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Abstract

Maximum-likelihood decoding is one of the central algorithmic problems in cod-
ing theory. It has been known for over 25 years that maximume-likelihood decoding
of general linear codes is NP-hard. Nevertheless, it was so far unknown whether
maximum-likelihood decoding remains hard oty specific family of codes with
nontrivial algebraic structure. In this paper, we prove that maximume-likelihood
decoding is NP-hard for the family of Reed-Solomon codes. We moreover show
that maximume-likelihood decoding of Reed-Solomon codes remains hard even
with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
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1. Introduction

Maximum-likelihood decoding is one of the central (perhapsgctrgral) algorithmic prob-

lems in coding theory. Berlekamp, McEliece, and van Tilborg [3] showed that this problem
is NP-hard for the general class of linear codes. More precisely, the corresponding decision
problem can be formally stated as follows.

Problem: MAXIMUM -LIKELIHOOD DECODING OFLINEAR CODES(MLD-Linear)
Instance: An m x n matrix H overl,, a target vectos € IFZ]” and an integew > 0.
Question: Is there a vectop € ]/ of weight< w, such thatHo' = s'?

Berlekamp, McEliece, and van Tilborg [3] provad 1978 that this problem is NP-complete
using a reduction from AREE-DIMENSIONAL MATCHING, a well-known NP-complete
problem [9, p. 50]. Since 1978, the complexity of maximum-likelihood decoding of general
linear codes has been extensively studied. Bruck and Naor [4] and Lobstein [16] showed
in 1990 that the problem remains hard even if the code is known in advance, and can
be preprocessed for as long as desired in order to devise a decoding algorithm. Arora,
Babai, Stern, and Sweedyk [1] proved tMitD-Linear is NP-hard to approximate within

any constant factor. Downey, Fellows, Vardy, and Whittle [6] proved MigD-Linear re-

mains hard even if the parameteis a constant — it is not fixed-parameter tractable unless
FPT = W/[1]. Recently, the complexity of approximatifj-D-Linear with unlimited pre-
processing was studied by Feige and Micciancio [8] and by Regev [19] — this work streng-
thens the results of both [4, 16] and [1] by showing t&D-Linear is NP-hard to approx-
imate within a factor ofs/; — ¢ for anye > 0, even if unlimited preprocessing is allowed.

While the papers surveyed in the foregoing paragraph constitute a significant body of work,
all these papers deal with the general class of linear codes. This leads to a somewhat in-
congruous situation. On one hand, there is no nontrivial useful family of codes for which

a polynomial-time maximum-likelihood decoding algorithm is known (such a result would,

in fact, be regarded a breakthrough). On the other hand, the specific codes used in the re-
ductions of [1, 3, 4, 6, 8, 16, 19] are unnatural, and the problem of showing NP-hardness
of maximume-likelihood decoding foany useful class of codes with nontrivial algebraic
structure remains open, despite repeated calls for its resolution. For example, the survey of
algorithmic complexity in coding theory [22] says:

Although we have, by now, accumulated a considerable amount of results on the hardness
of MAXIMUM -LIKELIHOOD DECODING, the broad worst-case nature of these results is still
somewhat unsatisfactory. [...] Thus it would be worthwhile to establish the hardnessocf M
IMUM -LIKELIHOOD DECODINGIn the average sense, or for more narrow classes of codes.

The first step along these lines was taken by Alexander Barg [2, Theorem 4], who showed
that maximume-likelihood decoding is NP-hard for the class of product (or concatenated)

*Note that MAXIMUM -LIKELIHOOD DECODING OFLINEAR CODESis NP-complete over all finite fields, .
Berlekamp, McEliece, and van Tilborg [3] only proved this result for the special gase2. The easy
extension to arbitrary prime powers can be found, for instance, in [2, Proposition 2].
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codes, namely codes of tyge= A ® B, where A andB are linear codes ovéif;. Barg
writes in [2] that this result is

... the first statement about the decoding complexity of a somewhat more restricted class
of codes than just the “general linear codes.”

Observe, however, that the cole= A ® B does not have any algebraic structure unless
A andB are further restricted in some manner; yeandB are, again, general linear codes.

In this paper, we prove that maximume-likelihood decoding is NP-tiardhe family of
Reed-Solomon codeet g = 2™ and letlF, [X] denote the ring of univariate polynomials
overIF,. Reed-Solomon codes are obtained by evaluating certain subspaEgs<dfin

a set of pointsD = {xq,x2,...,x,} which is a subset df,. Specifically, a Reed-Solo-
mon codeC, (D, k) of lengthn and dimensiork over[F, is defined as follows:

{(f(xl),...,f(xn)) . x1,..., %, €D, f(X) €F,[X], deg f(X) <k}

Thus a Reed-Solomon code is completely specified in terms of its evaluatidn aetl

its dimensiork. As in [3], we assume that if a codeword Gf(D, k) is transmitted and
the vectory € /' is received, the maximum-likelihood decoding task consists of comput-
ing a codeword: € C,(D, k) that minimizesd(c, y), whered(-, -) denotes the Hamming
distance. The corresponding decision problem can be formally stated as follows.

