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Abstract

Maximum-likelihood decoding is one of the central algorithmic problems in cod-
ing theory. It has been known for over 25 years that maximum-likelihood decoding
of general linear codes is NP-hard. Nevertheless, it was so far unknown whether
maximum-likelihood decoding remains hard foranyspecific family of codes with
nontrivial algebraic structure. In this paper, we prove that maximum-likelihood
decoding is NP-hard for the family of Reed-Solomon codes. We moreover show
that maximum-likelihood decoding of Reed-Solomon codes remains hard even
with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
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1. Introduction

Maximum-likelihood decoding is one of the central (perhaps, thecentral) algorithmic prob-
lems in coding theory. Berlekamp, McEliece, and van Tilborg [3] showed that this problem
is NP-hard for the general class of linear codes. More precisely, the corresponding decision
problem can be formally stated as follows.

Problem: MAXIMUM -L IKELIHOOD DECODING OFL INEAR CODES
(
MLD-Linear

)
Instance: An m× n matrix H overFq , a target vectors∈Fm

q , and an integerw > 0.
Question: Is there a vectorv∈Fn

q of weight6 w, such thatHvt = st?

Berlekamp, McEliece, and van Tilborg [3] proved∗ in 1978 that this problem is NP-complete
using a reduction from THREE-DIMENSIONAL MATCHING, a well-known NP-complete
problem [9, p. 50]. Since 1978, the complexity of maximum-likelihood decoding of general
linear codes has been extensively studied. Bruck and Naor [4] and Lobstein [16] showed
in 1990 that the problem remains hard even if the code is known in advance, and can
be preprocessed for as long as desired in order to devise a decoding algorithm. Arora,
Babai, Stern, and Sweedyk [1] proved thatMLD-Linear is NP-hard to approximate within
any constant factor. Downey, Fellows, Vardy, and Whittle [6] proved thatMLD-Linear re-
mains hard even if the parameterw is a constant — it is not fixed-parameter tractable unless
FPT = W[1]. Recently, the complexity of approximatingMLD-Linear with unlimited pre-
processing was studied by Feige and Micciancio [8] and by Regev [19] — this work streng-
thens the results of both [4, 16] and [1] by showing thatMLD-Linear is NP-hard to approx-
imate within a factor of5/3 −ε for anyε > 0, even if unlimited preprocessing is allowed.

While the papers surveyed in the foregoing paragraph constitute a significant body of work,
all these papers deal with the general class of linear codes. This leads to a somewhat in-
congruous situation. On one hand, there is no nontrivial useful family of codes for which
a polynomial-time maximum-likelihood decoding algorithm is known (such a result would,
in fact, be regarded a breakthrough). On the other hand, the specific codes used in the re-
ductions of [1, 3, 4, 6, 8, 16, 19] are unnatural, and the problem of showing NP-hardness
of maximum-likelihood decoding forany useful class of codes with nontrivial algebraic
structure remains open, despite repeated calls for its resolution. For example, the survey of
algorithmic complexity in coding theory [22] says:

Although we have, by now, accumulated a considerable amount of results on the hardness
of MAXIMUM -L IKELIHOOD DECODING, the broad worst-case nature of these results is still
somewhat unsatisfactory. [...] Thus it would be worthwhile to establish the hardness of MAX -
IMUM -L IKELIHOOD DECODING in the average sense, or for more narrow classes of codes.

The first step along these lines was taken by Alexander Barg [2, Theorem 4], who showed
that maximum-likelihood decoding is NP-hard for the class of product (or concatenated)

∗Note that MAXIMUM -L IKELIHOOD DECODING OFL INEAR CODESis NP-complete over all finite fieldsFq .
Berlekamp, McEliece, and van Tilborg [3] only proved this result for the special caseq = 2. The easy
extension to arbitrary prime powers can be found, for instance, in [2, Proposition 2].
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codes, namely codes of typeC = A⊗ B, whereA andB are linear codes overFq . Barg
writes in [2] that this result is

... the first statement about the decoding complexity of a somewhat more restricted class
of codes than just the “general linear codes.”

Observe, however, that the codeC = A⊗ B does not have any algebraic structure unless
A andB are further restricted in some manner; yetA andB are, again, general linear codes.

In this paper, we prove that maximum-likelihood decoding is NP-hardfor the family of
Reed-Solomon codes. Let q = 2m and letFq [X] denote the ring of univariate polynomials
over Fq . Reed-Solomon codes are obtained by evaluating certain subspaces ofFq [X] in
a set of pointsD = {x1, x2, . . . , xn} which is a subset ofFq . Specifically, a Reed-Solo-
mon codeCq(D, k) of lengthn and dimensionk overFq is defined as follows:

Cq(D, k) def=
{ (

f (x1), . . . , f (xn)
)

: x1, . . . , xn ∈D, f (X)∈Fq [X], deg f (X) < k
}

Thus a Reed-Solomon code is completely specified in terms of its evaluation setD and
its dimensionk. As in [3], we assume that if a codeword ofCq(D, k) is transmitted and
the vectory∈Fn

q is received, the maximum-likelihood decoding task consists of comput-
ing a codewordc∈Cq(D, k) that minimizesd(c, y), whered(·, ·) denotes the Hamming
distance. The corresponding decision problem can be formally stated as follows.

