HARDNESS AMPLIFICATION VIA
SPACE-EFFICIENT DIRECT PRODUCTS

VENKATESAN GURUSWAMI AND VALENTINE KABANETS

Abstract. We prove a version of the derandomized Direct Product
lemma for deterministic space-bounded algorithms. Suppose a Boolean
function g : {0,1}"™ — {0,1} cannot be computed on more than a frac-
tion 1 — § of inputs by any deterministic time 7" and space S algo-
rithm, where § < 1/t for some ¢t. Then for t-step walks w = (v1,...,v;)

in some explicit d-regular expander graph on 2" vertices, the function

g (w) def (9(v1),...,9(v)) cannot be computed on more than a frac-

tion 1 — Q(t5) of inputs by any deterministic time ~ T'/d" — poly(n)
and space =~ S — O(t) algorithm. As an application, by iterating this
construction, we get a deterministic linear-space “worst-case to con-
stant average-case” hardness amplification reduction, as well as a family
of logspace encodable/decodable error-correcting codes that can correct
up to a constant fraction of errors. Logspace encodable/decodable codes
(with linear-time encoding and decoding) were previously constructed by
Spielman (1996). Our codes have weaker parameters (encoding length
is polynomial, rather than linear), but have a conceptually simpler con-
struction. The proof of our Direct Product lemma is inspired by Dinur’s
remarkable proof of the PCP theorem by gap amplification using ex-
panders (Dinur 2006).

Keywords. Direct products, hardness amplification, error-correcting
codes, expanders, random walks.

Subject classification. 68Q17, 68Q25, 68P30, 94B05, 94B35

1. Introduction

1.1. Hardness amplification via Direct Products. Hardness amplifica-
tion is, roughly, a procedure for converting a somewhat difficult computational
problem into a much more difficult one. For example, one would like to convert
a problem A that is worst-case hard (i.e., cannot be computed within a certain
restricted computational model) into a new problem B that is average-case
hard (i.e., cannot be computed on a significant fraction of inputs).

The main motivation for hardness amplification comes from the desire to
generate “pseudorandom” distributions on strings. Such distributions should

2 Guruswami & Kabanets

be generated using very little true randomness, and yet appear random to any
computationally bounded observer. The fundamental discovery made by [Blum
& Micali| (1984) and [Yao (1982) was that certain average-case hard problems
(one-way functions) can be used to build pseudorandom generators. Later
Nisan & Wigderson, (1994) showed that Boolean functions of sufficiently high
average-case circuit complexity can be used to derandomize (i.e., simulate effi-
ciently and deterministically) any probabilistic polynomial-time algorithm.

The construction of Nisan & Wigderson| (1994)) requires an exponential-time
computable Boolean function family {f, : {0,1}" — {0,1}},~0 such that no
Boolean circuit of size s(n) can agree with f,, on more than a fraction 1/2 +
1/s(n) of inputs. The quality of derandomization depends on the lower bound
s(n) for the average-case complexity of f,: the bigger the bound s(n), the better
the derandomization. For example, if s(n) = 2% then every probabilistic
polynomial-time algorithm can be simulated in deterministic polynomial time.

Proving average-case circuit lower bounds (even for problems in determin-
istic exponential time) is a very difficult task. A natural question to ask is
whether a Boolean function of high worst-case circuit complexity can be used
for derandomization (the hope is that a worst-case circuit lower bound may
be easier to prove). The answer turns out to be yes. In fact, worst-case hard
Boolean functions can be efficiently converted into average-case hard ones via
an appropriate hardness amplification procedure.

The first such “worst-case to average-case” reduction was given by Babai,
Fortnow, Nisan, and Wigderson (Babai et al.[1993). They use algebraic error-
correcting codes to go from a worst-case hard function f to a weakly average-
case hard function g. They further amplified the average-case hardness of g via
the following Direct Product construction. Given g : {0,1}" — {0,1}, define
g« ({0,1})* — {0,1}F as ¢F(xy,...,21) = (g(x1),...,9(zx)). Intuitively,
computing g on k independent inputs 1, ..., x; should be significantly harder
than computing g on a single input. We say that a function ¢ is d-hard for
circuit size s if g cannot be computed by circuits of size s on more than a
fraction 1 — ¢ of inputs. In this notation, if g is d-hard for circuit size s, then
one would expect that ¢g* should not be computable (by circuits of approxi-
mately the same size s) on more than a fraction (1 — §)* of inputs. The result
establishing the correctness of this intuition is known as Yao’s Direct Product
lemma (Yao|1982)), and has a number of different proofs (Goldreich et al.|1995;
Impagliazzo|[1995; Impagliazzo & Wigderson|/1997; Levin|([1987).

1.2. Derandomized Direct Products and Error-Correcting Codes.
Impagliazzo| (1995) and Impagliazzo & Wigderson| (1997)) consider a “deran-

Space-Efficient Direct Products 3

domized” version of the Direct Product lemma. Instead of evaluating a given
n-variable Boolean function ¢g on k independent inputs xq, ..., xy, they gener-
ate the inputs using a certain deterministic function F : {0,1}" — ({0, 1}")*
such that the input size r of F'is much smaller than the output size kn. They
give several examples of the function F' so that the average-case hardness of
the derandomized Direct Product function is about the same as that of the
standard, non-derandomized Direct Product function. In particular, Impagli-
azzo (Impagliazzo|[1995) shows that if g is d-hard (for certain size circuits) for
§ < 1/0(n), then for a pairwise independent F' : {0,1}*" — ({0,1}™)", the
function ¢'(y) = (9(F(y)1),--.,9(F(y)n)) is Q(dn)-hard (for slightly smaller
circuits).

Trevisan, (2003) observes that any Direct Product lemma proved via “black-
box” reductions can be interpreted as an error-correcting code mapping bi-
nary messages into codewords over a larger alphabet. Let us first consider the
case of the standard, non-derandomized Direct Product lemma. Think of an
N = 2™-bit message Msg as a truth table of an n-variable Boolean function g.
The encoding Code of this message will be the table of values of the Direct-
Product function g*. That is, the codeword Code is indexed by k-tuples of
n-bit strings (z1,...,xx), and the value of Code at position (z1, ..., ;) is the
k-tuple (g(z1),...,9(xk)). The Direct Product lemma says that if g is 6-hard
for circuit size s, then ¢g* is € &~ 1 — (1 — §)*-hard for circuit size s, for some
s’ < s. Usually the proof is constructive in the sense that it gives an explicit
algorithm A with the property: Given access to some circuit computing ¢g* on
all but at most an ¢ fraction of inputs, the algorithm A produces a slightly
larger circuit that computes g on all but at most a § fraction of inputs (or a
list of circuits such that at least one of them computes g on all but at most a
d-fraction of inputs).

In the language of codes, this means that given (oracle access to) a string
w over the alphabet ¥ = {0, 1}* such that w and Code disagree in less than
e fraction of positions, we can construct (a list of N-bit strings containing)
a string Msg' such that Msg and Msg' disagree in less than a ¢ fraction of
positions. Here the algorithm A from the proof of the Direct Product lemma
is used as a decoding algorithm for the corresponding code.

