ c ��V _ j � � � � �
� � � ��� ����� � � � 	 ���� � � v x�yMd *%$ ���&��!�' ��( ! �*) � ���"�����+��� �-, � � �

Here the sum is over the lift of b c to 
 R/.w_ . We treat . as a formal symbol satisfying 0gR/.w_Pj l over 
 .
All arithmetic operations are performed modulo d * .

Theorem 2 Given a polynomial QSR � _ � b�c � � � in a variables with e monomials, there is an -SRUa�e � c *	_
algorithm to compute f 	$� RhQ3_ . For fixed ��Whd and 
 , f 	 � RhQ3_ can be computed in polynomial time.

3.3 Reduction from � c to � 	
Let QSR � _ j 	 � � � � � where � � �ib c be the input. For each variable T

�
we substitute

T
�
j��

�
	 � �
� � 	 V . YZYZY�� � 	 � ��V . � ��V �

�
	 � �ib�	

Thus we replace the monomial �
�
T ��

�

of total degree ` by� � T � �� j � � R�� � 	 � �
� � 	 V .SYZYZY�� � 	 � ��V . � ��V _ ���
Naively, this expression has sparsity � � . We can improve this bound using the notion of d -weight
degree due to Moreno and Moreno [16].

Definition 2 Given an integer `ojm` � � `
V d YZYZY3� `�� d � , define its d -weight � Rh`�_Pj 	 � ` � . The d -weight degree
of a monomial

� � j
�
�
T ���� is defined as ��	
R � � _ j
	

�
� Rh`

�
_ . The d -weight degree ��	
RhQo_ of a polynomial

QSR � _ is the maximum of the d -weight degree over all monomials.
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Note that �0	
Rh`�_1)|` , hence the d -weight degree of a monomial is bounded by its degree. Returning to
the monomial �

�
T ���� , let `

�
j 	 � `

�
� d � . Then,

� � T ���� j � � ��
� ��V�
� ��� � � 	 � . �������� ��� � 	 �

j � �
	 �

��
� ��V�
� ��� � � 	 � . ���� ��� � 	 �

j � �
	 �

��
� ��V�
� ��� � 	 �� 	 � . � 	 � �� � � �

j � �
	 �

��
� ��V�
� ��� � � 	 � . � 	 � �� ��� � since �

�
	 � �ib/	

Let � � j 	
	 � 	 . 	 . Then

� � �#� T ���� j � ��V�	 ��� � 	 . 	 � � 	 �
��
� ��V�
� ��� � � 	 � . � 	 � �� ��� � j �

� � ��� � .�
 # � ' (3)

where � � � 
 	 and �kR ( _ is some function of
(

. This summation involves � V�� � ��� � j �  ! #���� '��$V
monomials. Repeating this for every monomial, we get a sum over at most e �  monomials, where
� j � 	&RhQ3_ � � :

Q R � _ j � � � ��� � . 
 # � ' (4)

Since $�. � WZYZYZY$W . � ��V ' is a basis for b c over 
 	 , we can each . 
 # � ' as a linear combination over this
basis. Grouping the various powers of . gives

QSR � _kjmQ � R � _ �gQ V R � _ .4� YZYZY � Q � ��V R � _ . � ��V (5)

Each polynomial Q��DR � _ has sparsity at most e �  , since each monomial from Equation (4) contributes
at most one monomial to Q��DR � _ . Since the powers of . are linearly independent over b�	 , this sum is
l iff for l )�� ) ��� � the coefficient of . � is l over b�	 . This implies that for each � , we must have
Q��XR � _ jul over b�	 . We can combine these into a single equation 
SR � _kjul over b�	 where