Problem: MAXIMUM -L IKELIHOOD DECODING OFREED-SOLOMON CODES

Instance: An integerm > 0, a setD = {x1, x2, . . . , xn} consisting ofn distinct el-
ements ofF2m , an integerk > 0, a target vectory∈Fn

2m , and an integerw > 0.

Question: Is there a codewordc∈C2m(D, k) such thatd(c, y) 6 w?

We will refer to this problem∗asMLD-RS for short. Our main result herein is thatMLD-RS
is NP-complete. Note that the formulation ofMLD-RS is restricted to Reed-Solomon codes
over a field of characteristic2. However, our proof easily extends to Reed-Solomon codes
over arbitrary fields: we use fields of characteristic2 for notational convenience only. The
key idea in the proof is a re-interpretation of the result that was derived in [23, Lemma 1]
in order to establish NP-hardness of computing the minimum distance of a linear code.

It is particularly interesting that the only nontrivial family of codes for which we can now
prove that maximum-likelihood decoding is NP-hard is the family of Reed-Solomon codes.
Decoding of Reed-Solomon codes is a well-studied problem with a long history. There are
well-known polynomial-time algorithms that decode Reed-Solomon codes up to half their
minimum distance [10, 18, 24], and also well beyond half the minimum distance [12, 21].
Nevertheless, all these algorithms fall in the general framework of bounded-distance de-
coders [22]. Our result shows that assuming a bound on the number of correctable errors,
as these algorithms do, is necessary, since maximum-likelihood decoding is NP-hard.

∗In the definition ofMLD-RS, the field elements ofF2m are assumed to be represented bym-bit vectors.
Therefore the input size of an instance ofMLD-RS is polynomial inn andm.
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In terms of work with related results, Goldreich, Rubinfeld, and Sudan [11] considered
a problem similar toMLD-RS in the context of general polynomial reconstruction prob-
lems. Thus it is shown in [11, Section 6.1] that givenn pairs(x1, y1), (x2, y2), . . . , (xn, yn)
of elements from a large field, determining if a degreek polynomial passes through at least
k + 2 of them is NP-hard. However, this formulation doesnot include the essential re-
striction that the evaluation pointsx1, x2, . . . , xn are all distinct (in fact, the proof of [11]
crucially exploits the fact thatxi = x j for somei 6= j), and therefore does not yield any
hardness results for Reed-Solomon decoding. We show that a problem very similar to the
one considered in [11] remains NP-hard when the evaluation pointsx1, x2, . . . , xn aredis-
tinct. Thus our result can be viewed as resolving one of the main questions left open by [11].

In another related paper, Dumer, Micciancio, and Sudan [7] study the maximum-likelihood
decoding problem when the distance of the target vector from the code is promised to be
small compared to the minimum distanced. It is shown in [7] thatMLD-Linear is NP-hard
(under randomized reductions) to approximate within any constant factor when the distance
to the target vector is at most(1/2 +ε)d, for all ε > 0. This result is then extended in [7] to
target vectors at distance(2/3 + ε)d from the code, in the case of codes that are asymptoti-
cally good. Similar results have been established in [19] for maximum-likelihood decoding
with unlimited preprocessing, although the approximation factor therein is less than5/3.

We conclude this section with a disclaimer. Our main result shows that there exist Reed-
Solomon codes for which maximum-likelihood decoding cannot be accomplished in time
that is polynomial in their lengthn, unlessP = NP. We point out, however, that for the spe-
cific class of Reed-Solomon codes we construct in order to establish this result, the lengthn
is polylogarithmic in the sizeq of the underlying alphabet. Thus our hardness results do
not apply ifn = q− 1, say, as is often the case with Reed-Solomon codes.

The rest of this paper is organized as follows. The proof of our main result (Theorem 5) is
presented in the next section. In Section 3, we further strengthen this result by showing that
maximum-likelihood decoding of Reed-Solomon codes remains hard even if unlimited pre-
processing is allowed, and only the received vectory is part of the input. This is a well-
motivated scenario, since the code (namely, evaluation setD and dimensionk) is usually
known in advance. Thus one-time preprocessing, even if computationally expensive, would
be attractive if it leads to efficient decoding. We prove in Section 3 (assuming NP does not
have polynomial-size circuits) that for some Reed-Solomon codes no such preprocessing
procedure can exist. This strengthens the main result of Bruck and Naor [4] in the same way
that Theorem 5 strengthens the main result of Berlekamp, McEliece, and van Tilborg [3].
We conclude in Section 4 with a brief discussion, pointing out several simple corollaries of
Theorem 5 and suggesting a number of interesting open problems related to our results.
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2. MLD-RS is NP-complete

As in [3], we reduce from THREE-DIMENSIONAL MATCHING. LetU = {1, 2, . . . , t} and
let T be a set of ordered triples overU , that isT ⊆ U ×U ×U . A subsetS of T is called
a matching if |S| = t and every two triples inS differ in all three positions. As shown by
Karp [13] back in 1972, the following decision problem is NP-complete.