Note that the error-correcting code derived from a Direct Product lemma
maps N-bit messages to N*-symbol codewords over the larger alphabet ¥ =
{0,1}*. A derandomized Direct Product lemma, using a function F : {0,1}" —
({0,1}")* as described above, yields an error-correcting code with encoding
length 2". For example, the pairwise-independent function F' from Impagli-
azzo’s derandomized Direct Product lemma would yield codes with encoding

4 Guruswami & Kabanets

length N2, which is a significant improvement over the length N*.

The complexity of the algorithm A from the proof of a Direct Product
lemma determines the complexity of the decoding procedure for the correspond-
ing error-correcting code. In particular, if a reduction uses some non-uniformity
(say, m bits of advice), then the corresponding error-correcting code will be only
list-decodable with list size at most 2. If one wants to get codes with ¢ being
asymptotically close to 1, then list-decoding is indeed necessary. However, for
a constant e, unique decoding is possible, and so one can hope for a proof of
this weaker Direct Product lemma that uses only uniform reductions (i.e., no
advice).

1.3. Derandomized Direct Products via uniform reductions. The de-
randomized Direct Product lemmas in (Impagliazzo|1995; Impagliazzo & Wigder-
son| |1997) are proved using nonuniform reductions. Using the graph-based
construction of error-correcting codes of |(Guruswami & Indyk (2001)), Trevisan
(2003) proves a variant of a derandomized Direct Product lemma with a uni-
form deterministic reduction.

More precisely, for certain k-regular expander graphs G, on 2" vertices
(labeled by n-bit strings), Trevisan| (2003)) defines the function £ : {0,1}" —
({0,1}™)* as F(y) = (y1,- .., yx), where the y;’s are the neighbors of the vertex
y in the graph G,. He then argues that, for a Boolean function ¢ : {0,1}" —
{0,1}, if there is a deterministic algorithm running in time 7'(n) that solves
J) = (9(FY)1),.--,9(F(y)x)) on (1) fraction of inputs, then there is a
deterministic algorithm running in time O(T'(n) - poly(n, k)) that solves g on a
fraction 1 — § of inputs, for 6 = O(1/k). That is, if g is 6-hard with respect to
deterministic time algorithms, then ¢’ is (1)-hard with respect to deterministic
algorithms running in slightly less time. Note that the input size of ¢ is n,
which is the same as the input size of g.

The given non-Boolean function ¢’ : {0,1}" — {0,1}* can be converted
into a Boolean function ¢” on n + O(log k) input variables that has almost the
same (1) hardness with respect to deterministic algorithms. The idea is to
use some binary error-correcting code C mapping k-bit messages to O(k)-bit
codewords, and define g”(z,) to be the ith bit of C(¢'(x)).

1.4. Our results. In this paper, we analyze a different derandomized Direct
Product construction. Let G, be a d-regular expander graph on 2" vertices, for
some constant d. Denote by [d] the set {1,2,...,d}. For any ¢ and any given
n-variable Boolean function g, we define ¢’ to be the value of ¢ along a t-step
walk in G,,. That is, we define ¢’ : {0,1}" x [d]' — {0, 1} as ¢/(x,i1,...,4;) =
(9(z0), g(x1), ..., 9(x:)), where zy = x, and each z; (for 1 < j < t) is the i;th

Space-Efficient Direct Products 5)

neighbor of x;_; in the graph G,,. We show that if g is /-hard to compute by
deterministic uniform algorithms running in time 7" and space S for § < 1/t,
then ¢’ is Q(td)-hard with respect to deterministic algorithms running in time
~ T/d" — poly(n) and space =~ S — O(t).

Note that if ¢ is 0-hard, then we expect ¢'(z1,...,z;) = (9(x1),...,9(x;))
(on ¢ independent inputs) to be ¢ = 1 — (1 — §)*-hard. For § < 1/t, we
have ¢’ ~ td, and so our derandomized Direct Product construction described
above achieves asymptotically correct hardness amplification. Our result thus
provides yet another example where samples obtained by taking a random walk
on an expander graph can be used instead of truly independent random samples
without a significant deterioration of parameters of interest (in our case, the
hardness ¢').

Combining the function ¢’ with any linear error-correcting code C (with
constant relative distance) mapping (¢ + 1)-bit messages into O(t)-bit code-
words, we can get from ¢’ a Boolean function on n + O(t) variables that also
has hardness §2(¢0). Fix ¢ to be a large enough constant so that this €2(¢) is at
least 20. Applying these two steps (our expander-walk Direct Product followed
by an encoding using the error-correcting code C) to a given d-hard n-variable
Boolean function g for log(1/4) iterations, we obtain a new Boolean function g”
on n+ O(log(1/6)) variables that is €2(1)-hard. If g is §-hard for deterministic
time 7" and space S, then ¢” is ©(1)-hard for deterministic time ~ T"- poly(J)
and space ~ S — O(log(1/9)).

As a corollary, we can convert a worst-case hard function for linear space
into a constant average-case hard function for linear space. Using the pre-
viously mentioned connection to codes, our methods also imply a family of
error-correcting codes that can be encoded and decoded from a constant frac-
tion of errors in logarithmic space. These consequences are not new and also
follow from Spielman’s work (Spielman||{1996|) on linear time codes (his codes
are also logspace encodable and decodable). This is discussed in more detail in
the next section.

In terms of running time, this iterated Direct Product construction matches
the parameters of Trevisan’s Direct Product construction described earlier.
Both constructions are proved with uniform deterministic reductions. The
main difference seems to be in the usage of space. Our reduction uses at
most O(n + log(1/9)) space, which is at most O(n) even for 6 = 27". Thus
we get a deterministic uniform “worst-case to constant average-case” reduc-
tion computable in linear space. The space usage in Trevisan’s construction
is determined by the space complexity of encoding/decoding of the “inner”
error-correcting code C from k to O(k) bits, for & = O(1/6). A simple deter-

6 Guruswami & Kabanets

ministically encodable/decodable code would use space (k) = (1/6).

We also show that degree d expanders that have expansion better than d/2
can be used to obtain a simple space-efficient hardness amplification. However,
it is not known how to construct such expanders explicitly.

2. Related work

Impagliazzo & Wigderson (1997) use expander walks in combination with the
Nisan-Wigderson generator (Nisan & Wigderson [1994) to prove a different de-
randomized Direct Product lemma. They start with a Boolean function of
constant average-case hardness (against circuits) and construct a new Boolean
function of average-case hardness exponentially close to 1/2, using probabilistic
reductions that take some advice. In contrast, (i) we analyze the hardness of a
direct product using vertices of an expander walk only, (ii) our Direct Product
lemma works for a different range of parameters (amplifying worst-case hard-
ness to constant average-case hardness), and (iii) our reductions are completely
uniform efficient deterministic algorithms.

A derandomized Direct Product lemma of Impagliazzo (1995) can be used
to amplify inverse polynomial average-case hardness to constant average-case
hardness (against circuits). Instead of vertices of an expander walk, the con-
struction of (Impagliazzo| |1995) uses pairwise independent probability distri-
butions. Given an n-variable Boolean function of average-case hardness n™¢,
the construction there produces a constant average-case hard Boolean function
on about (2°)n variables. Our construction is much more efficient in its use of
additional variables: it produces a constant average-case hard Boolean function
on about n 4 clogn variables.

