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Abstract 
 

The authors have developed an intelligent control 
system for stabilizing autonomously running bicycle by 
controlling its lean alone. The controller is developed 
using fuzzy logic approach with a maximum allowable 
lean of ± 0.05 radians i.e. ± 2.87º wherein the rule set is 
designed using the inherent-characteristic relationship of 
lean and steer present in a bicycle. The Lagrangian 
mechanics based bicycle model along with the controller 
is simulated in MATLAB and the results confirm that the 
controller effort successfully stabilizes the bicycle at 
various velocities. 
 
 
1 Introduction 
 

BICYCLES have been a very common and 

efficient means of transportation and recreation [1]. But 
they have an interesting non-trivial behavior with 
reference to Dynamic Stability [2]. A Basic Bicycle 
consists of four linked rigid bodies, namely a rigid frame 
with a fixed rigid driver, front fork/handle bar assembly, 
and front and rear wheels which have a symmetry plane 
[3], Figure 2. It has five degrees of freedom in finite 
motion, but only two such degrees of freedom are 
present in infinitesimal linear motion [4]. A bicycle is a 
doubly non-holonomic system [5]. This non-holonomic 
system is characterized by complex coupled second order 
differential equations.   

Control of the autonomous bicycle is a rich problem 
offering a number of considerable challenges of current 
research interest in the area of mechanics and robot 
control [6, 7]. Fuzzy Logic control has emerged as an 
alternative or complement to conventional control 
strategies in many engineering areas, especially in 
robotics [8]. Fuzzy control theory usually provides 
nonlinear controllers that are capable of performing 

various nonlinear control actions [9]. If the parameters of 
the fuzzy controllers are chosen appropriately, it is also 
possible for them to work for uncertain nonlinear 
systems [10]. In addition, fuzzy controllers are capable 
of handling many complex situations such as some 
control systems with large uncertainties in process 
parameters and/or systems structures, as well as some ill-
modeled or linguistically described physical systems 
[11]. In this paper, we design and implement a Fuzzy 
Lean Controller for stabilizing the Autonomous Bicycle. 
To validate the effectiveness of the controller under a 
significant uncertain environment, we simulated the 
Autonomous Bicycle at various velocities.  

 
 

2 Mechanics of Bicycle 
 
2.1 Basic Terminologies 

 
The Bicycle model (Figure 2), under consideration, 

has a rider rigidly fixed to the rear frame of the bicycle 
and he doesn’t control over the bicycle. A bicycle has 
several components and various design parameters. For 
understanding these parameters, some basic definitions 
[3] are given below: 

Trail – the distance, measured with the bicycle in an 
upright position, from the intersection of the steering axis 
with ground back to the contact point of the front wheel. 

Mechanical trail – measured the same as trail, this is 
the perpendicular distance from the steering axis to the 
contact point of the front wheel. 

Rake (fork rake) – the perpendicular distance from the 
steering axis to the center of the front wheel. 

Tilt of steering axis – the angle defined by the steering 
axis and the vertical. 

Sliding (skidding) – motion of the contact point of 
wheel relative to the ground. 

Sideslip – sideways motion of the contact point of 
wheel relative to the ground. 



Slip angle- the angle made with the tangent to the 
contact point path (instantaneous velocity direction) and 
the line from the intersection of the plane of the front 
wheel and the ground plane. 

Lean i.e. tip/roll, steer, yaw, lateral displacement, and 
forward displacement – these are generalized coordinates 
and auxiliary variables used to describe the motion of the 
bicycle.The different planes in a bicycle along with their 
lean and steer angles are shown below in Figure 1. 

 

 
Figure 1: Planes in a Bicycle. 

2.2 Bicycle Parameters 
 
The parameters of the bicycle, considered for 

simulation purposes, are tabulated below (Table 1). 
These are measured from a bicycle being used in the 
ongoing experiments on Autonomous Bicycle. 

Table 1: Bicycle Parameters 
Mass of the bicycle 20 kg 
Mass of the front wheel 3.3 kg 
Mass of the rear wheel 3.3 kg 
Steering Axis Tilt 16º 
Height of the bicycle 
(Measured from handle bar top) 0.93 m 

Radius of the wheel rim (front and 
rear) 0.28 m 

Radius of the wheel (front and rear) 
measured from wheel centre 0.33 m 

Trail 0.026 m 
Mechanical Trail 0.025 m 
Distance between front and rear 
wheels’ ground contact points 1.07 m 

 
2.3 Equations Governing Motion of a Bicycle 

 
For the analysis and experiments conducted on basic 

bicycle model in simulation, the governing equations [3] 
are used with following assumptions: 

-A Basic bicycle consists of four rigid bodies: Rear 
frame with fixed rider, Front fork / handle bar assembly, 
Front wheel, Rear wheel (Figure 2). 

-Bicycle rider system is symmetric about vertical plane 
passing length wise through the middle of the rear plane. 

-The wheels are rotationally symmetric about their 
axles.  

-The rider does not move relative to the frame. This 
case is called as passive rider analysis 

-The tires are a part of wheels which are considered as 
rigid disks. Also the tires are infinitely stiff, and side slip 
angle is zero in all cases. 

-Within the bicycle-rider system, there is no friction or 
propulsion acting on the wheels i.e. there is no friction or 
bearing/pedaling torques between the wheels and axles 
or frame. 