 R � _ j
��� � ��V�� ����� � � Q��XR � _ 	 ��V��
The roots of 
 R � _ over b�	 are in one-to-one correspondence with the roots of QSR � _ over b c , so we can
use the b 	 algorithm on 
 R � _ . Since 
SR � _ only takes l�3 � values we can directly apply � * to � � 
SR � _ .
The total running time can be bounded by - RUatRUe �  _ � � 	 * _ . In addition to d[W 
 there is an exponential
dependence on � and the (d -weight) degree.
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Computing f 	$� RhQ3_ over b c .���������
	 QSR � _ j 	 � � � � ����
���� b�c�� . , � ' � �"� ! � b
c j 
 	 �2. � �
��� � � � , � � �"��� � T

�
j 	 � �

�
	 � . ��� � ��� �

�
� � 
 	 ! ��) � � j 	
	 � 	 . 	 � � �"� � 	 ��
 	 � � ��� �

QSR � _ j � � ��� � . 
 # � ' � � � 
 	
���	� � � � �+��!�' � . 
 # � ' !�, ! 
 	�
 ��� � ��!"�-'���� � � � ! � ��� � � $ $ �%W .tWZYZYZY$W . � ��V ' � � ��� �

QSR � _ j � ��V� � ��� Q�� R � _ . � Q �DR � _�� 
 	(R � _
� � � ��� ����� � �"� ��� ��� �����"� � ���"� � ��� ��!��

5 R � _kj � *
� � ��V�� ����� � � Q �DR � _ 	 ��V�� " j � 
 � 
 � 


� � � ��� ����� � � 
 	 � ���!��

 v^x�yMd * $ ��� ��!�' ��� ! ��) � ��������� ��� �-, � � �

Theorem 3 Let QSR � _ be a polynomial in a variables with e monomials over b c where �3j d,� . Let � 	
RhQo_ be
d -weight degree and � j ��	
RhQo_ � � . There is an -SRUatRUe �  _ � � 	 *%_ algorithm to compute f 	$� RhQ3_ .

4 Hardness Results for Counting

In all the results in this section, the polynomial is given in sparse representation. We refer the reader
to the book by Papadimitriou [17] for the necessary complexity-theoretic definitions.

Theorem 4 Let b c be a finite field of characteristic d . Assume that r is not a power of d . Given a polynomial
QSR � _ over b c , the problem of computing fGs%RhQo_ is NP-hard under randomized reductions.

An instance of ��� over b�c consists of e quadratic equations 
 VDR � _^j l�WZYZYZY W�
��3R � _^j l . It is
well known that deciding if an instance of ��� is feasible is �Mq -complete. An instance of ����� consists
of a system of quadratic equation with the promise that in the Yes case, there is a unique solution.
Similarly define � ����� � to be the unique version of

����� �
. Valiant and Vazirani show that � ���!� � is�Mq -complete under randomized reductions [17]. We give a reduction from � ����� � to ����� .

Lemma 5 ����� is �Mq -complete under randomized reductions over any field.

PROOF: We give a reduction from
���!� �

to ��� . The reduction itself is folklore, we just need to verify
that it preserves the number of solutions. Assume that we have a

����� �
formula "�R � _ with clauses� V WZYZYZY[W�� � . We add auxiliary variables � V WZYZYZY[W � � and add the constraints

T �
�
j T

�
W � �

�
j��

�
This ensures that all the variables need to be 0/1. Assume that � V j T V$# T � # T&% . We replace this by

� V j T V'# T �%W � V�# T&% j
�
9



This is done by the equations

��V�j TiV �gT � � TiV-T � W ��V �nT % � ��V\T % j
�
We perform a similar substitution for every clause. It is clear that this instance of ��� is feasible iff
"�R � _ is feasible. Further, this reduction preserves the number of solutions since the values of the
auxiliary variables � V WZYZYZY�W � � are uniquely determined from the values assigned to T V WZYZYZY�W\T ] .

Thus starting with an instance of � ����� � , we get an instance of ����� . Since � ���!� � is �Cq -complete
under randomized reductions [17], we infer the hardness of ����� for any b c . �

We now prove Theorem 4. The reduction used is the same reduction used by Ehrenfeucht and
Karpinski to show the pGq -completeness of computing fgRhQ3_ [4], except that the uniqueness of the
solution in the Yes case is crucial.