C,(D,k) &

Problem: MAXIMUM -LIKELIHOOD DECODING OFREED-SOLOMON CODES

Instance: An integerm > 0, a setD = {x1,x5,...,x,} consisting ofn distinct el-
ements off,,,, an integek > 0, a target vectoy € [, and an integew > 0.

Question: Is there a codeworde Con (D, k) such thatil(c, z) < w?

We will refer to this problerhasMLD-RS for short. Our main result herein is tHdt. D-RS

is NP-complete. Note that the formulationdED-RS is restricted to Reed-Solomon codes
over a field of characteristiz. However, our proof easily extends to Reed-Solomon codes
over arbitrary fields: we use fields of characteri&tifor notational convenience only. The
key idea in the proof is a re-interpretation of the result that was derived in [23, Lemma 1]
in order to establish NP-hardness of computing the minimum distance of a linear code.

It is particularly interesting that the only nontrivial family of codes for which we can now
prove that maximum-likelihood decoding is NP-hard is the family of Reed-Solomon codes.
Decoding of Reed-Solomon codes is a well-studied problem with a long history. There are
well-known polynomial-time algorithms that decode Reed-Solomon codes up to half their
minimum distance [10, 18, 24], and also well beyond half the minimum distance [12, 21].
Nevertheless, all these algorithms fall in the general framework of bounded-distance de-
coders [22]. Our result shows that assuming a bound on the number of correctable errors,
as these algorithms do, is necessary, since maximume-likelihood decoding is NP-hard.

*In the definition ofMLD-RS, the field elements of,. are assumed to be representedrb¥pit vectors.
Therefore the input size of an instanceMif D-RS is polynomial inn andm.
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In terms of work with related results, Goldreich, Rubinfeld, and Sudan [11] considered
a problem similar taMLD-RS in the context of general polynomial reconstruction prob-
lems. Thusitis shownin [11, Section 6.1] that givepairs(x1, y1), (x2, y2), .-, (Xn, Yn)

of elements from a large field, determining if a degtgmlynomial passes through at least

k 4+ 2 of them is NP-hard. However, this formulation daest include the essential re-
striction that the evaluation points, x», ..., x;, are all distinct (in fact, the proof of [11]
crucially exploits the fact that; = x; for somei # j), and therefore does not yield any
hardness results for Reed-Solomon decoding. We show that a problem very similar to the
one considered in [11] remains NP-hard when the evaluation pojnis, .. ., x,, are dis-

tinct. Thus our result can be viewed as resolving one of the main questions left open by [11].

In another related paper, Dumer, Micciancio, and Sudan [7] study the maximum-likelihood
decoding problem when the distance of the target vector from the code is promised to be
small compared to the minimum distantdt is shown in [7] thaMLD-Linear is NP-hard
(under randomized reductions) to approximate within any constant factor when the distance
to the target vector is at mogY, + ¢)d, for all ¢ > 0. This result is then extended in [7] to
target vectors at distand®; + ¢)d from the code, in the case of codes that are asymptoti-
cally good. Similar results have been established in [19] for maximum-likelihood decoding
with unlimited preprocessing, although the approximation factor therein is les§than

We conclude this section with a disclaimer. Our main result shows that there exist Reed-
Solomon codes for which maximum-likelihood decoding cannot be accomplished in time
that is polynomial in their length, unless® = NP. We point out, however, that for the spe-
cific class of Reed-Solomon codes we construct in order to establish this result, thedength
is polylogarithmic in the sizg of the underlying alphabet. Thus our hardness results do
not apply ifn = g — 1, say, as is often the case with Reed-Solomon codes.

The rest of this paper is organized as follows. The proof of our main result (Theorem5) is
presented in the next section. In Section 3, we further strengthen this result by showing that
maximume-likelihood decoding of Reed-Solomon codes remains hard even if unlimited pre-
processing is allowed, and only the received vegtas part of the input. This is a well-
motivated scenario, since the code (namely, evaluatio®sand dimensiork) is usually
known in advance. Thus one-time preprocessing, even if computationally expensive, would
be attractive if it leads to efficient decoding. We prove in Section 3 (assuming NP does not
have polynomial-size circuits) that for some Reed-Solomon codes no such preprocessing
procedure can exist. This strengthens the main result of Bruck and Naor [4] in the same way
that Theorem 5 strengthens the main result of Berlekamp, McEliece, and van Tilborg [3].
We conclude in Section 4 with a brief discussion, pointing out several simple corollaries of
Theorem 5 and suggesting a number of interesting open problems related to our results.