Our deterministic linear-space hardness amplification result is not new. A
deterministic linear-space “worst-case to constant average-case” reduction can
be also achieved by using expander-based error-correcting codes of Spielman
(1996). His codes have encoding/decoding algorithms of space complexity
O(log N) for messages of length N, which translates into O(n)-space reduc-
tions for n-variable Boolean functions. Also, using Spielman’s space-efficient
code as the inner error-correcting code inside Trevisan’s construction mentioned
above, one could obtain a space-efficient version of the Direct Product lemma
with parameters matching ours. However, the proof of this Direct Product
lemma would rely on a highly non-trivial construction and analysis of codes
from (Spielman |1996); as just remarked, Spielman’s codes by themselves al-
ready give “worst-case to constant average-case hardness” reduction for linear
space. In contrast, our Direct Product lemma does not rely on any sophisti-

Space-Efficient Direct Products 7

cated explicit codes. We only need an error-correcting code for constant-size
messages, and such a code can be obtained by a brute-force search.

In view of the connection between Direct Product lemmas and codes, our
iterated Direct Product construction also yields a deterministic logspace (in
fact, uniform NC') encodable/decodable error-correcting code that corrects a
constant fraction of errors. Spielman’s NC' encodable/decodable codes also
correct a constant fraction of errors, but their other parameters are much bet-
ter. In particular, Spielman’s encoding/decoding is in linear time, and so the
length of the encoded message is linear in the size of the original message. In
contrast, our encoding time and the length of the encoding are only polynomial
in the size of the original message. We believe, however, that our codes have
a conceptually simpler construction, which closely follows the “Direct Product
lemma” approach.

Finally, our proof method is inspired by Dinur’s recent proof of the PCP
Theorem (Dinur|[2006)). She describes a procedure for increasing the unsatis-
fiability gap of a given unsatisfiable Boolean formula by a constant factor, at
the cost of a constant-factor increase in the size of the new formula. Iterating
this gap amplification for O(logn) steps, she converts any unsatisfiable formula
with n clauses to a polynomially larger formula ¢ such that no assignment can
satisfy more than a constant fraction of clauses in ¢. A single step of gap am-
plification uses expanders to define a new, harder formula; intuitively, a new
formula corresponds to a certain derandomized “direct product” of the old for-
mula, where derandomization is done using constant-length expander walks.
In the present paper, we also use constant-size expander walks to derandom-
ize direct products, achieving a constant-factor hardness amplification at the
cost of constant additive increase in the space complexity of the new function.
Iterating this step O(n) times, allows us to convert a Boolean function that is
worst-case hard for linear space into one that is constant average-case hard for
linear space.

Remainder of the paper. We give the necessary definitions in [Section 3]
In [Section 4] we state and analyze our Direct Product lemma. Applications of
our Direct Product lemma to linear-space hardness amplification and logspace
encodable/decodable codes are given in [Section 5| [Section 6| proves a simpler
version of the Direct Product lemma, under the assumption that degree d
expanders with expansion better than d/2 can be efficiently constructed. We

finish with some concluding remarks in [Section 7]

8 Guruswami & Kabanets

3. Preliminaries

3.1. Notation. For integers [< r, we will denote by [l..r] the set of all
integers ¢ where [<17 < r.

A length-k walk on a graph is a sequence of vertices vy, v1, ..., v, where v;
is connected to v;11 for every 0 < ¢ < k. When we say that such a walk passes
through a vertex v in step j, for some 0 < j < £, we mean that v; = v; i.e.,
the walk ends its jth step at the vertex v. For a subset S of vertices, we say
that a walk passes through S in step 7, if the jth step of the walk is a vertex
from S;ie., v; €5.

3.2. Worst-case and average-case hardness. Given a bound b on a com-
putational resource Resource (Resource can be, e.g., deterministic time, space,
circuit size, or some combination of such resources), we say that a function
f A — B (for some sets A and B) is worst-case hard for b-bounded Resource
if every algorithm using at most b amount of Resource disagrees with the
function f on at least one input x € A.

For 0 < 0 < 1 and a bound b on Resource, a function f : A — B is
called average-case §-hard (or, simply, 0-hard) for b-bounded Resource if every
algorithm using at most b amount of Resource disagrees with the function f on
at least a fraction d of inputs from A. Observe that for 6 = 1/|A|, the notion
of §-hardness coincides with that of worst-case hardness.

Finally, when we talk about a combination of resources (e.g., time T and
space S), we mean hardness for algorithms that satisfy all the resource bounds
simultaneously (e.g., running in time 7" and simultaneously in space 5).

3.3. Expanders. Let G = (V, E) be a d-regular undirected graph on n ver-
tices. Let A = (a;j) be the normalized adjacency matrix of G; i.e., a;; = E;;/d
where F;; is the number of edges between ¢ and j. Let Ay,..., A\, be all
eigenvalues of A, ordered in non-increasing order of their absolute values; i.e.,
A1) = [A2] = ... = |\ Tt is easy well known (and easy to show) that [\ = 1.
For a constant A < 1, the graph G = (V, E) is called a A-ezpander if [Xo| < A

It is essentially equivalent to define expanders in terms of the following
expansion property. A d-regular graph G = (V| E) is an («, 3)-expander if for
every subset W C V with |W| < a|V]|,

{veV|3Jwe W such that (v,w) € E}| > B|W].

The well-known basic property of expander graphs is fast mixing. Namely, a
random t-step walk from any fixed vertex v will end up at a vertex w that is

Space-Efficient Direct Products 9

very close to being uniformly distributed among all vertices of GG; the deviation
from the uniform distribution can be bounded by A

Another basic property of expanders, which we will use in the analysis of
our Direct Product lemma, is the following lemma. It essentially says that the
expected number of steps that a random walk lands in some set S C V of
vertices of an expander graph is at most the density of this set S, as would
trivially be the case for a walk on a complete graph. This remains true even if
we condition on the random walk starting at a random vertex of .S, or landing
at some vertex of S in step i for some fixed ¢. A variant of this lemma (for
edge sets rather than vertex sets) is proved in (Dinur 2006, Lemma 5.4); the
vertex-case is in fact simpler to argue. For completeness, we give the proof in
Appendix Al

LEmMMA 3.1. Let G = (V, E) be any d-regular A-expander for some constant
A <1, and let S C V be any set. For any integer t, let W;, for 0 < i < t, be
the set of all t-step walks in G that land at a vertex from S in step ¢. Then for
each i € [0..t], a random walk from the set W; is expected to contain at most
t(|S1/IV]) +2/(1 = X) =t(|S|/|V]) + O(1) vertices from the set S.

We will need an infinite family of d-regular A-expanders {G,, = (V,,, E,)}22 |,
where (G, is a graph on 2" vertices; we assume that the vertices of GG,, are iden-
tified with n-bit strings. We need that such a family of graphs be efficiently
constructible in the sense that given the label of a vertex v € V,, and a number
i € [d], the ith neighbor of v in G,, can be computed efficiently by a determin-
istic polynomial-time and linear-space algorithm. We will spell out the exact
constructibility requirement in [Section 4.1}

3.4. Space complexity. We review definitions concerning space complex-
ity, since for our main Direct Product lemma, we need to measure the space
complexity of the algorithms very carefully.

DEFINITION 3.2 (Standard Space Complexity). An algorithm computes a func-
tion f in space S if given as input x on a read-only input tape, it uses a work

tape of S cells and halts with f(x) on the work tape. Such an algorithm is said

to have space complexity S.