Problem: THREE-DIMENSIONAL MATCHING

Instance: A set of ordered triplesT ⊆ {1, 2, . . . , t}×{1, 2, . . . , t}×{1, 2, . . . , t}.
Question: Is there a matching inT , namely a subsetS ⊆ T consisting of exactlyt

triples such thatd(s, s′) = 3 for all distincts, s′ ∈S?

We shall write an instance of THREE-DIMENSIONAL MATCHING as{t, T }. We hence-
forth assume w.l.o.g. that|T | > t + 1 (otherwise, the problem is trivially solvable in poly-
nomial time). The following deterministic procedure converts any such instance{t, T }
into an instance{m,D, k, w, y} of MLD-RS.

A. COMPUTING THE INTEGER PARAMETERS : Setm = 3t, k = |T | − (t+1),
andw = t. Let n = |T |.

B. COMPUTING THE EVALUATION SET : Let q = 2m. First, construct the finite
field Fq — that is, generate an irreducible (overF2 ) binary polynomial of de-
greem which defines addition and multiplication inFq . Letα denote a root of
this polynomial. Then the set{1,α,α2, . . . ,αm−1} is a basis forFq overF2 .
Now, convert each triple(a, b, c)∈T into a nonzero element ofFq as follows:

(a, b, c) 7→ x = αa−1 +αt+b−1 +α2t+c−1 (1)

This producesn = |T | distinct nonzero elementsx1, x2, . . . , xn ∈Fq . Set the
evaluation setD to {x1, x2, . . . , xn}.

C. COMPUTING THE TARGET VECTOR : Computeγ = 1 +α + · · ·+αm−1

in Fq . Thusγ is the element ofFq that corresponds to the binarym-tuple
(1, 1, . . . , 1) in the chosen basis. Now, for eachj = 1, 2, . . . , w+1, compute

z j
def=

γ −
w+1

∑
i=1
i 6= j

xi

w+1

∏
i=1
i 6= j

(x j − xi)
and ϕ j

def= ∏
β∈Fq\D

(x j −β) (2)

Note thatϕ1,ϕ2, . . . ,ϕw+1 are all nonzero by definition. Set the target vec-
tor y = (y1, y2, . . . , yn) to (z1/ϕ1, z2/ϕ2, . . . , zw+1/ϕw+1, 0, 0, . . . , 0). In
other words:y j = z j/ϕ j for j = 1, 2, . . . , w+1, andy j = 0 otherwise.

We will refer to the foregoing computation as the3-DM/MLD-RS conversion procedure.
It is not immediately clear that this procedure runs in polynomial time (note that the con-
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version procedure has to run in time which is polynomial in the size of the THREE-DI-
MENSIONAL MATCHING instance{t, T }, and therefore in time that is polynomial in the
logarithm of the field size). This fact is, therefore, established in the following lemma.

Lemma 1. The 3-DM/MLD-RS conversion procedure runs in time and space that are bo-
unded by a polynomial in the size of the instance {t, T }.

Proof. Step A is trivial. The only thing that is not immediately obvious in Step B is whe-
ther a primitive irreducible binary polynomial of degreem = 3t can be generated in deter-
ministic polynomial time. However, Shoup [20] provides a deterministic algorithm for this
purpose, whose complexity isO(m5) operations inF2 . Clearly,γ andz1, z2, . . . , zw+1 in
Step C can be computed in polynomial time and space. However, it is not clear whether this
is also true forϕ1,ϕ2, . . . ,ϕw+1. Indeed, a straightforward evaluation of the expression
forϕ j in (2) takes2m − n additions and multiplications inFq . Thus we now show how to
computeϕ j in polynomial time. Define the polynomials

M(X) def= ∏
β∈Fq

(X −β) = Xq − X (3)

D(X) def= ∏
β∈D

(X −β) =
n

∑
i=0

diXi (4)

and letG(X) denote the rational functionM(X)/D(X). Thenϕ j = G(x j) in view of (2).
It is easy to see from (3) and (4) thatx j is a simple root of bothM(X) andD(X). Therefore
G(x j) = M′(x j)/D′(x j), whereM′(X) andD′(X) are the first-order Hasse derivatives of
M(X) andD(X), respectively. Note thatM′(X) = 1 in a field of characteristic2. Thus

ϕ j =
1

n′

∑
i=0

d2i+1x2i
j

for j = 1, 2, . . . , w+1 (5)

wheren′ = b(n− 1)/2c and the coefficientsd0, d1, . . . , dn are elementary symmetric func-
tions ofx1, x2, . . . , xn. These coefficients can be computed from (4) in timeO(n2). Given
d0, d1, . . . , dn, the computation in (5) clearly requires at mostO(wn) operations inFq .

Let H = [hi, j] be the(w+1)× n matrix overFq defined byhi, j = xi−1
j for j = 1, 2, . . . , n

andi = 1, 2, . . . , w+1, wherex1, x2, . . . , xn are given by (1). Explicitly

H def=


1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
xw

1 xw
2 · · · xw

n

 (6)

The following lemma is a key step in our reduction from THREE-DIMENSIONAL MATCH-
ING to MLD-RS. This lemma owes its general idea to [23, Lemma 1].
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Lemma 2. The set T has a matching if and only if there is a vector v∈Fn
q of weight 6 w

such that Hvt = (0, 0, . . . , 0, 1,γ)t.

