Lifelong Learning in Costly Feature Spaces

Maria-Florina Balcan, Avrim Blum, Vaishnavh Nagarajan
Lifelong Learning...

Building agents that learn like humans do...

Solve a series of related tasks efficiently by transferring knowledge through representations learned from previously-learned tasks.
Our goal: Feature-efficient (poly-time) lifelong learning algorithms for decision trees/lists, and real-valued polynomials with theoretical guarantees.
Related work

• **Knowledge transfer:**
 - Multi-task learning
 - Lifelong learning (mostly empirical)
 • Theoretical: Balcan et al. (2015), Pentina & Urner (2016)
 • Sample/computational efficiency

 Very little theoretical study of lifelong learning.

• **Budgeted learning**
 - predefined budget on feature evaluations
Outline

• Introduction
• Model
• Approach
• Main Results:
 • Decision trees
• More results:
 • Agnostic model
 • Lower bounds
Model

• Learn a **sequence** of m (related) tasks/target functions, $g^{(i)}$ from data of S samples each.
• Targets can be adversarially chosen.
• Each target maps from a common space of N features.
• Focus in this talk:
 − Boolean decision trees of depth d
 − Each target = output of standard algorithm on dataset

\[
\begin{align*}
\text{(Unknown) Targets} & \quad g^{(1)} : \{0,1\}^N \rightarrow \{0,1\} \\
& \quad g^{(2)} : \{0,1\}^N \rightarrow \{0,1\} \\
& \quad \ldots \\
& \quad g^{(m)} : \{0,1\}^N \rightarrow \{0,1\}
\end{align*}
\]
Cost

• Total number of feature evaluations on training data across all \(m \) tasks

• Worst case cost: \(SmN \) by learning all targets “from scratch”:

No. of samples/task \((S)\) x No. of targets \((m)\) x No. of features \((N)\)

Data
\(S \times N \) matrices

\[\begin{array}{c}
\text{Data} \\
S \times N \text{ matrices}
\end{array} = 1 \text{ unit cost} \]

Targets
\((\text{Unknown}) \)

\(g^{(1)} : \{0,1\}^N \rightarrow \{0,1\} \)
\(g^{(2)} : \{0,1\}^N \rightarrow \{0,1\} \)
\(\ldots \)
\(g^{(m)} : \{0,1\}^N \rightarrow \{0,1\} \)

Time

Lifelong Learning in Costly Feature Spaces
A metafeature is a higher level concept i.e., higher level “building block” of a target function.

Example: A decision tree metafeature is a decision tree substructure without leaves.

Metafeature 1

Metafeature 2

concatenate & fill up leaves

and many more ...
Target Relations

A *metafeature* is a higher level concept i.e., higher level “building block” of a target function

Example: A decision tree metafeature is a decision tree substructure without leaves

Our belief is that the targets can be described using a common unknown set \mathcal{F} of K metafeatures. No. of metafeatures $(K) <<$ No. of features (N) and no. of targets (m)
Outline

• Introduction
• Model
• Approach
• Main Results:
 • Decision trees
• More results:
 • Agnostic model
 • Lower bounds
Lifelong Learning Protocol

Targets

Learned representation = \(\tilde{\mathcal{F}} \)

\(g^{(3)}? \)

\{ Hypothesized metafeatures \}

Given subroutines \textbf{UseRep} and \textbf{ImproveRep}, for each task \(j \)

- Try \textbf{UseRep} i.e., use \(\tilde{\mathcal{F}} \) to evaluate very few features (<< \(N \)) per datapoint and learn a model that fits data.
Lifelong Learning Protocol

Given subroutines **UseRep** and **ImproveRep**, for each task j

- Try **UseRep** i.e., use \tilde{F} to evaluate very few features ($<< N$) per datapoint and learn a model that fits data.
Lifelong Learning Protocol

Given subroutines **UseRep** and **ImproveRep**, for each task j:

- Try **UseRep** i.e., use \tilde{F} to evaluate very few features ($<< N$) per datapoint and learn a model that fits data.
- If failed: learn from scratch (evaluate all N features) and **ImproveRep** i.e., update \tilde{F}.
Lifelong Learning Protocol

Goal: Design **ImproveRep** and **UseRep** subroutines.