DEFINITION 3.3 (Total Space Complexity). An algorithm A computes a func-
tion f with domain {0,1}" in total space S if on an n-bit input x:

(i) A has read/write access to the input tape;

10 Guruswami & Kabanets

(ii) in addition to the n input tape cells, A is allowed another S — n tape
cells; and,

(iii) at the end of its computation, the tape contains f(x).

Such an algorithm is said to have total space complexity S.

DEFINITION 3.4 (Input-Preserving Space Complexity). An algorithm A com-
putes a function f with domain {0,1}" in input-preserving space S if on an
n-bit input x:

(i) A has read/write access to the input tape;

(ii) in addition to the n input tape cells, A is allowed another S — n tape
cells; and,

(iii) at the end of its computation, A has on its tape x; f(x) (i.e., both the
input and the value of the function f on that input, separated by the
special symbol).

That is, we allow the algorithm to write on the input portion of the tape,
provided it is restored to its original content at the end of the computation.
Such an algorithm is said to have input-preserving space complexity S. (Note
that the input-preserving space complexity of a function f(x) is the same as

the total space complexity of the function f’(x) o x; f(x).)

The following simple observation lets us pass between these models of space
complexity with a linear additive difference.

Fact 3.5. If there is an algorithm A with space complexity S to compute
a function with domain {0,1}", then there is an algorithm A’ with input-
preserving (respectively, total) space complexity S + n to compute f. Con-
versely, if there is an algorithm B’ with input-preserving (respectively, total)
space complexity S’ to compute f, then there is an algorithm B with space
complexity S’ to compute f.

We will use the input-preserving space complexity to analyze the efficacy
of our Direct Product lemma and its iterative application to amplify hardness.

However, by [Fact 3.5, our end result can be stated in terms of the standard
space complexity of [Definition 3.2|

Space-Efficient Direct Products 11

4. A New Direct Product Lemma

4.1. Construction. We need the following two ingredients:

(i) [expander graphs] Let G = (V, E) be any efficiently constructible d-
regular A-expander on |V| = 2" vertices which are identified with n-bit strings
(here d and A < 1 are absolute constants, and we will typically hide factors
depending on d in the O-notation). By efficient constructibility, we mean the
following. There is an algorithm running in time 7¢ypander = poly(n) and total
space Sezpander = O(n), which given as input an n-bit string « and an index

i € [d], outputs the pair Ng(x,1) «f (y,7), where y € {0, 1}™ is the ith neighbor
in G of z, and j € [d] is such that z is the jth neighbor of y.

REMARK 4.1. We can obtain such expander graphs from (Gabber & Galil
1981; [Lubotzky et al. |1988; Reingold et al.|2002). For instance, |Gabber &
Galil (1981) show how to construct constant-degree expanders of size m?, for
any natural number m. It is easy to verify that their family of expanders is
efficiently constructible. Note that normally the space complexity of expander

constructions is measured in the sense of |Definition 3.2; however, by

for O(n) space, we can pass freely to the total space complexity model of
[Definition 3.3, One small technical problem is that we need graphs of size 2"
for every n, whereas the Gabber-Galil graphs are of size m? for every m. We
can solve this problem easily as follows. For even n = 2k, we can just use the
Gabber-Galil graph with m = 2¥. For odd n = 2k — 1, we first construct the
Gabber-Galil graph for m = 2% of size m?> = 2"*!, and then merge pairs of
vertices (2i,2i + 1) for all 0 < ¢ < 2". This yields a new graph on exactly 2"
vertices, with constant degree (which is twice the degree of the original graph).
It is also easy to see that the expansion properties of the new graph get worse
by at most a constant factor, so it is still a good expander. To have the graphs
of the same degree for both even and odd n, we can arbitrarily add enough
new edges to the graph obtained for the case of even n, to double its degree.

(ii) [error-correcting codes| For an integer parameter ¢, let C be a
binary linear error-correcting code of dimension ¢ + 1, block length ¢(t + 1) for
an integer ¢, and which has relative distance p > 0. Assume that C can be
encoded as well as decoded up to a fraction p/2 of errors in poly(¢) time and
O(t) space.

REMARK 4.2. We can get such explicit codes from, e.g., (Justesen||1972). We
would like to point out that we will need to encode and decode messages of

12 Guruswami & Kabanets

constant length t + 1 only. We can exhaustively search for a linear error-
correcting code with constant rate and constant relative distance (independent
of t); such a code can be shown to exist by a counting argument. Such a code
can be found, encoded and decoded in time and space that is exponential in t
(the encoding can in fact be done in polynomial time since the code is linear).
Sincet is a constant, all these costs are just constant. As will become clear from
the analysis of our Direct Product construction, we can tolerate such constant
costs associated with the code C. So for our purposes, even an exhaustively
constructed linear code would do.

Our construction proceeds in two steps.

Step 1: Let f:{0,1}" — {0, 1} be any Boolean function. For any ¢t € N,
define a new, non-Boolean function g : {0,1}" x [d]' — {0,1}'! as follows:

g(vvila cee 7it) = (f(v)v f(vl)v ceey f(Ut)),

where for each 1 < j < ¢, v; is the 7;th neighbor of vertex v;_; in the expander
graph G (we identify v with wvg); recall that the vertices of G are labeled by
n-bit strings.

Step 2: Define a Boolean function A : {0,1}" x [d]* X [¢(t+1)] — {0,1} as

h(v,iy,...,5,75) = Enc(g(v,i1,...,0));,

where Enc(y); denotes the the jth bit in the encoding of the string y using the
binary error-correcting code C.

Complexity of the construction: Suppose that the n-variable Boolean func-
tion f is computable in deterministic time 7" and input-preserving space S.
Then the non-Boolean function g obtained from f in Step 1 of the construction
above will be computable in deterministic time T, = O(t - (T' + Terpander)) =
O(t-(T+poly(n))) and input-preserving space at most S, = max{S, Sezpander } +
O(t).

Indeed, to compute g(v, iy, ...,1), we first compute f(v) using time 7" and
input-preserving space S. We then re-use this space S to compute Ng(v,i;) =
(v1,71) in time T,ppander and total space Seppander- We remember iy, j; (these
take only O(1) space) separately, but replace v by vy, and compute f(vy) in
time 7" and input-preserving space S. We next likewise compute Ng(vy,is) =
(v, j2), and replace vy by vy, compute f(vs), and so on. In the end, we would
have computed (f(v), f(v1),..., f(v)) in time O(t - (T 4+ n + Tevpander)) =
O(t - (T + poly(n))) and total space max{S, Secupander } + O(t). However, we
need to restore the original input v,4y,4s,...,%;. For this we use the stored

Space-Efficient Direct Products 13

“back-indices” j;, ji_1, ..., 71 to walk back from v; to v in a manner identical
to the forward walk. This can be done with no extra space (by re-using space)
and in time O(t - (N + Tezpander)) = O(t - poly(n)).

The Boolean function h obtained from ¢ in Step 2 will be computable in
time T}, 4+ poly(¢) and input-preserving space S, + O(t). Note that, assuming
S 2 Sezpander, the input-preserving space complexity of h is at most an additive
constant term O(t) bigger than that of f.

4.2. Analysis. We will show that the “Direct Product construction” de-
scribed above increases the hardness of a Boolean function f by a multiplicative

factor of Q(t).

LEMMA 4.3 (Direct Product Lemma). Suppose an n-variable Boolean func-
tion f has hardness 6 < 1/t for deterministic time T and input-preserving
space S = Seypander + O(t). Let h be the Boolean function obtained from f
using the Direct Product construction described above. Then h has hardness
Q(td) for deterministic time T" = T /O(t*d") — poly(n,t) and input-preserving
space 8" =S — O(t).