Proof. Following Berlekamp, McEliece, and van Tilborg [3], we first construct them× n
(or 3t × |T |) binary matrixV having the binary representations ofx1, x2, . . . , xn as its
columns. As noted in [3],T has a matching if and only if there is a set ofw = t columns
of V that add to the all-one vector. The latter condition can be equivalently stated overFq
as follows: there is a subset{xi1 , xi2 , . . . , xiw} of D such thatxi1 + xi2 + · · ·+ xiw = γ.
Suppose thatT has a matching, so that such a set{xi1 , xi2 , . . . , xiw} ⊂ D exists, and con-
sider the matrix

A =



1 1 · · · 1 0
xi1 xi2 · · · xiw 0
x2

i1
x2

i2
· · · x2

iw 0
...

...
...

...
xw−2

i1
xw−2

i2
· · · xw−2

iw 0

xw−1
i1

xw−1
i2

· · · xw−1
iw 1

xw
i1

xw
i2

· · · xw
iw γ


(7)

It was shown in [23, Lemma 1] that

det A = (γ − xi1−xi2− · · · −xiw) ∏
16a<b6w

(xib − xia) (8)

HenceA is singular, so there exists a nonzero vectoru = (u1, u2, . . . , uw+1)∈Fw+1
q such

that Aut = 0. We claim thatuw+1 6= 0. To see this, replace the last column ofA by the
vector(1, 1, . . . , 1)t to obtain the(w+1)×(w+1) matrix A′. If uw+1 = 0 thenA′ut = 0,
which is a contradiction sincedet A′ is clearly nonzero (asx j 6= 1 for all j by (1), it is the
determinant of a Vandermonde matrix with distinct columns). We can now construct a vec-
tor v = (v1, v2, . . . , vn)∈Fn

q of weight6 w as follows

v j =

{
− uir

uw+1
x j = xir for somer∈ {1, 2, . . . , w}

0 otherwise

It should be obvious from (6), (7) and the fact thatAut = 0 thatHvt = (0, 0, . . . , 0, 1,γ)t.
Conversely, assume that there is a vectorv∈Fn

q such thatHvt = (0, 0, . . . , 0, 1,γ)t and
wt(v) 6 w. Write δ = wt(v) and let{i1, i2, . . . , iδ} be the set of nonzero positions ofv.
Let{iδ+1, iδ+2, . . . , iw} be an arbitrary subset of{1, 2, . . . , n} of sizew−δ, that is disjoint
from {i1, i2, . . . , iδ}. Then, as in (8), we have

0 = det A = (γ − xi1−xi2− · · · −xiw) ∏
16a<b6w

(xib − xia) (9)

since the fact thatHvt = (0, 0, . . . , 0, 1,γ)t implies that the matrix in (7) is singular. Since
x1, x2, . . . , xn are all distinct, it follows from (9) thatxi1 + xi2 + · · ·+ xiw = γ. This, in
turn, implies that there is a matching inT , and we are done.
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Recall thatk = |T | − (t + 1) = n− (w + 1) in our conversion procedure, and letC be the
(n, k) linear code overFq having the matrixH in (6) as its parity-check matrix. Further, let
z = (z1, z2, . . . , zw+1, 0, 0, . . . , 0)∈Fn

q , wherez1, z2, . . . , zw+1 are defined by (2). The
following corollary is an easy (and somewhat redundant) consequence of Lemma 2.

Corollary 3. The set T has a matching if and only if the code C def=
{

v∈Fn
q : Hvt = 0

}
contains a codeword at Hamming distance 6 w from z.

Proof. In view of Lemma 2, it would suffice to show that the syndrome ofz with respect
to H is (0, 0, . . . , 0, 1,γ)t. Explicitly, we need to prove that

Hzt =


1 1 · · · 1
x1 x2 · · · xw+1

x2
1 x2

2 · · · x2
w+1

...
...

...
xw

1 xw
2 · · · xw

w+1




z1
z2
z3
...

zw+1

 =


0
0
...
0
1
γ

 (10)

The easiest way to see that the second equality in (10) holds is to regard this as a system of
linear equations in the indeterminatesz1, z2, . . . , zw+1. Let M denote the(w+1)× (w+1)
matrix in (10). SinceM is clearly nonsingular, the system admits a unique solution, given
by z j = det M j / det M for j = 1, 2, . . . , w+1, whereM j is the matrix obtained fromM
by replacing thej-th column with(0, 0, . . . , 0, 1,γ)t. Now

det M j = ±

γ − w+1

∑
i=1
i 6= j

xi

 ∏
16a<b6w+1

a,b 6= j

(
xb − xa

)
for j = 1, 2, . . . , w+1

as in (8), whiledet M is the Vandermonde determinant∏16a<b6w+1(xb − xa). From this,
the expression forz j in (2) easily follows.