Learned representation = \tilde{F}

Hypothesized metafeatures

Targets
Outline

• Introduction
• Model
• Approach
• Main Results:
 • Decision trees
• More results:
 • Agnostic model
 • Lower bounds
Decision Trees: Result

Model: \(m \) tasks, \(N \) features, \(K \) metafeatures, \(d \) depth, \(S \) samples/task

Theorem (Decision trees): UseRep and ImproveRep together
1. learn at most \(K \) trees from scratch,
2. on the rest UseRep evaluates at most \(O(Kd) \) features per example \(\Rightarrow \) cost at most \(S \cdot O(KN + mKd) \)

Learning all targets from scratch costs \(S \cdot O(mN) \)
but recall:
no. of targets (\(m \)), no. of features (\(N \)) \(\gg \) no. of metafeatures (\(K \))
\(\Rightarrow mN \gg KN + mK = K(N + m) \)

Combinatorial challenge: Given many trees, find a small representation that describes them!
Decision Trees: **UseRep**

Model: \(m \) tasks, \(N \) features, \(K \) metafeatures, \(d \) depth, \(S \) samples/task

UseRep Goal: Learn a target \(g \) with few feature evaluations (\(< < N\)) per point if \(g \) can be described using \(\tilde{F} \)

\[
\tilde{F} = \{ x_3, x_3, x_7, x_5, x_{10}, \ldots \}
\]
Decision Trees: UseRep

Model: m tasks, N features, K metafeatures, d depth, S samples/task

UseRep Goal: Learn a target g with few feature evaluations ($<<N$) per point if g can be described using \tilde{F}

Key idea: To determine feature with best split at a node, use \tilde{F} to carefully select $|\tilde{F}|$ features to be evaluated on data.

$$\tilde{F} = \{ x_7, x_5, \ldots, x_{10} \}$$

Examine only: $\{ x_7, x_5 \}$
Decision Trees: ImproveRep

Model: \(m \) tasks, \(N \) features, \(K \) metafeatures, \(d \) depth, \(S \) samples/task

A. UseRep evaluates \(O(|\mathcal{F}| + d) \) features per example.

ImproveRep Goal: When UseRep fails, extract useful metafeature(s) from target learned from scratch.

Key Idea: Pick a path UseRep couldn’t learn.

Partial tree learned from UseRep

Correct tree from scratch
Decision Trees: **ImproveRep**

Model: m tasks, N features, K metafeatures, d depth, S samples/task

A. **UseRep** evaluates $O(|\tilde{F}| + d)$ features per example.

ImproveRep Goal: When **UseRep** fails, extract useful metafeature(s) from target learned from scratch.

Key Idea: Pick a path **UseRep** couldn’t learn.
Decision Trees: ImproveRep

Model: \(m \) tasks, \(N \) features, \(K \) metafeatures, \(d \) depth, \(S \) samples/task

A. UseRep evaluates \(O(\tilde{F} + d) \) features per example.

B. ImproveRep adds \(d \) metafeatures in each call.

Theorem (Decision trees): UseRep and ImproveRep together
1. learn at most \(K \) trees from scratch,
2. on the rest UseRep evaluates at most \(O(Kd) \) features per example \(\Rightarrow \) cost at most \(S \cdot O(KN + mKd) \)

Proof Idea:
- One of the \(d \) metafeatures “approximately” recovers a new metafeature from underlying representation.
- After \(K \) calls of ImproveRep, UseRep never fails.
- Learned representation \(\tilde{F} \) has \(O(Kd) \) metafeatures.
Decision Trees: **ImproveRep**

Model: m tasks, N features, K metafeatures, d depth, S samples/task

A. **UseRep** evaluates $O(|\tilde{\mathcal{F}}| + d)$ features per example.

B. **ImproveRep** adds d metafeatures in each call.

Theorem (Decision trees): **UseRep** and **ImproveRep** together
1. learn at most K trees from scratch,
2. on the rest **UseRep** evaluates at most $O(Kd)$ features per example \Rightarrow cost at most $S \cdot O(KN+mKd)$

More results:
- for decision lists $O(S \cdot (KN+m(K^2+d)))$
- and for real-valued monomials/polynomials $O(S \cdot (KN+mK))$
Outline

• Introduction
• Model
• Approach
• Main Results:
 • Decision trees
• More results:
 • Agnostic model
 • Lower bounds
More results

Agnostic model: Learner faces $m + r$ targets where only some m of which are related through K metafeatures.

We design three algorithms:

- Fewer targets from scratch; Larger \tilde{F} $O(KN + m(K+r))$
- A better balance $O(\sqrt{rKNm+mK})$
- More targets from scratch; Smaller \tilde{F} $O(rKN + mK)$

Lower bounds on feature evaluations: When no. of unrelated targets r is

- sufficiently small: our algorithms optimal in terms of N, m and K: $\Omega(KN + mK)$
- too large: lifelong learning is meaningless $\Omega(mN)$
Conclusion

New insights into the lifelong learning paradigm:
• We propose a new metric of efficiency for costly feature spaces.
• We address combinatorial challenges in designing poly-time algorithms for decision trees/lists, monomials/polynomials.

Open questions:
• How do we recover the true decision tree representation exactly? How hard is it?
• Tighten the gap between lower and upper bounds for intermediate values of r (no. of bad targets).
Thank you!

Questions?