The proof of the Direct Product lemma above will consist of two parts,
given by [Lemma 4.4 and [Lemma 4.7 below. First we argue that the non-
Boolean function g will have hardness €(t)-factor larger than the hardness of
f. Then we argue that turning the function g into the Boolean function h
via encoding the outputs of g by a good error-correcting code will reduce its
hardness by only a constant factor independent of t.

LEMMA 4.4. Suppose an n-variable Boolean function f has hardness § < 1/t
for deterministic time T and input-preserving space S = Seypander + O(t). Let
g be the non-Boolean function obtained from f using the first step of the
Direct Product construction described above. Then g has hardness §)(t6) for
deterministic time T" = T /O(td") — t - poly(n) and input-preserving space S’ =
S —O(t).

PrROOF. Let C' be a deterministic algorithm using time 7" and input-preserving
space S’ that computes g correctly on a fraction 1 — ¢’ of inputs, for the least
possible ¢’ that can be achieved by algorithms with these time/space bounds.
We will define a new deterministic algorithm C' using time at most 7" and
input-preserving space S, and argue that §’ is at least Q(t) times larger than
the fraction of inputs computed incorrectly by C'. Since the latter fraction must
be at least ¢ (as f is assumed d-hard for time 7" and input-preserving space S),
we conclude that ¢ > Q(t0).

14 Guruswami & Kabanets

We will compute f by an algorithm C' defined as follows. On input x €
{0,1}", for each i € [0..t], record the majority value b; taken over all values
C’(w);, where w is a t-step walk in the graph G that ends its ith step at z
and C'(w); is the ith bit in the (¢ 4 1)-tuple output by the circuit C’ on input
w. Output the majority over all the values b;, for 0 < 7 < t. A more formal
description of the algorithm is given in Algorithm [} below.

INPUT: z € {0,1}™
GoaL: Compute f(x).

count; =0
for each i = 0..¢
county =0

for each t-tuple (ki, ko, ..., k) € [d]'
Compute the vertex y reached from z in ¢ steps by taking edges
labeled k1, ko, ..., k;, together with the “back-labels” ¢, 05, ... ¢;
needed to get back from y to x.
county = counts + C'(y, b1, loy ... Ly ki1, k)i
Restore = by walking from y for i steps using edge-labels ¢4, (s, ... (.
end for
if county > d'/2 then count; = count; + 1 end if
end for
if count; > t/2 then RETURN 1 else RETURN 0
end Algorithm

Algorithm 1: C

It is easy to argue that the input-preserving space complexity .S of algorithm
C' is at most max{Sezpander, S’} + O(t); the argument goes along the lines of
the one we used to argue about the complexity of the encoding at the end of
. Hence by choosing S" = S — O(t) > Seupander We get the input-
preserving space complexity of C' at most S. It is also easy to verify that
algorithm C' can be implemented in deterministic time O(td"(T" +t - poly(n))).
By choosing 7" as in the statement of the lemma, we can ensure that the
running time of C' is at most 7.

We now analyze how many mistakes the algorithm C' makes in computing
f. Define the set Bad = {z € {0,1}" | C(z) # f(z)}. Observe that by the
d-hardness assumption about f, we have |Bad|/|V| > §. Choose a maximal-
size subset B C Bad so that |B|/|V] < 1/t. That is, if |Bad|/|V| < 1/t, set

Space-Efficient Direct Products 15

B = Bad; otherwise, form B by removing some elements from Bad so that
|B|/|V] = 1/t. In the first case, we obviously have |B|/|V| > ¢§. Since we
assumed that 1/t > §, the set B obtained in the second case is still such that
|B|/|V] = 9.

By definition, if z € Bad, then for each of at least 1/2 of the values of
i € [0..t], the algorithm C” is wrong on at least half of all ¢-step walks that end
their ith step at x. Define a 0-1 matrix M with |B| rows and ¢ + 1 columns
such that for € B and i € [0..t], M(z,i) = 0 iff C" is wrong on at least half
of all t-step walks that pass through x in step i. Then the fraction of 0’s in the
matrix M is at least 1/2. By averaging, we conclude that there exists a subset
I C [0..t] of size at least t/4 such that, for each ¢ € I, the ith column of M
contains at least 1/4 fraction of 0’s. This means that for each i € I, there is
at least B/4 inputs = such that the algorithm C’ is wrong on at least 1/2 of
all t-step walks that end their ith step at x. That is, C’ is wrong on at least
(|B|/4)(d"/2) = |B|d"/8 of walks, which is 1/8 of all |B|d" length-t walks that
end their ith step at a vertex in the set B.

For x € B and i € [0..t], let us denote by W, , the set of all t-step walks
that pass through z in step i; observe that |W; .| = d'. Taking the union over
all z € B, we get the set W; = U,cpW,, of all t-step walks passing through
some vertex in B at step ¢. Since W, and W, , are disjoint for x # y, we get
|Wi| = |Bl|d". Also, for x € B and i € [0..t], denote by W, the set of all ¢-step
walks w € W, such that C'(w) # g(w). Define W = U,epW;,. Note that
for each i € I, |[W}| > |W;|/8. Finally, define W* = U!_,W/; by construction,
for every w € W*, C"(w) # g(w), so it suffices to give a lower bound on |W*|
to argue that C' makes many mistakes.

If the sets W;'s were disjoint, we could lowerbound |W*| by > .., |[W/| >
(t/4)(|W;]/8) = t|B|d"/32, which would mean that C” errs on at least a fraction
(t|B|d'/32)/(|V|d") = (t/32)|B]|/|V| = (t/32)d of inputs. The problem is that
the Wj's are not necessarily disjoint, and so)., |W/| is bigger than | Uje;
W|. However, as we argue below using the properties of expander walks, the
difference between the two expressions is small.

For each i € [0..t], let H; C W; be the set of all walks w € W; that contain
more than m elements from B. Using the properties of the expander G, we
can choose m to be a sufficiently large constant (independent of ¢) so that
for all 4, |H;| < |W;|/16. Indeed, by for every i a random walk
w € W; is expected to contain at most t(|B|/|V|) + O(1) vertices from B.
Since (|B|/|V]) < 1/t, a random w € W; contains on average at most ¢ = O(1)
vertices from B. By Markov’s inequality, the probability that a random w € W;

16 Guruswami & Kabanets

contains more than m = 16¢ vertices from B is at most 1/16. Thus we have

. . 1 1 t
(@5) SN H = SS(WE|— 1) > 1l —) Wil > Bl
el el

On the other hand, since every walk from W} \ H; can appear in at most m
different W7s, we get

(4.6) D> Wi\ H| <m|Uier (W7 N\ Hy)| < mlW*\ (U Hy)| < m|W).

el

Combining |(4.5)| and |(4.6), we get |[W*| > |B|d'. Dividing both sides by

=~ 64m

the number |V|d" of all possible t-step walks in G (which is the number of all

possible inputs to the algorithm C’), we get that C’ makes mistakes on at least

ﬁﬁff‘rﬁ“/\ of inputs. As observed earlier, H > 0. Hence the function g

B
v
is Q(td)-hard for time 7" and input-preserving space S’ O

The second step, [Lemma 4.7], of our Direct Product construction uses the

standard approach of “code concatenation”.

a fraction

LEMMA 4.7. Let A= {0,1}" x [d]*. Suppose that a function g : A — {0, 1}
is 0-hard for deterministic time T" and input-preserving space S. Let h : A X
[c-(t+1)] — {0,1} be the Boolean function obtained from g as described
in Step 2 of the Direct Product construction above, using the error-correcting
code with relative distance p and rate 1/c. Then the function h is ¢ - p/2-hard
for deterministic time T' = (T — poly(t))/O(t) and input-preserving space
S'=85-0(t).