PROOF: Given an instance T V WZYZYZY[W\T ] W�
 V jul�WZYZYZY[W�
 � jul of ����� , we add new variables � V WZYZYZY[W�� �
and let QSRUT V WZYZYZY[W\T ] W�� V WZYZYZY$W�� � _ be the equation�� � V 	������ 	 � � � 
 � RUT V WZYZYZY[W\T ] _kj
�
Assume that � V WZYZYZY�W � ] is a solution to the system of quadratic equations. Then the above equation
reduced to l j � , so there is no solution. On the other hand if some equation say 
 � is unsatisfied,
then we are left with a linear equation�� � V 	������ 	 � � � � � j	�%W � � �jul

Since � � �� l , we can pick values for � V WZYZYZY[W�� � ��V arbitrarily, and then pick � � so that the above
equation is satisfied. Thus when the instance of ����� is satisfiable,

fgRhQ3_ j R�� ] ���D_ � � ��V
whereas when it is unsatisfiable

fgRhQ3_ j � ] � � ��V
Since � j d � , if r is not a power of d ,

R�� ] ���D_ � � ��V �� � ] � � ��V v^x�yGr
Hence an algorithm to compute f s RhQ3_ can be used to solve ����� . More precisely, deciding whether
fgRhQ3_ lies in a particular congruence class modulo r is �Cq -hard. �

In fact, our reduction shows that if r is not a power of d , computing f s%RhQ3_ is as hard as counting����� �
solutions modulo r .

4.1 Hardness Results for Feasibility

The feasibility problem is, given a polynomial QSR � _ over b c does it have a root? When the field size
� is constant, there is a simple algorithm for feasibility [5]. Compute QSR � _ c ��V . Reduce the degree
in each variable to � � � using T c

�
j T

�
. If we are left with � , then QSR � _ has no roots. Else it has

a root. Correctness follows from the fact that every function ����b ]c�� b c is computed by a unique

10



polynomial with degree in each variable at most � ��� . If QSR � _ has no zeros, then QSR � _ c ��V computes
the constant function � . This algorithm runs in time - RUa�e c _ .

Daqing Wan has observed that for �Ij d�� , the running time can in fact be bounded by - RUa�e 	 �(_
[24]. Observe that

� ��� j R d ���D_5R�� � d3YZYZY#� d � ��V _
Hence QSRUT _ c ��V j � ��V�� � V QSRUT _ # 	 ��V ' 	 �

j � ��V�� � V QSRUT 	 � _ 	 ��V
We compute this product and then apply the substitution T c

�
j T

�
. This product has - RUe 	 � _ terms,

rather than - RUe c _ giving the improved time bound.

On the other hand, we show that the problem becomes NP-complete, when either the characteris-
tic d or the extension degree � (more precisely the product d,� ) becomes large. A consequence of this
is that exponential dependence on d and � in our algorithms is unavoidable, since the correspond-
ing counting problems are also hard. To precisely quantify how large the field size needs to be, we
parameterize an instance by the number of variables a .

Theorem 5 The problem of deciding whether a polynomial QSR � _ over 
�	 has a root is NP-complete for d � � a .

PROOF: By reduction from 3SAT. Consider an instance "�R � _ of 3SAT with � clauses R&� V WZYZYZY�W�� � _ . Let
d z�� . Arithmetize each clause over 
 	 such that for T

�
� $Dl�W �#' , � � R � _ jul if clause � � is satisfied and� otherwise. This can be done with a multilinear polynomial of sparsity at most � . Replace each T

�
with T 	 ��V

�
and output the polynomial

QSR � _ j � � � � RUT 	 ��VV WZYZYZY$W\T 	 ��V] _

The substitution T
�
� T 	 ��V

�
maps 
 	 � $Dl�W �#' . Since we have chosen d z�� , the polynomial Q R � _

counts the number of unsatisfied clauses. Hence QSR � _ has a root over 
�	 iff "�R � _ is satisfiable. If
we begin with a

����� �
instance where every variable occurs in at most � clauses, the above reduction

shows that deciding if fgRhQ3_{z l when d and e are both linear in a is hard. �
Corollary 6 The problem of computing f 	
RhQ3_ given QSR � _ over 
 	 is �Mq -hard under randomized reductions
for d � � a .