The last observation we need is that the codeC defined in Corollary 3 is just a generalized
Reed-Solomon code. Specifically, let us extend the definition ofϕ1,ϕ2, . . . ,ϕw+1 in (2) to
all j = 1, 2, . . . , n and consider the mappingsϕ : Fn

q → Fn
q andϕ−1: Fn

q → Fn
q defined by

ϕ(u1, u2, . . . , un)
def= (ϕ1u1,ϕ2u2, . . . ,ϕnun)

ϕ−1(u1, u2, . . . , un)
def= (u1/ϕ1, u2/ϕ2, . . . , un/ϕn)

Note thatϕ−1 is well-defined sinceϕ1,ϕ2, . . . ,ϕn are all nonzero. Also note that bothϕ
andϕ−1 are bijections and isometries with respect to the Hamming distance.

Lemma 4.
ϕ−1(C) = Cq(D, k)

Proof. We will prove the equivalent statement thatC is the image ofCq(D, k) underϕ.
Let G = [gi, j] be thek× n matrix overFq defined bygi, j = xi−1

j for all i = 1, 2, . . . , k and
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j = 1, 2, . . . , n. It is well known (and obvious) thatG is a generator matrix forCq(D, k).
Hence a generator matrix for the image ofCq(D, k) underϕ is given byG′ = [g′i, j] where
g′i, j =ϕ jxi−1

j . It would therefore suffice to prove thatG′ is a generator matrix for the
codeC, which is equivalent to the statement thatB = G′HT is thek×(w+1) all-zero ma-
trix. By definition, a generic entry ofB = [br,s] is given by

br,s =
n

∑
j=1

g′r, j hs, j =
n

∑
j=1
ϕ j xr−1

j xs−1
j =

n

∑
j=1
ϕ j xr+s−2

j (11)

for r = 1, 2, . . . , k ands = 1, 2, . . . , w+1. Now, letF∗q denote the set of nonzero elements
in Fq , and define the polynomials

Ψ(X) def= ∏
β∈F∗q\D

(X −β) =
q−n−1

∑
j=0
ψ j X j (12)

Φ(X) def= X Ψ(X) = ∏
β∈Fq\D

(X −β) (13)

By the definition ofϕ j in (2), we haveϕ j = Φ(x j) = x jΨ(x j) for all j = 1, 2, . . . , n. Sub-
stituting this in (11), we obtain

br,s =
n

∑
j=1

x jΨ(x j) xr+s−2
j = ∑

β∈F∗q
Ψ(β)βr+s−1 = ∑

β∈F∗q

q−n−1

∑
j=0
ψ jβ

jβr+s−1 (14)

where the second equality follows from the fact thatΨ(β) = 0 for all β∈F∗q \D. Finally,
interchanging the order of summation in (14), we obtain

br,s =
q−n−1

∑
j=0
ψ j ∑

β∈F∗q
β j+r+s−1 =

q−n−1

∑
j=0
ψ j

q−2

∑
i=0

(
αi) j+r+s−1 =

q−n−1

∑
j=0
ψ j

q−2

∑
i=0
ξ i (15)

whereα is a primitive element ofFq andξ = α j+r+s−1. The last summation in (15) is
a geometric series which evaluates to(ξq−1 − 1)/(ξ − 1) = 0 providedξ 6= 1. However,
since2 6 r + s 6 n, it is easy to see that we will always have1 6 j + r + s− 1 6 q− 2.
Henceξ = α j+r+s−1 6= 1. Thusbr,s = 0 for all r ands, and the lemma follows.

We are now ready to prove our main result in this paper. Indeed, all that remains to be done
to establish thatMLD-RS is NP-complete is to combine Lemma 4 with Corollary 3.

Theorem 5.MLD-RS is NP-complete.

Proof. Note thaty = ϕ−1(z) in the3-DM/MLD-RS conversion procedure. Sinceϕ−1

is an isometry, it follows from Lemma 4 that there is a codewordc∈Cq(D, k) such that
d(c, y) 6 w if and only if C contains a codeword at distance6 w from z. By Corollary 3,
this happens iff the setT has a matching. Hence the3-DM/MLD-RS conversion procedure
is a polynomial transformation from THREE-DIMENSIONAL MATCHING to MLD-RS.
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3. Hardness ofMLD-RS with preprocessing

As noted in [4, 16], the formulation ofMLD-RS in the previous two sections might not be
the relevant one in practice. In coding practice, the code to be decoded is usually known
in advance; moreover, this code remains the same throughout numerous decoding attempts
wherein only the target vectory changes. Thus it would make sense to assume that the
code is knowna priori and can be preprocessed for a long time (essentially, unlimited
time) in order to devise an efficient decoding algorithm.

In the special case of Reed-Solomon codes, the general observation above reduces to the
following assumption: the Reed-Solomon codeCq(D, k) — namely, the set of evaluation
pointsD = {x1, x2, . . . , xn} ⊆ Fq and the dimensionk — is known in advance (and can
be preprocessed for as long as desired) and only the target vectory∈Fn

q is part of the input.
The corresponding decision problem can be formally phrased as follows.

Problem: MLD-RS WITH PREPROCESSING

Instance: A target vectory∈Fn
2m .

Question: Is there a codewordc∈C2m(D, k) such thatd(c, y) 6 w?

Observe that the above defines not one problem, but a whole set of problems — one for each
realization ofm, D, k, andw. We shall henceforth refer to a specific problem in this set as
MLD-RSwP(m,D, k, w). Asking whether a given problemMLD-RSwP(m,D, k, w) is
computationally hard makes no sense, since the size of the inputy∈Fn

2m to this problem
is at mostmn bits, while bothm andn = |D| are fixed. Thus asymptotic complexity ques-
tions concerning a specific problemMLD-RSwP(m,D, k, w) are ill-posed.