PrOOF. Let C’ be an algorithm running in deterministic time 7" and input-
preserving space S’ that computes h on a fraction 1 — ¢' of inputs, for the
smallest possible ¢’ achievable by deterministic algorithms with such time/space
bounds. Define an algorithm C' computing ¢ as follows: On input a € A,
compute C’(a,i) for all ¢ € [c- (t + 1)], apply the decoder function Dec of
our error-correcting code to the obtained ¢ - (f + 1)-bit string, and output
the resulting (¢ + 1)-bit string. Clearly, the running time of C' is at most
c(t+1)T" + poly(t), where the poly(t) term accounts for the complexity of the
decoding function Dec. The input-preserving space complexity of C' is at most
S"+0(t).

Consider the set Bad = {a € A | C(a) # g(a)}. For each a € Bad,
the string C'(a,1)...C"(a,c - (t + 1)) must be (p/2)-far in relative Hamming
distance from the correct encoding Enc(g(a)) of g(a). Thus the number of

Space-Efficient Direct Products 17

inputs computed incorrectly by C’ is at least |Bad|(p/2)c - (t + 1). Dividing
this number by the total number |A|c- (¢t + 1) of inputs to C’, we get that C”
is incorrect on a fraction &' > (p/2)(|Bad|/|A|) of inputs. Since g is assumed
d-hard for time 7" and input-preserving space S, we get that |Bad|/|A| = . It
follows that &' > (p/2)0 = Q(9). O

4.3. Iteration. Our Direct Product lemma, [Lemma 4.3 can be applied re-
peatedly to increase the hardness of a given Boolean function at an exponential
rate, as long as the current hardness is less than some universal constant. In
particular, as shown in the corollary below, we can turn a function that is -
hard with respect to LINSPACE into a function that is Q(1)-hard with respect
to LINSPACE. Note that we state this result in terms of the usual space com-
plexity, and not the input-preserving space complexity that we used to analyze
a single direct product. The following result is implicit in (Spielman| 1996]),
using his logspace encodable/decodable error-correcting codes that can correct
a constant fraction of errors.

COROLLARY 4.8. Let f be an n-variable Boolean function that is 6-hard for
deterministic time T and space S > O(n). Then there is a Boolean function f’
on n + O(log(1/d)) variables such that f’ is Q(1)-hard for deterministic time
T" = T - poly(d) — poly(n) and space S" = S —n — O(log(1/d)). Moreover,
if f is computable in time T and space S, then f' is computable in time
Tpoly(1/68) + poly(n/d) and space S + O(n).

PROOF. Pick a constant ¢ large enough so that the 2(¢) factor in the state-
ment of is at least 2. With this choice of ¢, each application of
our Direct Product construction will double the hardness of the initial Boolean
function.

By [Fact 3.5 such an f is d-hard for deterministic time 7" and input-
preserving space S. Let f’ be the Boolean function obtained from f by re-
peated application of the Direct Product construction for log% steps (using an
expander with Seypander = O(n)). Then it is straightforward to check that f” is
a n+ O(t - log 5)-variable Boolean function of €2(1)-hardness for deterministic
time 7" = T§°®) —poly(n) and input-preserving space S” = S —O(t-log(1/9)).
Referring to again, f’ is Q(1)-hard for deterministic time 7" and space
S'=858"-n=S5—-—n-0(tlog(1/9)).

The time and space upper bounds for f” follow easily from the complexity
analysis of the Direct Product construction (and using to convert from
space to input-preserving space and back). 0

18 Guruswami & Kabanets

REMARK 4.9. The constant average-case hardness in above, say
~v-hardness for some absolute constant v > 0, can be boosted to any constant

less than 1/4, say 1/4 — ¢ for some small ¢ > 0. This can be achieved by one
additional amplification with a suitable expander, followed by concatenation
with a constant-sized binary code of relative distance close to 1/2. The time and
space bounds for which we get (1/4 — ¢)-hardness deteriorate by just constant
factors depending on ~,e. For details, see (Guruswami & Indyk 2001) where
this approach is used to construct binary codes of positive rate that can be
encoded and decoded up to a fraction (1/4—¢) of errors in linear time, starting
with a linear time code that could correct a fraction v > 0 of errors[l| The
relevance of this method for deterministic uniform hardness amplification was
realized by |Trevisan| (2003) (specifically, see Theorem 7 in (Trevisan |2003)).

5. Applications

5.1. Hardness amplification via deterministic space-efficient reduc-
tions. The iterated Direct Product construction of gives us a
way to convert worst-case hard Boolean functions into constant-average-case
hard ones, with space-efficient deterministic reductions. The following theo-
rems are immediate consequences of [Corollary 4.8 and [Remark 4.9 Below
we use standard notation for the complexity classes E = DTIME(2°™) and
LINSPACE = SPACE(O(n)). When we say that a language L' is infinitely of-
ten a-hard for complexity class C', we mean that there is no C-type algorithm
which, for all but finitely many input lengths n, decides L on more than a
fraction 1 — a of n-bit inputs. In other words, for every C-type algorithm A,
there exist infinitely many input lengths n such that A incorrectly decides L
on at least a fraction a of n-bit inputs.

THEOREM 5.1. Let o < 1/4 be an arbitrary constant. If there is a language
L € E\ LINSPACE, then there is a language L' € E that is infinitely often
a-hard for LINSPACE.

PROOF. View a given language L as a family of Boolean functions { f,, }n>0,
where f, is the characteristic function of the nth slice of L, i.e., the set L N
{0,1}™. For each n, define the function f’ to be the encoding of f given
in for 6 = 27", The function f” will have ¢ - n inputs, for some

constant c. Define the language L’ so that the functions f’ are its characteristic

!The underlying expander-based approach was first used in (Alon et al.|1992) to construct
simple codes of relative distance (1 — ¢) over an alphabet of size 2°0/¢).

Space-Efficient Direct Products 19

functions for input length ¢ - n, and define L’ arbitrarily on all other lengths.
Then L' is constant average-case hard for LINSPACE.

Indeed, suppose there is a LINSPACE algorithm that decides L’ well on
average for all sufficiently large input lengths. In particular, this algorithm will
succeed on input lengths c-n for all sufficiently large n. Then an algorithm that
on input z € {0, 1}" runs the decoding procedure from the proof of
on the (c¢-n)th slice of L' will correctly decide L for all sufficiently large input
lengths n. 0

Similarly, we can also prove the following.

THEOREM 5.2. Let aw < 1/4 be an arbitrary constant. For every ¢ > 0, there
is a ¢ > 0 such that the following holds. If there is a language L € LINSPACE
that cannot be computed by any deterministic algorithm running in linear space
and, simultaneously, time 2¢™, then there is a language L' € LINSPACE that is
infinitely often a-hard for any deterministic algorithm running in linear space
and, simultaneously, time 2".