PROOF: We repeat the above reduction starting with an instance of � ����� � . In the Yes case, assume
that there is a solution ��� $Dl�W �#' ] to the 3SAT instance with 
 ones. Then any vector � � 
 ]	 where
� 	 ��V
�

j �
�

is a solution to Q . Hence fgRhQ3_tj R d � �D_ * �� l v^x�yMd . On the other hand, for a No instance
of 3SAT, fgRhQ3_ jml . In particular, deciding if the number of roots is l v^x�yMd is hard. �
Theorem 6 The problem of deciding whether a polynomial Q R � _ over b � � has a root is �Mq -complete for �1� � a .
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PROOF: By reduction from 3SAT. Given an instance "�R � _ with clauses � V WZYZYZY[W�� � , we arithmetize
each clause such that for T

�
� $Dl�W �#' , � � RUT V WZYZYZY[W\T ] _tj l if clause � � is satisfied and � otherwise. Let

� j � � . Take . to be an irreducible element of degree � . Output the polynomial

QSR � _ j � � � � RUT c ��VV WZYZYZY[W\T c ��V] _ .
�
��V

Note that for every clause � � and every R � V WZYZYZY[W � ] _��Ib ]c , � � R � c ��VV WZYZYZY$W � c ��V] _ � b�� . Since the powers
of . are linearly independent over b,� , any solution to Q must satisfy � � R � c ��VV WZYZYZY[W � c ��V] _ j l . Hence,
given a root R � V WZYZYZY[W � ] _ �ib ]c of the above equation, R � c ��VV WZYZYZY[W � c ��V] _ gives a solution to "�R � _ . �
Repeating this reduction starting with � ����� � gives the following corollary.

Corollary 7 The problem of computing f �	RhQ3_ given QSR � _ over b � � is �Cq -hard under randomized reductions
for �1� � a .

One can modify the above reduction to prove that the problem is complete for � P. One can also
combine the reductions in Theorems 5 and 6 to show that the feasibility problem is �Cq -complete for
d,�>z � a .

5 Maximum-Likelihood Reed-Solomon decoding

Let � * R
� _ denote the 
 � � elementary symmetric polynomial in T>VXWZYZYZY�W\T^] . The polynomials � * R

� _
for � ) 
 ) a generate all symmetric polynomials [2]. If a symmetric polynomial is written as a
sum of monomials in this basis, we say that it is sparsely represented. A natural question is what
is the complexity of the feasibility problem for symmetric polynomials in the sparse representation.
We show that maximum-likelihood decoding of Reed-Solomon codes is related to a variant of this
problem.

An � akW 
 � c Reed Solomon codes consists of all univariate polynomials of degree at most 
 over b c
evaluated at a set of points � j $ � VXWZYZYZY[W � ] '�� b�c . The maximum likelihood decoding problem
MLD-RS asks for the closest codeword to a vector � �Ib ]c . We will work with a different formulation
of MLD-RS due to Guruswami and Vardy [6]. Given �Hj�$ � V5WZYZYZY$W � ] ' , define the matrix

0 j

�
����
� � � YZYZY �� V � � YZYZY � ]� � V � �� YZYZY � �]
YZYZY YZYZY YZYZY YZYZY�  V �  � YZYZY �  ]

�������
We define the code �}j $
	 � b ] c�� 0
	 � j l ' , which is in fact a generalized Reed Solomon code. The
maximum-likelihood decoding problem MLD-RS is: Given 0 and a syndrome �Gj R $ � WZYZYZY$W $  _ �ib  �$Vc ,
is there a vector 	 � b ] c with � �5R�	�_2) � satisfying 0
	oj�� ?