2. MLD-RS is NP-complete

As in [3], we reduce from HREE-DIMENSIONAL MATCHING. Let!d = {1,2,...,t} and
let 7 be a set of ordered triples ovigh, thatis7 C U x U x U. A subsetS of 7 is called
amatching if |S| = t and every two triples i differ in all three positions. As shown by
Karp [13] back in 1972, the following decision problem is NP-complete.

Problem: THREE-DIMENSIONAL MATCHING

Instance: Asetoforderedtripleg C {1,2,...,t} x{1,2,...,t} x{1,2,...,t}.

Question: Is there a matching i, namely a subse&® C 7 consisting of exactly
triples such thatl(s,s’) = 3 for all distincts, s’ € S?

We shall write an instance of HREE-DIMENSIONAL MATCHING as{t,7 }. We hence-
forth assume w.l.o.g. thaf | > ¢ + 1 (otherwise, the problem is trivially solvable in poly-
nomial time). The following deterministic procedure converts any such instgnde}
into an instancg m, D, k, w, y} of MLD-RS.

A. COMPUTING THE INTEGER PARAMETERS : Setm = 3t,k = |T| — (t+1),
andw = t. Letn = |T|.

B. COMPUTING THE EVALUATION SET : Letg = 2™. First, construct the finite
field F, — that is, generate an irreducible (o\r) binary polynomial of de-
greem which defines addition and multiplicationlify . Let«x denote a root of
this polynomial. Then the sétl, o, a?, ..., a1} is a basis foif, overF,.
Now, convert each tripl€s, b, ¢) € 7 into a nonzero element @f, as follows:

(Ll, b, C) — oy — aafl +0€t+b71 + “2t+cfl (1)
This produces: = |7 | distinct nonzero elements, x,, ..., x, €IF;. Setthe
evaluation seD to {x1,x3,...,x,}.

C. COMPUTING THE TARGET VECTOR : Computey = 1+ a + --- 4+ a1
in ;. Thusy is the element off;, that corresponds to the binamy-tuple
(1,1,...,1) in the chosen basis. Now, for eagh-1,2,...,w+1, compute

w+1
y— Y x
def % | def
e 1 e
Zj = w+l—] and Pj = |_| (xj — B) 2)
[ (xj—xi) pEfD
%

Note thatpq, @, ..., @1 are all nonzero by definition. Set the target vec-

tory = (y1,¥2,-- -, yn) 10 (21/91,22/ 02, - .., Zwi1/ Pw+1,0,0,...,0). In
other words:y; = z;/¢;for j =1,2,...,w+1, andy; = 0 otherwise.

We will refer to the foregoing computation as t8&M/MLD-RS conversion procedure.
It is not immediately clear that this procedure runs in polynomial time (note that the con-
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version procedure has to run in time which is polynomial in the size of theeE-Di-
MENSIONAL MATCHING instance{t, 7 }, and therefore in time that is polynomial in the
logarithm of the field size). This fact is, therefore, established in the following lemma.

Lemma 1. The 3-DM/MLD-RS conversion procedure runs in time and space that are bo-
unded by a polynomial in the size of the instance {t, T }.

Proof. Step A is trivial. The only thing that is not immediately obvious in Step B is whe-
ther a primitive irreducible binary polynomial of degree= 3t can be generated in deter-
ministic polynomial time. However, Shoup [20] provides a deterministic algorithm for this
purpose, whose complexity &(m°) operations irfff,. Clearly,y andzy, zs, ..., zy41 in
Step C can be computed in polynomial time and space. However, it is not clear whether this
is also true forpq, @7, ..., pw11. Indeed, a straightforward evaluation of the expression
for ¢; in (2) takes2™ — n additions and multiplications ifi;. Thus we now show how to
computep; in polynomial time. Define the polynomials

M(x) % X—B) = X1-X )
(X) /3|€'L( )
D(X) € (X-8) = T diX @)
BeD =0

and letG(X) denote the rational functioM (X) /D(X). Theng; = G(x;) in view of (2).
Itis easy to see from (3) and (4) thatis a simple root of botM (X) andD(X). Therefore
G(x;) = M'(x;)/D'(x;), whereM'(X) andD’ (X) are the first-order Hasse derivatives of
M(X) andD(X), respectively. Note that!’(X) = 1 in a field of characteristi2. Thus

1
n/
N
> dai1 Xy’
=)

wheren’ = | (n — 1) /2| and the coefficientdy, dy, . . ., d, are elementary symmetric func-
tions ofxy, xy, . .., x,. These coefficients can be computed from (4) in tie:?). Given
do,d,...,dy, the computation in (5) clearly requires at mGBton) operations iflf; . §

@ = for j=1,2,...,w+1 (5)

Let H = [h; ;] be the(w+1) x n matrix overl, defined byk; ; = x?‘l forj=1,2,...,n
andi =1,2,...,w+1, wherexy, xp, ..., x, are given by (1). Explicitly

1 1 .- 1
X1 Xp -+ Xp
def 2 2 2
H = X1 X5 o Xy (6)
w w w
L X1 X Xy

The following lemma is a key step in our reduction frorAREE-DIMENSIONAL MATCH-
ING to MLD-RS. This lemma owes its general idea to [23, Lemma 1].
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Lemma 2. The set T has a matching if and only if there is a vector v € FZ; of weight < w
such that Ho' = (0,0,...,0,1,y)".