[Theorem 5.1| and [Theorem 5.2 are stated in the “infinitely often” setting.
Both theorems can also be stated in the “almost everywhere” setting, where
the assumption and conclusion will be about hardness almost everywhere (i.e.,
hardness for all sufficiently large input lengths).

For instance, the “almost-everywhere” version of will be as
follows. Below, when we say that a language L ¢ ioLINSPACE, we mean that
every LINSPACE algorithm will incorrectly decide L for all sufficiently large
input lengths n.

THEOREM 5.3. Let o < 1/4 be an arbitrary constant. If there is a language
L € E\ ioLINSPACE, then there is a language L' € E that is almost everywhere
a-hard for LINSPACE.

PRrROOF. As before, a language L ¢ ioLINSPACE yields a family of n-variable
Boolean functions hard for ioLINSPACE. Each such function will be encoded
by our iterated Direct Product construction as a ¢ - n-variable function f’. We
define L’ so that for every z of length c-n+d, for 0 < d < ¢,z € L'iff f'(z') =1
for the (¢ - n)-length prefix 2’ of z.

Suppose there is a LINSPACE algorithm A that decides L’ well on average
for infinitely many input lengths. By averaging, there exists a value 0 < dy < ¢
such that A decides L' well on average for infinitely many input lengths of the
form ¢ - n + dy. By another averaging argument, there exists a binary string
yo € {0,1}% such that A decides L' well on average for infinitely many input

20 Guruswami & Kabanets

lengths of the form ¢ - n + dy where the dy-length suffix of the input is fixed to
the string yy. Given these dy and vy, we can use A to compute the function f’
well on average for infinitely many input lengths. Hence, by hardwiring these
values dy and 1o, we get a LINSPACE algorithm computing the function f for
infinitely many input lengths. ([l

5.2. Logspace encodable/decodable error-correcting codes. As men-
tioned in the introduction (Section 1.2), every Direct Product lemma gives
rise to error-correcting codes with encoding/decoding complexity determined
by the complexity of the reductions used in the proof of the Direct Product
lemma. In our case, we get error-correcting codes with polynomial rate that
have deterministic logspace encoding/decoding complexity, and can correct up
to a constant fraction of errors. Thus we get an alternative construction (with
polynomial rather than linear rate) to Spielman’s logspace encodable/decodable
codes (Spielman|/1996).

THEOREM 5.4. There is an explicit code C mapping n-bit messages to poly(n)-
bit codewords such that

(i) C can correct a constant fraction of errors,

(ii) both encoding and decoding can be implemented in deterministic logspace
(in fact, uniform NC").

REMARK 5.5. We are not aware of any logspace encodable/decodable asymp-
totically good codes other than Spielman’s construction (Spielman|1996), along
with improvements to its error-correction performance (Guruswami & Indyk
2001, 12002). Allowing NC* complexity gives several other choices of error-
correcting codes.

6. A simple graph based amplification

Here we observe that the existence of efficiently constructible d-regular ex-
panders with vertex expansion factor better than d/2 would give us another
deterministic linear-space hardness amplification. We recall Trevisan’s deran-
domized Direct Product construction below. We note that a similar definition
has been used in the construction of codes in several works beginning with
(Alon et al.||1992) and more recently in (Guruswami & Indyk 2001}, 2003]).

Space-Efficient Direct Products 21

DEFINITION 6.1. Given a d-regular graph G on 2" vertices, where each vertex
is identified with an n-bit string, and a Boolean function f : {0,1}" — {0, 1},
we define a function g = G(f) : {0,1}"* — {0,1}% as follows. For x € {0,1}",
let Ni(x), Na(x), ..., Nyg(x) denote the d neighbors of x in G (as per some fixed

ordering). Then g(z) < (f(Ny(2)), fF(Na(x)), ..., f(Na(z))).

LEMMA 6.2. Let G = ({0,1}", E) be an efficiently (in total space Seypander and
poly(n)-time) constructible d-regular (9, d/2 + ~4)-expander for some v4 > 1.
Let f :{0,1}" — {0,1} be 0-hard for deterministic time T" and input-preserving
space S = Seppander + §2(d). Then the function g = G(f) from
is yg0-hard for deterministic time T" = % — poly(n) and input-preserving space

S —0(d).

PrOOF. Let C’ be a deterministic algorithm running in time at most 7" and
input-preserving space S’ that computes g correctly on a fraction 1 — ¢’ of
the inputs, for the least possible ¢’ that can be achieved by algorithms within
these time/space bounds. Using C’, we will define a deterministic algorithm C
running in time at most 7" and input-preserving space S, and argue that the
fraction of inputs « where C'(z) # f(x) is at most ¢’/~4. Since f is assumed to
be d-hard, the algorithm C must err on at least a fraction § of inputs. Hence,
we get that &' > ,40.

The algorithm C' to compute f works as follows. On input x € {0,1}", it
will simulate C” on all neighbors of x, record the value they “suggest” for f(x),
and finally take a majority vote. It is easily seen that the running time of C' is
at most d - (1" + poly(n)). The input-preserving space complexity of C' can be
bounded by max{Sespander, S’} + O(d), as in the proof of .

Define the set Bad = {x € {0,1}" | C(x) # f(x)}. Since f is d-hard for
time 7" and space S, and C' runs in time 7" and space S, we have |Bad| > 02",
Let B be an arbitrary subset of Bad of size 62". By the expansion property of
G, we have that the set

Ng(B) «f {y € {0,1}" | 3z € B such that (z,y) € E(G)}

satisfies
(6.3) |Na(B)| = (d/2 + va)| B

Since C bases its value for x on a majority vote among neighbors of x, the
following holds: For each z € B, we must have that at least half of 2’s neighbors

22 Guruswami & Kabanets

in G must fall in the set

W=y e {01} | C'(y) # 9(y)}

of values that C’ gets wrong. Note that |[W| = §’2". In other words, for each
x € B, at most d/2 neighbors of z fall outside W. Hence

(6.4) [Na(B)| < [W|+(d/2) - | B

By |(6.3) and |(6.4), we have |W| > ~4|B|, or equivalently ¢’ > 40, as desired. [J

Thus, provided explicit expanders with expansion better than d/2 are known,
we can apply the above amplification repeatedly to get a deterministic linear-
space “worst-case to constant average-case” hardness amplification. Unfortu-
nately, we do not know explicit expanders with expansion factor better than
d/2; the work of Capalbo et al. (2002) applies only to bipartite graphs. Beating
the d/2 barrier for general graphs remains a challenging open question.

7. Concluding remarks

We proved a version of a derandomized Direct Product lemma in the setting
of uniform space-bounded deterministic algorithms. Previously such Direct
Product lemmas were proved for the nonuniform setting of Boolean circuits (Im-
pagliazzo|1995; Impagliazzo & Wigderson!1997)), and for uniform time-bounded
deterministic algorithms (Trevisan [2003)). Our hardness amplification is iter-
ative. Starting with a Boolean function that is d-hard against deterministic
space S algorithms (for § smaller than some universal constant), we get after
a single iteration a new Boolean function that is 20-hard against algorithms
using space about S — O(1). Using O(n) such iterations, we can convert an
n-variable Boolean function which is worst-case hard against linear space (i.e.,
d =27") into a Boolean function that is (1) average-case hard against linear
space.