Note that any � � � columns of 0 are linearly independent, so we can always find a vector 	 of
weight � � � so that 0�	3j�� .

Theorem 7 There exists a vector 	 �ib ]c with � �ZR�	�_2) � so that 0�	oj�� iff
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Q RUT V WZYZYZY[W\T  _tj �� �  R����D_
�
$  .�

�
�
�
RUT V WZYZYZY$W\T  _ jml

has a root in �  where �
�
�j � � for � �j�� .

PROOF: We first prove the following identity:
����������

� YZYZY � $ �� V YZYZY �  $ V� � V YZYZY � � $ �
YZYZY YZYZY YZYZY YZYZY�  V YZYZY �   $  

����������

j ��
�� � R � � � � � _  � � ��� R����D_

�
$  .�

�
�
�
R � V WZYZYZY�W �  _ (6)

We evaluate the LHS by comparing it to the Vandermonde determinant. Let ( denote a formal vari-
able. Then

����������

� YZYZY � ( �� V YZYZY �  ( V� � V YZYZY � � ( �
YZYZY YZYZY YZYZY YZYZY�  V YZYZY �   (  

����������

j � �
�� � R � � � � � _ �� �  R ( � � � _

j � �
�� � R � � � � � _ �� �  R����D_

�
(  .�

�
�
�
R � V WZYZYZY[W �  _

Note that by expanding the determinant along the last column, we could derive the same formula
without using fact that the various column entries are powers of ( . They can be treated as formal
symbols. Hence we deduce Equation (6).

Suppose that there exists 	 of weight � so that 0
	 � j�� . Assume wlog that the first � co-ordinates
of 	 are non-zero. Then � lies in the span of the first � columns of 0 , hence the LHS of Equation 6
vanishes. Since �

�
�j � � , this implies that QSR � V WZYZYZY$W �  _kjul .

Conversely, given R � V WZYZYZY[W �  _ ���  where �
�
�j � � but QSR � V WZYZYZY$W �  _ jml , the determinant on the

LHS of Equation (6) vanishes. Hence a non-trivial linear combination of its columns is l . Since �
�
�j � � ,

the columns corresponding to various �
�
s are linearly independent, so the column corresponding to �

occurs in this combination with a non-zero multiplier. Hence we can write � as a linear combination
of the other columns, which gives a solution to 0�	 � j�� of weight at most � . �

If we set $  j�� , $  .��V j	� and $
�
jml for �1) � � � , the problem reduces to finding R � V WZYZYZY$W �  _ ��  so that 	 �

�
j�� . Guruswami and Vardy show this is NP-complete when the field size is expo-

nential in a , which implies NP-completeness of MLD-RS over large fields [6]. However it is possible
that the above feasibility problem and hence MLD-RS are intractable over b[c when � is polynomial in
a , and when �Hj b c .

6 Discussion and Open Problems

The main open problem left open by this work was: Is there algorithm to compute f 	$� RhQo_ over b c with
� j d � that is singly exponential in d and � ?
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This question was settled affirmatively by Daqing Wan [25], who gives an algorithm for this prob-
lem with running time -SRUa�e # � � * ' 	 _ . The techniques used differ significantly from this paper: he first
uses a formula for fgRhQ3_ in terms of Gauss sums, and then applies the Gross-Koblitz formula relating
Gauss sums to the d -adic � -function.

We conclude with some open problems raised by our work:

� Is the feasibility problem �Cq -complete for polynomials of low degree?

� Is it possible to construct a family of modulus amplifying polynomials for a specific modulus d
that have degree less than � 
���� ?

� Is the feasibility problem hard for sparse symmetric polynomials when � is polynomial in a ?
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