So what can we do in order to show that maximum-likelihood decoding of Reed-Solomon
codes is computationally hard even with unlimited preprocessing? Here is a sketch of the
answer to this question. We can prove that:

There is an infinite sequence P1,P2, . . . of MLD-RSwP(·, ·, ·, ·) prob-
lems such that m1 6 m2 6 · · · and |D1| < |D2| < · · · with the follow-
ing property: under a certain assumption that is widely believed to be true,
there does not exist a constant c > 0 such that for all sufficiently large i,
each problem Pi can be solved in time and space at most (mi + |Di|)c.

(?)

The precise meaning of “Pi can be solved in time and space at most(mi + |Di|)c ” in (?)
is that there exists a circuitCi of size at most(mi + |Di|)c that solvesPi for every possible
input y∈Fn

q , whereq = 2mi andn = |Di|. Observe that we allow different circuits for
different problems — that is, the circuitCi solvingPi = MLD-RSwP(mi,Di, ki, wi) may
depend onmi, Di, ki, andwi. This corresponds to the “nonuniform” version of the classP
of polynomial-time decidable languages, where one can use different programs for inputs
of different sizes. The resulting complexity class is usually denoted asP/poly. Thus the
“assumption that is widely believed to be true” in (?) is thatNP 6⊆ P/poly or, in words,
that not every language inNP has a polynomial-size circuit. It is indeed widely believed
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thatNP 6⊆ P/poly. In fact, it was shown by Karp and Lipton [14] that ifNP ⊆ P/poly
then the polynomial hierarchy collapses at the second level, namely∪∞

i=1Σ
p
i = Σ

p
2 . For

more details on this and more rigorous definitions of the terms used in this paragraph, we
refer the reader to Bruck-Naor [4] and to Papadimitriou [17].

How can one prove a statement such as (?)? The usual way (cf. [4, 8, 16]) to do this is as
follows. Start with an NP-complete problemΠ. Then devise a deterministic procedure that
converts every instanceI of Π into m,D, k, w, andy with the following properties:

P1. The parametersm,D, k, w depend only onsize(I), the size of the instanceI ,
and are constructed in time and space that are polynomial insize(I).

P2. The target vectory is also constructed in time and space that are polynomial
in size(I), but may depend on the instanceI itself rather than only on its size.

P3. The target{y} is a YES instance of the constructedMLD-RSwP(m,D, k, w)
problem if and only ifI is a YES instance ofΠ.

For an explanation of this method and for precise definition ofsize(I), we again refer the
reader to [4, 17]. Here, we takeΠ to be the THREE-DIMENSIONAL MATCHING problem
introduced in the previous section. In this case, we can assume, as in [16], that the size of
an instance{t, T } of THREE-DIMENSIONAL MATCHING is simplyt.

The following deterministic procedure combines the ideas of the previous section with
a suitably modified version of a reduction due to Lobstein [16]. Incidentally, Lobstein’s
reduction [16] is by far the simplest way known (to us) to prove thatMLD-Linear remains
hard with unlimited preprocessing (cf. [4, 8, 19]). Given an instance{t, T } of THREE-DI-
MENSIONAL MATCHING, we proceed as follows.

A. COMPUTING THE INTEGER PARAMETERS : Setm = 3(t3+ t), w = t3+ t,
andk = 3t3 − (t+1). Let n = 4t3.

B. COMPUTING THE EVALUATION SET : As in the previous section, letq = 2m.
First, construct the finite fieldFq and fix a basis{1,α,α2, . . . ,αm−1} for Fq
overF2 . LetU = {1, 2, . . . , t}, and impose an arbitrary order on thet3 triples
in U × U × U , say(a1, b1, c1), (a2, b2, c2), . . . , (at3 , bt3 , ct3). Define∗

x j =


αa j−1+ αt+b j−1 + α2t+c j−1 + α3t+ j−1 for 1 6 j 6 t3

α3t+( j−t3)−1 + α3t+ j−1 + α3t+( j+t3)−1 for t3 < j 6 2t3

α3t+( j−t3)−1 + α3t+ j−1 for 2t3 < j 6 3t3

α3t+( j−t3)−1 for 3t3 < j 6 4t3

(16)

This producesn = 4t3 distinct nonzero elementsx1, x2, . . . , xn ∈Fq . Set the
evaluation setD to {x1, x2, . . . , xn}.