Proof. Following Berlekamp, McEliece, and van Tilborg [3], we first constructithe »
(or 3t x |7T|) binary matrixV having the binary representations xof, x, ..., x, as its
columns. As noted in [3]7 has a matching if and only if there is a setwof= t columns
of V that add to the all-one vector. The latter condition can be equivalently stated,pover
as follows: there is a subsé¥; , x;,, ..., x; } of D such thaty; +x;, +---+x;, = V.
Suppose thaf” has a matching, so that such a §et, x;,, ..., x; } C D exists, and con-
sider the matrix

1 1 1 0
xil xiZ e xiw 0
2 2 2
X, X, X 0
A = : : : : (7
D
11 %) Ly
w—1 w—1 w—1
it i Yi
w w cee W
| il xiz xlw ’)/ _

It was shown in [23, Lemma 1] that

detA - (‘y - xil_xiz_ e _xiw) |_L (xib - xiﬂ) (8)
I<a<bgsw

HenceA is singular, so there exists a nonzero veatet (uy,uy,. .., Uypr1) € IE‘,;““ such

that Au’ = 0. We claim thatu,, . 1 # 0. To see this, replace the last columnAby the
vector(1,1,...,1)! to obtain the(w+1) x (w-+1) matrix A. If u,.1 = 0thenA’u’ = 0,

which is a contradiction sinaget A’ is clearly nonzero (as; # 1forall j by (1), itis the
determinant of a Vandermonde matrix with distinct columns). We can now construct a vec-
torv = (v1,02,...,04) € IF; of weight< w as follows

"
S ST x; = x;, forsomere{1,2,...,w}
! 0 otherwise

It should be obvious from (6), (7) and the fact tiat’ = 0 thatHo! = (0,0,...,0,1,)".

Conversely, assume that there is a vetvt&rIF‘g,1 such thatHv! = (0,0,...,0, 1,7/)t and
wt(v) < w. Write 6 = wt(v) and let{iy, iy, ...,is} be the set of nonzero positionsaf
Let{ist1,i542,--.,1iw} be anarbitrary subsetéf, 2, ..., n} of sizew — 4, that is disjoint
from {i1,iy,...,is}. Then, asin (8), we have

0 = detA = (Y—xil—xiz_"’_xiw) l_L (xib—xiu) )
1<a<

<w

since the fact thatlo! = (0,0,...,0,1,y)! implies that the matrix in (7) is singular. Since
x1,X2,...,x, are all distinct, it follows from (9) that; + x;, +--- +x;, = y. This, in
turn, implies that there is a matchingIn, and we are doneg
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Recall thatt = |7 | — (t+1) = n — (w+ 1) in our conversion procedure, and {&be the
(n, k) linear code oveF, having the matrix{ in (6) as its parity-check matrix. Further, let
z = (z1,22,--+,20+1,0,0,...,0) € Fy, wherezy, zy, ..., zy11 are defined by (2). The
following corollary is an easy (and somewhat redundant) consequence of Lemma 2.

Corollary 3. The set T has a matching if and only if the code C def {Q el : Ho! = O}
contains a codeword at Hamming distance < w from z.

Proof. In view of Lemma 2, it would suffice to show that the syndrome wofith respect
toHis (0,0,...,0,1,y)! Explicitly, we need to prove that

1 1 -1 2 0
x; xg ce x;”"'l Zy 0
Hzt — xl x2 .. warl 23 — 0 (10)
Do : 1
xw xw . xw zZ
L X1 X w+1 1 LA+ s

The easiest way to see that the second equality in (10) holds is to regard this as a system of
linear equations in the indeterminatgszy, . . ., z,+1. Let M denote théw-+1) x (w+1)

matrix in (10). SinceM is clearly nonsingular, the system admits a unique solution, given

by zj = det M]- /detMforj=1,2,..., w+1, WhereMj is the matrix obtained from\1

by replacing the-th column with(0,0,...,0,1,y)". Now

w—+1
detM; = + | y— z X |_| (xp — xa) for j=1,2,...,w+1
0 )

as in (8), whiledet M is the Vandermonde determingf{ <, p<q+1(xp — x42). From this,
the expression foz; in (2) easily followsg

The last observation we need is that the c6diefined in Corollary 3 is just a generalized
Reed-Solomon code. Specifically, let us extend the definitiam o, . . ., @11 10 (2) to
allj =1,2,...,nand consider the mappings: IFZ; — IF; andp 1 IFZ; — ]F‘]i1 defined by

def
@(ui, uy,... uy) = (@1u1, QU ..., Puliy)
_ def
% 1(“1/”2/---/1’[11) = (u1/@1,u2/02, -, Un/Pn)
Note thatp ! is well-defined sincep1, ¢», . . ., ¢, are all nonzero. Also note that bogh
ande~! are bijections and isometries with respect to the Hamming distance.