We want to stress that our construction is another example of an iterative
algorithm that gradually transforms a given input object (in our case, a Boolean
function of worst-case hardness) into a new object with improved parameters
of interest (in our case, a Boolean function of constant average-case hardness)
— a survey by (Goldreich| (2005)) explicitly discusses this recently popular and
influential paradigm. Our construction is inspired by two recent breakthrough
constructions of Reingold| (2005)) and |Dinur| (2006)), which in turn rely on the
ideas of the celebrated iterative construction of expander graphs by Reingold,
Vadhan, and Wigderson (Reingold et al.|2002]).

Space-Efficient Direct Products 23

We anticipate that there will be further examples of such iterative, “gradual-
improvement” algorithms in the future.

Acknowledgements

We are grateful to the anonymous reviewers for detailed comments on the
presentation. Venkatesan Guruswami is supported in part by NSF grant CCF-
0343672, a Sloan Research Fellowship, and a David and Lucile Packard Foun-
dation Fellowship. Valentine Kabanets is supported in part by an NSERC
Discovery grant. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

N. AroN, J. Bruck, J. NAOR, M. NAOR & R. RoTH (1992). Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory 38, 509-516.

L. BaBal, L. ForTrnOow, N. NisaN & A. WIGDERSON (1993). BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Computational
Complexity 3, 307-318.

M. Brum & S. MicaL (1984). How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal on Computing 13, 850-864.

M.R. CAPALBO, O. REINGOLD, S. VADHAN & A. WIGDERSON (2002). Randomness
conductors and constant-degree lossless expanders. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, 659-668.

I. DINUR (2006). The PCP theorem by gap amplification. In Proceedings of the
Thirty-FEighth Annual ACM Symposium on Theory of Computing, 241-250.

O. GABBER & Z. GALIL (1981). Explicit construction of linear sized superconcen-
trators. Journal of Computer and System Sciences 22, 407-420.

O. GOLDREICH (2005). Bravely, Moderately: A Common Theme in Four Recent
Results. Electronic Colloquium on Computational Complexity TR05-098.

O. GOLDREICH, N. NisaAN & A. WIGDERSON (1995). On Yao’s XOR-Lemma.
Electronic Colloquium on Computational Complexity TR95-050.

24 Guruswami & Kabanets

V. GuruswaMI & P. INDYK (2001). Expander-based constructions of efficiently
decodable codes. In Proceedings of the Forty-Second Annual IEEE Symposium on
Foundations of Computer Science, 658-667.

V. GuruswaMI & P. INDYK (2002). Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, 812-821.

V. GURUSWAMI & P. INDYK (2003). Linear-time encodable and list decodable codes.
In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
126-135.

R. ImpAGLIAZZO (1995). Hard-core distributions for somewhat hard problems. In
Proceedings of the Thirty-Sixth Annual IEEE Symposium on Foundations of Com-
puter Science, 538-545.

R. IMPAGLIAZZO & A. WIGDERSON (1997). P=BPP if E requires exponential cir-
cuits: Derandomizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, 220-229.

J. JUSTESEN (1972). A class of constructive asymptotically good algebraic codes.
IEEE Transactions on Information Theory 18, 652—-656.

L.A. LEVIN (1987). One-way functions and pseudorandom generators. Combinator-
ica 7(4), 357-363.

A. LuBoTzKY, R. PHILLIPS & P. SARNAK (1988). Ramanujan graphs. Combina-
torica 8(3), 261-277.

N. NisaN & A. WIGDERSON (1994). Hardness vs. Randomness. Journal of Computer
and System Sciences 49, 149-167.

O. REINGOLD (2005). Undirected ST-Connectivity in Log-Space. In Proceedings of
the Thirty-Seventh Annual ACM Symposium on Theory of Computing, 376-385.

O. REINGOLD, S. VADHAN & A. WIGDERSON (2002). Entropy waves, the zig-zag

graph product, and new constant-degree expanders. Annals of Mathematics 155(1),
157-187.

D.A. SPIELMAN (1996). Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory 42(6), 1723-1732.

L. TREVISAN (2003). List-decoding using the XOR lemma. In Proceedings of the
Forty-Fourth Annual IEEE Symposium on Foundations of Computer Science, 126—
135.

Space-Efficient Direct Products 25

A.C. YAO (1982). Theory and applications of trapdoor functions. In Proceedings of
the Twenty-Third Annual IEEE Symposium on Foundations of Computer Science,
80-91.

A. Proof of Lemma 3.1

We will first prove the following lemma.

LEMMA A.1. Let G = (V, E) be any d-regular A-expander, and let S C V be
any set. Let 1 > 0 be an integer. The probability that a random walk starting
from a random vertex in S visits a vertex in S after exactly i steps is at most

IS|/IV] + A

PrRoOF. Let z € RY be the vector corresponding to the distribution of the
start vertex of the walk. That is, z, = 1/|S| for v € |S|, and x, = 0 for
v € V'\S. The distribution of the vertex where the walk lands after taking
i steps is given by A'x. Thus, the probability p that the walk visits S after ¢
steps is equal to

(A.2) p=Y (Az), =S|z (A'z), = [S|(x, A'z) .

veS veV

Let z = 2l + 2+ where 2!l corresponds to the uniform distribution, i.e., zl =
1/|V|, where 1 is the all 1’s vector. Since both z and 2/l correspond to distribu-
tions, (1,z1) = 0, and thus z+ is orthogonal to the principal eigenvector of A.
Hence || A%zt < ||zt || < Nz, where ||y|| = v/>_, y? denotes the Ly-norm
of a vector y. Now (z, A'z) = (z, Al(zl + z1)) = (z,2ll) + (2, A’zt), and so

(A.3) (w, A'z) < (a,all) + || At || < (2,2l + N2
We have ||z||?> = 1/|S| and {(z, z!l) = 1/|V|. Combining|(A.2)[and |(A.3)| we get
p < % + A%, as claimed. O

Turning to [Lemma 3.1} first consider the case i = 0, i.e., length ¢ walks
that begin at a vertex in S. By above, the expected number
of vertices of the walk that lie in S (including the start vertex) is at most
T+ S (4 0) US4+ 25 = HSI/1V] + 0().

When 1 < i < t, we do the above analysis separately for the part of the
walk consisting of the last ¢ — ¢ steps and the reverse of the path consisting of

26 Guruswami & Kabanets

the first ¢ steps, both of which begin at a vertex in S. Adding the expected
number of vertices in .S in these parts, we obtain a bound of

N N <Y |
1+;<W+AJ>+;<I_VI+AJ><|V|+1—)_|V]+O(1)

for the overall expectation.

Manuscript received 8 February 2006

VENKATESAN GURUSWAMI VALENTINE KABANETS
Department of Computer Science and School of Computing Science
Engineering Simon Fraser University

University of Washington Vancouver, Canada
Seattle, USA kabanets@cs.sfu.ca

venkat@cs.washington.edu

	Introduction
	Hardness amplification via Direct Products
	Derandomized Direct Products and Error-Correcting Codes
	Derandomized Direct Products via uniform reductions
	Our results

	Related work
	Preliminaries
	Notation
	Worst-case and average-case hardness
	Expanders
	Space complexity

	A New Direct Product Lemma
	Construction
	Analysis
	Iteration

	Applications
	Hardness amplification via deterministic space-efficient reductions
	Logspace encodable/decodable error-correcting codes

	A simple graph based amplification
	Concluding remarks
	Proof of Lemma 3.1