∗The evaluation pointsx1, x2, . . . , xn may be better understood in terms of the matrixW, defined in (19),
whose columns are binary representations ofx1, x2, . . . , xn with respect to the basis{1,α,α2, . . . ,αm−1}.
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C. COMPUTING THE TARGET VECTOR : LetχT = (χ1, χ2, . . . , χt3) be the char-
acteristic vector ofT ⊆ U ×U ×U . That isχ j = 1 if the j-th triple(a j, b j, c j)
of U × U × U belongs toT , andχ j = 0 otherwise. Compute

γ
def=

3t

∑
j=1
α j−1 + α3t−1

(
αt3

+ 1
) t3

∑
j=1
χ jα

j + α2t3+3t−1
t3

∑
j=1
α j (17)

Thusγ is an element ofFq that corresponds to the binarym-tuple(1, χT , χT , 1)
in the chosen basis, where the first1 in (1, χT , χT , 1) is the all-one vector of
length3t while the second1 is the all-one vector of lengtht3. From here, pro-
ceed exactly as in the previous section: for eachj = 1, 2, . . . , w+1, compute

z j
def=

γ −
w+1

∑
i=1
i 6= j

xi

w+1

∏
i=1
i 6= j

(x j − xi)
and ϕ j

def= ∏
β∈Fq\D

(x j −β) (18)

Set the target vectory to (z1/ϕ1, z2/ϕ2, . . . , zw+1/ϕw+1, 0, 0, . . . , 0). In other
words: y j = z j/ϕ j for j = 1, 2, . . . , w+1, andy j = 0 otherwise.

We will refer to the foregoing computation as the3-DM/MLD-RSwP conversion proce-
dure. It should be evident from Lemma 1 that this procedure runs in time and space that are
polynomial int. Furthermore, it is clear thatm, k, w in Step A andD in Step B depend only
on t. Thus propertiesP1andP2above are satisfied, and it remains to prove propertyP3.

To this end, consider them×n
(
or 3(t3+ t)× 4t3) binary matrixW having the binary rep-

resentations ofx1, x2, . . . , xn as its columns. By construction — compare with the defini-
tion x1, x2, . . . , xn in (16) — this matrix has the following structure:

W =


U 0 0 0
I I 0 0
0 I I 0
0 I I I

 (19)

whereI is thet3× t3 identity matrix andU is the3t× t3 matrix consisting of the binary rep-
resentations of thet3 triples inU ×U ×U — that is, thej-th column ofU is the binary rep-
resentation ofαa j−1+αt+b j−1 +α2t+c j−1 where(a j, b j, c j) is the j-th triple inU×U×U .

Lemma 6. The set T has a matching if and only if there is a set of exactly w = t3 + t
columns of W that add to the vector (1, χT , χT , 1)t, which is the binary representation ofγ.

Proof. Since the order imposed on the triples ofU × U ×U is arbitrary, we may assume
w.l.o.g. that the triples inT correspond to the first|T | columns of the matrixU. (⇒) Sup-
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pose there is a vectorv∈Fn
2 with wt(v) = t3 + t such thatWvt = (1, χT , χT , 1)t. Write

v = (v1, v2, v3, v4), wherev1, v2, v3, v4 are vectors of lengtht3. For i = 1, 2, 3, 4, let

ηi
def= the weight of the first|T | positions ofvi

η̄i
def= the weight of the lastt3 − |T | positions ofvi

The structure of the matrixW in (19) along with the fact thatWvt = (1, χT , χT , 1)t imply
the following relationships

η2 = |T | − η1 and η̄2 = η̄1
(
since v1 + v2 = χT

)
(20)

η3 = |T | − η2 and η̄3 = η̄2
(
since v2 + v3 = χT

)
(21)

η̄4 = t3 − |T | and η4 = 0
(
since v4 = 1− (v2 + v3) = 1− χT

)
(22)

amongη1, η2, η3, η4 andη̄1, η̄2, η̄3, η̄4. Using (20), (21), (22) in conjunction with the fact
thatwt(v) = η1 + η2 + η3 + η4 + η̄1 + η̄2 + η̄3 + η̄4 = t3 + t, we obtain

η1 + 3η̄1 = t (23)

But wt(v1) = η1 + η̄1 > t, sinceUvt
1 = 1t and the weight of each column ofU is 3. In

conjunction with (23), this implies that

η1 = t and η̄1 = 0

This means that there are somet columns among the first|T | columns ofU (corresponding
to the triples inT ) that add (mod2) to the all-one vector. Hence, there is a matching inT .
(⇐) Conversely, suppose there is a matching inT . We then takev1 to be the binary vector
of lengtht3 and weightt whose nonzero positions are given by the correspondingt columns
of U. Setting

v2 = χT − v1, v3 = v1, and v4 = 1− χT (24)

it is easy to verify that the vectorv = (v1, v2, v3, v4) satisfiesWvt = (1, χT , χT , 1)t and
has weightt + (|T |−t) + t + (t3−|T |) = t3 + t.

To prove that3-DM/MLD-RSwP conversion procedure satisfies propertyP3, it remains
to combine Lemma 6 with the results of the previous section.

Lemma 7. The set T has a matching if and only if there is a codeword c∈Cq(D, k) such
that d(c, y) 6 w, where q = 2m and m, k,D, w, y are the values computed from {t, T }
in the 3-DM/MLD-RSwP conversion procedure.