Lemma 4.
¢ 1(C) = Cy(D,k)

Proof. We will prove the equivalent statement tltats the image ofC,(D, k) undere.
LetG = [g; ;] be thek x n matrix overF, defined byg; ; = x;.*l foralli=1,2,...,kand
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j=1,2,...,n ltis well known (and obvious) thak is a generator matrix fo€, (D, k).
Hence a generator matrix for the image@®f(D, k) underg is given byG' = [gl ] where
gZ = @jx xi~1. It would therefore suffice to prove th&’ is a generator matrlx for the
codeC which is equivalent to the statement tiat= G’H' is thek x (w+1) all-zero ma-

trix. By definition, a generic entry @ = [b, 5] is given by

n

n n
Zgr] s]=Z<p]’151 Z r+52 (11)
=1 =1

forr=1,2,...,kands =1,2,...,w+1. Now, IetIE‘; denote the set of nonzero elements
in IF;, and define the polynomials

g—n—1 )
X)L Mx-p =73 wx (12)
BEFAD =0
o(X) ¥ Xw(X) = [1(X-p) (13)
BEF\D

By the definition ofp; in (2), we havep; = ®(x;) = x;¥(x;) forall j = 1,2,...,n. Sub-
stituting this in (11), we obtain
g—n—1

z r—l—s 2 _ z\y(ﬁ)ﬁﬂ-s—l — Z Z ij ﬁj ﬁr—l—s—l (14)
=1 Bl Beky j=0

where the second equality follows from the fact tHgj3) = 0 for all 3 € F;\D. Finally,
interchanging the order of summation in (14), we obtain

g—n—1 _ g—n—-1 q-2 sl g—n—-1 q-2
Z 11)] [5]+Y+S—1 — Z II)] z (OCZ)] — Z 11)] z él (15)
7=0 Beky 7=0 i=0 7=0 i=0

wherea is a primitive element of, andé = a/t"t5=1 The last summation in (15) is
a geometric series which evaluates{&‘} —1)/(& —1) = 0 providedé # 1. However,
since2 < r+s < n, itis easy to see that we will always have< j+r+s—1< g — 2.
Henceé = ocf+’+5—1 # 1. Thusb,; = 0 for all r ands, and the lemma followsg

We are now ready to prove our main result in this paper. Indeed, all that remains to be done
to establish thaMLD-RS is NP-complete is to combine Lemma 4 with Corollary 3.

Theorem 5. MLD-RS is NP-complete.

Proof. Note thaty = ¢~!(z) in the3-DM/MLD-RS conversion procedure. Singe !
is an isometry, it follows from Lemma 4 that there is a codewoedC, (D, k) such that
d(¢,y) < wif and only if C contains a codeword at distangew from z. By Corollary 3,
this happens iff the séf has a matching. Hence tBeDM /MLD-RS conversion procedure
is a polynomial transformation fromHREE-DIMENSIONAL MATCHING to MLD-RS. g
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3. Hardness ofMLD-RS with preprocessing

As noted in [4, 16], the formulation dfILD-RS in the previous two sections might not be

the relevant one in practice. In coding practice, the code to be decoded is usually known
in advance; moreover, this code remains the same throughout numerous decoding attempts
wherein only the target vectar changes. Thus it would make sense to assume that the
code is knowna priori and can be preprocessed for a long time (essentially, unlimited
time) in order to devise an efficient decoding algorithm.

In the special case of Reed-Solomon codes, the general observation above reduces to the
following assumption: the Reed-Solomon cddg D, k) — namely, the set of evaluation
pointsD = {x1,xy,...,x,} C F; and the dimensiok — is known in advance (and can

be preprocessed for as long as deswed) and only the target y@@j‘ is part of the input.

The corresponding decision problem can be formally phrased as follows.

Problem: MLD-RS wWITH PREPROCESSING

Instance: A target vectory € I},

Question: Is there a codeworde Con (D, k) such thati(c, y) < w?

Observe that the above defines not one problem, but a whole set of problems — one for each
realization ofm, D, k, andw. We shall henceforth refer to a specific problem in this set as
MLD-RSwP(m, D, k, w). Asking whether a given probleMLD-RSwP (m, D, k, w) is
computationally hard makes no sense, since the size of the ]yrmﬂm;‘m to this problem

is at mostnn bits, while bothrz andn = |D| are fixed. Thus asymptotic complexity ques-
tions concerning a specific probledlLD-RSwP (m, D, k, w) are ill-posed.

So what can we do in order to show that maximume-likelihood decoding of Reed-Solomon
codes is computationally hard even with unlimited preprocessing? Here is a sketch of the
answer to this question. We can prove that:

There is an infinite sequence Py, P, ... of MLD-RSwWP(-, -, -, ) prob-

lems such that m; < my < --- and |D1| < |Dy| < - - - with the follow-

ing property: under a certain assumption that is widely believed to be true, (%)
there does not exist a constant ¢ > 0 such that for all sufficiently large i,

each problem P; can be solved in time and space at most (m; + |D;|)°.

The precise meaning ofP; can be solved in time and space at most + |D;|)¢ " in (%)

is that there exists a circull; of size at mostm; + | D;| )¢ that solvesP; for every possible
input y € F/', whereq = 2™ andn = |D;|. Observe that we allow different circuits for
different problems — that s, the circu@i; solving?; = MLD-RSwP (m;, D;, k;, w;) may
depend onn;, D;, k;, andw;. This corresponds to the “nonuniform” version of the clBss

of polynomial-time decidable languages, where one can use different programs for inputs
of different sizes. The resulting complexity class is usually denote®)/@ely. Thus the
“assumption that is widely believed to be true” if) {s thatNP ¢ P/poly or, in words,

that not every language INP has a polynomial-size circuit. It is indeed widely believed
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thatNP ¢ P/poly. In fact, it was shown by Karp and Lipton [14] that\fP C P /poly

then the polynomial hierarchy collapses at the second level, nanfgbzf = Z’;. For

more details on this and more rigorous definitions of the terms used in this paragraph, we
refer the reader to Bruck-Naor [4] and to Papadimitriou [17].

How can one prove a statement such-8& (The usual way (cf. [4, 8, 16]) to do this is as
follows. Start with an NP-complete problerm Then devise a deterministic procedure that
converts every instanceof IT into m, D, k, w, andy with the following properties:

P1. The parameters, D, k, w depend only osize(Z), the size of the instancg,
and are constructed in time and space that are polynomsaté{Z).

P2. The target vectoy is also constructed in time and space that are polynomial
in size(Z), but may depend on the instariEéself rather than only on its size.

P3. The targef v} is a YES instance of the constructeédl D-RSwP (1, D, k, w)
problem if and only ifZ is a YES instance dfl.

For an explanation of this method and for precise definitiosiné(Z), we again refer the
reader to [4, 17]. Here, we takéto be the HREE-DIMENSIONAL MATCHING problem
introduced in the previous section. In this case, we can assume, as in [16], that the size of
an instancet, 7 } of THREE-DIMENSIONAL MATCHING is simply¢.

The following deterministic procedure combines the ideas of the previous section with
a suitably modified version of a reduction due to Lobstein [16]. Incidentally, Lobstein’s
reduction [16] is by far the simplest way known (to us) to prove MBD-Linear remains

hard with unlimited preprocessing (cf. [4, 8, 19]). Given an instafitc& } of THREE-DI-
MENSIONAL MATCHING, we proceed as follows.

A. COMPUTING THE INTEGER PARAMETERS : Setm = 3(t3+t), w = 3+t
andk = 313 — (t+1). Letn = 415

B. COMPUTING THE EVALUATION SET : As in the previous section, lgt= 2.
First, construct the finite fieldf, and fix a basig1, &, a?, ..., a1} for F,
overF,. Letid = {1,2,...,t}, and impose an arbitrary order on tHetriples
inUxUxU, say(al,bl,cl), (le, bz, Cz), ceey (at3'bt3’Ct3)' Define

Ocajfl_l_ OCH*bj*l + 0621’4*6]‘71 + “3t+]'*1 for 1 < ] < t3

a3t (=) =1 4 p3t+j=1 4 o3t+(+P)=1  for 43 < i< 243

o3t (—17) =1 4 3t+j-1 for 263 < j

o3+ (j=) =1 for 3t3 < |

x]' = (16)

< 388
< 483

This produces: = 4t distinct nonzero elements;, x5, ..., x, € ;. Set the
evaluation seD to {x1,x3,...,x,}.