Proof. Let H be the(w+1)× n parity-check matrix in (6), but withx1, x2, . . . , xn now
defined by (16). Using Lemma 6 and proceeding exactly as in Lemma 2, we conclude that
T has a matching if and only if there is a vectorv∈Fn

q of weight6 w such that

Hvt = (0, 0, . . . , 0, 1,γ)t

whereγ is given by (17). By Corollary 3 and Lemma 4 of the previous section, this happens
if and only if there is a codewordc∈Cq(D, k) such thatd(c, y) 6 w.
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Theorem 8.There is an infinite sequence of Reed-Solomon codes {C2mi (Di, ki)}i>1, that
can be explicitly specified in terms of the underlying fields F2m1 , F2m2 , . . . , evaluation sets
D1 ⊆ F2m1 ,D2 ⊆ F2m2 , . . . , and dimensions k1, k2, . . . , such that the following holds: un-
less NP ⊆ P/poly and the polynomial hierarchy collapses at the second level, there is no
polynomial-size family of circuits {Ci}i>1 so that Ci solves the maximum-likelihood decod-
ing problem for the code C2mi (Di, ki), for all i = 1, 2, . . . .

Proof. Lemma 7 proves that the3-DM/MLD-RSwP conversion procedure satisfies prop-
ertiesP1, P2, andP3. Since THREE-DIMENSIONAL MATCHING is NP-complete, this im-
mediately implies the theorem (see the discussion at the beginning of this section).

Theorem 8 is our main result in this section. In plain language, this theorem says that there
exist Reed-Solomon codes for which maximum-likelihood decoding is computationally
hard even if unlimited preprocessing of the code is allowed.

4. Discussion and open problems

We first revisit the disclaimer at the end of Section 1, and observe that it leads to an interest-
ing open problem. The3-DM/MLD-RS conversion procedure produces a specific class of
Reed-Solomon codes, and Theorem 5 says that there exist codes in this class that are hard
to decode (unlessP = NP). Note, however, that since|D| = |T | 6 t3 while |F2m | = 23t

in our conversion procedure, all the codes in this class use only a tiny fraction of the under-
lying field as evaluation points. Thus our hardness results do not apply if, say, all the field
elements (or all the nonzero field elements) are taken as evaluation points, as is often the
case with Reed-Solomon codes. On the other hand, most algebraic decoding algorithms for
Reed-Solomon codes [12, 21, 24] do not take advantage of this fact and work just as well
for arbitrary sets of evaluation points (such as those produced by our conversion procedure).

Nevertheless, it remains an intriguing open question whether a similar hardness result can
be established for Reed-Solomon codes that use the entire field (or a large part thereof)
as their set of evaluation points. The proof of this (if it exists) will probably require new
techniques, and might also pave the way for establishing NP-hardness of maximum-like-
lihood decoding for primitive binary BCH codes. We observe that such a proof would
immediately imply hardness with unlimited preprocessing, since in this situation the code
is essentially fixed: only its rate and the received syndrome are part of the input.

We next record a simple corollary to our main result. It is well known [5, Chapter 10,
p. 281] that the covering radiusρ of an (n, k) Reed-Solomon codeCq(D, k) is given by
ρ = n− k. A vectory∈Fn

q is said to be adeep hole of Cq(D, k) if the distance fromy to
(the closest codeword of) this code is exactlyρ. We observe that the value ofw in the reduc-
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tion of Section 2 isn− k − 1 = ρ− 1, so that we are asking whether there exists a code-
wordc∈Cq(D, k) such thatd(c, y) 6 ρ− 1. This is equivalent to the question: isy a deep
hole ofCq(D, k)? Hence, Theorem 5 immediately implies the following result.

Corollary 9. It is NP-hard to determine whether a given vector y∈Fn
q is a deep hole of

a given Reed-Solomon code Cq(D, k).

In fact, it is easy to see from the proof of Lemma 2 that the distance from the vectory con-
structed in the3-DM/MLD-RS conversion procedure toCq(D, k) is at leastw = ρ− 1.
Thus an even more specialized task is NP-hard: given a vector which is either at distanceρ

or at distanceρ− 1 from Cq(D, k), determine which is the case. Note that the reduction in
Section 3 still has the property thatw = n− k − 1 = ρ− 1. Thus identifying deep holes
of a Reed-Solomon code (or deciding whether a given vector is at distanceρ orρ− 1 from
the code) is computationally hard even if unlimited preprocessing of the code is allowed.

Concerning the results of Section 3, we observe that a polynomial-time maximum-likeli-
hood decoding algorithm for some specific Reed-Solomon codes (if it exists)mustmake
essential use of the structure of the evaluation sets for these codes. Section 3 shows that,
assuming NP does not have polynomial-size circuits, there is no generic representation of
the evaluation points that would permit polynomial-time maximum-likelihood decoding.

We conclude the paper with two more open problems. First, it would be interesting to estab-
lish NP-hardness of maximum-likelihood decoding for a nontrivial family ofbinarycodes.
Straightforward concatenation of Reed-Solomon codes overF2m with (2m − 1, m, 2m−1)
simplex (Hadamard) codes does not work, since the length of the concatenated code would
be exponential in the length of the Reed-Solomon code for our reduction.

Another important open problem is this. As discussed in Corollary 9, maximum-likelihood
decoding of Reed-Solomon codes becomes hard when the number of errors is large — one
less than the covering radius of the code. It is an extremely interesting problem to show
hardness ofbounded-distancedecoding of Reed-Solomon codes for a smaller decoding ra-
dius. At present, there remains a large gap between our hardness results and the decoding
radius up to which polynomial-time decoding algorithms are known [12, 15].
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