*The evaluation pointsy, x5, ..., x, may be better understood in terms of the maix defined in (19),
whose columns are binary representations9f,, . . ., x, with respect to the basisl, o, a2, ..., a1},
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C. COMPUTING THE TARGET VECTOR : Lety = (x1,Xx2,---,xp) bethe char-
acteristic vector of” C U x U x U. Thatisy; = 1ifthe j-th triple (aj, bj, cj)
of U x U x U belongs tdZ, andy; = 0 otherwise. Compute

def 3t

I B
y = Z LI <“t3+1> Z oncj 1Pl Z o (17)
=1 =1 =1

Thusy is an element of;, that corresponds to the binanytuple(1, X7/ X7s 1)
in the chosen basis, where the fitsin (1,)_(7,)_<T, 1) is the all-one vector of
length3t while the second is the all-one vector of lengti¥. From here, pro-
ceed exactly as in the previous section: for epehl,2,..., w+1, compute

w+1

- def i#]
I T w1

def
and ;= [](;—-8) (18)
BEF\D
1=1
i#]
Setthe target vectorto (z1 /91, 22/ 92, - - -, Zw+1/Pw+1,0,0,...,0). In other
words:y; = z;/@;for j=1,2,...,w+1, andy; = 0 otherwise.

We will refer to the foregoing computation as tBedM/MLD-RSwWP conversion proce-

dure. 1t should be evident from Lemma 1 that this procedure runs in time and space that are
polynomial int. Furthermore, itis clear that, k, w in Step A andD in Step B depend only

ont. Thus propertie®1 andP2 above are satisfied, and it remains to prove propegy

To this end, consider the x n (or 3(t341t) x 4t3) binary matrixW having the binary rep-
resentations of1, x,, ..., x,, as its columns. By construction — compare with the defini-
tion xq, xp, ..., x, in (16) — this matrix has the following structure:

ulololo
Il1lo0]o

W = (19)
oI |I]o
0111

wherel is thet? x t3 identity matrix and.l is the3t x > matrix consisting of the binary rep-
resentations of the triples inl{ x U x U —that s, thej-th column ofU is the binary rep-
resentation 0"/ !+ ol T2 o4~ where(aj, bj, ¢;) is thej-th triple ind x U x U.

Lemma 6. The set 7 has a matching if and only if there is a set of exactly w = 3 +t
columns of W that add to the vector (1, Xgr X l)t, which is the binary representation of y.

Proof. Since the order imposed on the tripleg6% U x U is arbitrary, we may assume
w.l.0.g. that the triples iff” correspond to the fir$? | columns of the matrixI. (=) Sup-
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pose there is a vectere F with wt(v) = * + t such thatVo' = (1, x.., x.-, 1)". Write
v = (vq,0,,03,04), Wherev,, v,, v3, v, are vectors of lengtk?. Fori = 1,2, 3, 4, let

n % the weight of the first7 | positions ofy;

i % the weight of the last® — |7'| positions ofy;

The structure of the matrik/ in (19) along with the fact thatvo! = (1, x.-, x, 1) imply
the following relationships

M = |T|—m and i, = Ay (sincev; +0, = x,) (20)
m = |T|—m and 13 = 7y (sincev, +v3 = x.;) (21)
iy = 2 —|T| and 74 = 0 (sincevy =1— (v +v3) =1—x,) (22
amongn1, N2, N3, N4 andny, Az, A3, f4. Using (20), (21), (22) in conjunction with the fact
thatwt(v) = m1 +nm2 + 13+ na + M1+ 72 + i3 + fla = £2 + ¢, we obtain
m+3m =t (23)

Butwt(v;,) = m1 + 1 > t, sincellv] = 1" and the weight of each column bf is 3. In
conjunction with (23), this implies that

m=t and 7 =0

This means that there are sofrmlumns among the fir$7 | columns ofU (corresponding
to the triples in7") that add (moc) to the all-one vector. Hence, there is a matchin@ in
(<) Conversely, suppose there is a matchin@ inWe then take; to be the binary vector
of length#3 and weight whose nonzero positions are given by the correspondintumns
of U. Setting

Uy = X;—0, vz =0, and y =1—x, (24)
it is easy to verify that the vectar = (v;, v,, v3,v4) satisfiesWo! = (1, Xy X 1)! and
has weight + (|7 |—t) +t+ (B—|T|) = £ + t. & o

To prove that3-DM/MLD-RSwP conversion procedure satisfies propd?8; it remains
to combine Lemma 6 with the results of the previous section.

Lemma 7. The set T has a matching if and only if there is a codeword c € Cy(D, k) such
that d(c, z) < w, where q = 2" and m, k, D, w, y are the values computed from {t, T}
in the 3-DM/MLD-RSWP conversion procedure.

Proof. Let H be the(w+1) x n parity-check matrix in (6), but with1, x5, ..., x,, now
defined by (16). Using Lemma6 and proceeding exactly as in Lemma 2, we conclude that
7 has a matching if and only if there is a vectoe IF; of weight< w such that

Hv' = (0,0,...,0,1,7)
wherey is given by (17). By Corollary 3 and Lemma 4 of the previous section, this happens
if and only if there is a codeworde C,(D, k) such thati(c, y) < w. 1

12



Theorem 8. There is an infinite sequence of Reed-Solomon codes {Cym; (Dj, ki) } ;. that
can be explicitly specified in terms of the underlying fields Fym, , Fym, , . .., evaluation sets
Dy C Fomy , Dy € Fymy, ..., and dimensions ki, ky, . . ., such that the following holds: un-
less NP C P /poly and the polynomial hierarchy collapses at the second level, there is no
polynomial-size family of circuits {C; };>1 so that C; solves the maximum-likelihood decod-
ing problem for the code Cym; (D;, k;), foralli =1,2,....

Proof. Lemma 7 proves that tt&DM /MLD-RSwP conversion procedure satisfies prop-
ertiesP1, P2, andP3. Since THREE-DIMENSIONAL MATCHING is NP-complete, this im-
mediately implies the theorem (see the discussion at the beginning of this segtion).

Theorem 8 is our main result in this section. In plain language, this theorem says that there
exist Reed-Solomon codes for which maximume-likelihood decoding is computationally
hard even if unlimited preprocessing of the code is allowed.

4. Discussion and open problems

We first revisit the disclaimer at the end of Section 1, and observe that it leads to an interest-
ing open problem. Th8-DM/MLD-RS conversion procedure produces a specific class of
Reed-Solomon codes, and Theorem 5 says that there exist codes in this class that are hard
to decode (unlesB = NP). Note, however, that sind®| = |7 | < t° while |F,, | = 2%

in our conversion procedure, all the codes in this class use only a tiny fraction of the under-
lying field as evaluation points. Thus our hardness results do not apply if, say, all the field
elements (or all the nonzero field elements) are taken as evaluation points, as is often the
case with Reed-Solomon codes. On the other hand, most algebraic decoding algorithms for
Reed-Solomon codes [12, 21, 24] do not take advantage of this fact and work just as well
for arbitrary sets of evaluation points (such as those produced by our conversion procedure).

Nevertheless, it remains an intriguing open question whether a similar hardness result can
be established for Reed-Solomon codes that use the entire field (or a large part thereof)
as their set of evaluation points. The proof of this (if it exists) will probably require new
techniques, and might also pave the way for establishing NP-hardness of maximum-like-
lihood decoding for primitive binary BCH codes. We observe that such a proof would
immediately imply hardness with unlimited preprocessing, since in this situation the code
is essentially fixed: only its rate and the received syndrome are part of the input.

We next record a simple corollary to our main result. It is well known [5, Chapter 10,
p. 281] that the covering radiysof an (1, k) Reed-Solomon cod€,(D, k) is given by
p=n—k. Avectory € F/' is said to be aleep hole of C4(D, k) if the distance frony to
(the closest codeword of) this code is exagilyWe observe that the value ofin the reduc-
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tion of Section2 is1 — k — 1 = p — 1, so that we are asking whether there exists a code-
wordc € C4(D, k) such thati(c, y) < p— 1. This is equivalent to the question:iisa deep
hole of C;(D, k)? Hence, Theorem 5 immediately implies the following result.

Corollary 9. It is NP-hard to determine whether a given vector y € I is a deep hole of
a given Reed-Solomon code C4(D, k). B

In fact, it is easy to see from the proof of Lemma 2 that the distance from the vector-
structed in the8-DM/MLD-RS conversion procedure 0, (D, k) is at leastw = p — 1.

Thus an even more specialized task is NP-hard: given a vector which is either at distance
or at distancey — 1 from C, (D, k), determine which is the case. Note that the reduction in
Section 3 still has the property that= n — k — 1 = p — 1. Thus identifying deep holes

of a Reed-Solomon code (or deciding whether a given vector is at distaorge— 1 from

the code) is computationally hard even if unlimited preprocessing of the code is allowed.

Concerning the results of Section 3, we observe that a polynomial-time maximum-likeli-
hood decoding algorithm for some specific Reed-Solomon codes (if it ermstsimake
essential use of the structure of the evaluation sets for these codes. Section 3 shows that,
assuming NP does not have polynomial-size circuits, there is no generic representation of
the evaluation points that would permit polynomial-time maximume-likelihood decoding.

We conclude the paper with two more open problems. First, it would be interesting to estab-
lish NP-hardness of maximume-likelihood decoding for a nontrivial familpiaary codes.
Straightforward concatenation of Reed-Solomon codes Byewith (2 —1,m, 2’”‘1)
simplex (Hadamard) codes does not work, since the length of the concatenated code would
be exponential in the length of the Reed-Solomon code for our reduction.

Another important open problem is this. As discussed in Corollary 9, maximume-likelihood
decoding of Reed-Solomon codes becomes hard when the number of errors is large — one
less than the covering radius of the code. It is an extremely interesting problem to show
hardness obounded-distancdecoding of Reed-Solomon codes for a smaller decoding ra-
dius. At present, there remains a large gap between our hardness results and the decoding
radius up to which polynomial-time decoding algorithms are known [12, 15].
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