-The bicycle wheels roll on a rigid flat horizontal 
surface with enough friction between the wheels and the 
road to prevent sliding.  

-Air drag is neglected. 
-Only small disturbances from the vertical straight 

ahead equilibrium motion position are considered. 
-The lateral load at the wheel contacts is just that 

required to cause no side slip between the wheel and the 
ground. 

-The bicycle travels with a constant velocity, which is a 
consequence of the linearized equations. 

 
Figure 2: Four Rigid Bodies of the Bicycle. 

The solution to the Lagrangian Equation for all the 
generalized co-ordinates results into two second order 
coupled linear differential equations which correspond to 
the Lean (χ) and Steer (ψ) coordinates (Equations 1 and 
2). The Lean and Steer Equations are: 
Lean Equation: 

0=++++ ψψψχχ χψχψχψχχχχ KCMKM rr &&&&&    ( )1  
Steer Equation: 

0=+++++ rrr KCMKCM χχχψψψ ψχψχψχψψψψψψ &&&&&&    ( )2  
The formulae of the terms used in these equations 

are given in the Appendix. 
 
 

3 Design of Fuzzy Lean Controller 
 
In the previous section, the problem and mechanics 

of the bicycle have been described. This section aims at 
designing the fuzzy controller. The design of the fuzzy 
sets is generally done based on experience and 
observation of the designer, and according to the needs 
of the system.  

The fuzzy lean controller for the bicycle is designed 
with two inputs and one output. The inputs are “Current 



Lean” and “Current Steer”, while the output is “Lean 
Correction”.  The controller aims at controlling only lean 
so as to maintain stability. This is done making use of the 
inherent relationship between lean and steer.  

 
3.1 Fuzzy Membership Functions 

 
The fuzzy lean controller is designed to control the 

bicycle in a prescribed range of lean and steer. The 
possible values for current lean are -30º to +30º, while 
the possible values for current steer and lean correction 
are -45º to +45º and -40º to +40º respectively.  

Therefore, we have divided the fuzzy input – current 
lean set as follows: (Figure 3) 

--Very Small Positive (VSP) (0º to 3º) 
--Small Positive (SP) (0º to 5º) 
--Medium Positive (MP) (3º to 10º) 
--Large Positive (LP) (5º to 15º) 
--Very Large Positive (VLP) (10º to 30º) 

Similarly for the negative side: 
--Very Small Negative (VSN) (-3º to 0º) 
--Small Negative (SN) (-5º to 0º) 
--Medium Negative (MN) (-10º to -3º) 
--Large Negative (LN) (-15º to -5º) 
--Very Large Negative (VLN) (-30º to -10º) 

Figure 3: Membership Functions of Input Lean 
Further, we have divided the fuzzy input – current 

steer set as follows: (Figure 4) 
--Very Small Positive (VSP) (0º to 5º) 
--Small Positive (SP) (0º to 10º) 
--Medium Positive (MP) (5º to 20º) 
--Large Positive (LP) (10º to 30º) 
--Very Large Positive (VLP) (20º to 45º) 

Similarly for the negative side: 
--Very Small Negative (VSN) (-5º to 0º) 
--Small Negative (SN) (-10º to 0º) 
--Medium Negative (MN) (-20º to -5º) 
--Large Negative (LN) (-30º to -10º) 
--Very Large Negative (VLN) (-45º to -20º) 

Figure 4: Membership Functions of Input Steer 

Further, we have divided the fuzzy output – lean 
correction set as follows: (Figure 5) 

--Very Small Positive (VSP) (0º to 5º) 
--Small Positive (SP) (0º to 10º) 
--Medium Positive (MP) (5º to 15º) 
--Large Positive (LP) (10º to 25º) 
--Very Large Positive (VLP) (15º to 40º) 

Similarly for the negative side: 
--Very Small Negative (VSN) (-5º to 0º) 
--Small Negative (SN) (-10º to 0º) 
--Medium Negative (MN) (-15º to -5º) 
--Large Negative (LN) (-25º to -10º) 
--Very Large Negative (VLN) (-40º to -15º) 

Figure 5: Membership Functions of Output Lean 
Correction 

 
3.2 Fuzzy Rules 
 

With the designed fuzzy sets, we have defined the 
rules needed to develop the fuzzy lean controller for the 
bicycle. The rules have been designed on the basis of 
complete practical understanding of the relationship 
between lean and steer. The developed fuzzy rules are 
given below. 

1) IF the LEAN is VSP   AND the STEER is VSN 
THEN the Correction is VSN. 
2) IF the LEAN is SP   AND the STEER is VSN   

THEN the Correction is SN. 
3) IF the LEAN is MP AND the STEER is VSN 

THEN the Correction is MN. 
4) IF the LEAN is LP   AND the STEER is VSN 

THEN the Correction is MN. 
5) IF the LEAN is VLP   AND the STEER is VSN   

THEN the Correction is LN. 
6) IF the LEAN is VSP AND the STEER is SN   

THEN the Correction is SN. 
7) IF the LEAN is SP AND the STEER is SN   

THEN the Correction is SN. 
8) IF the LEAN is MP AND the STEER is SN 

THEN the Correction is MN. 
9) IF the LEAN is LP   AND the STEER is SN 

THEN the Correction is LN. 
10) IF the LEAN is VLP   AND the STEER is SN 

THEN the Correction is VLN. 
11) IF the LEAN is VSP AND the STEER is MN 

THEN the Correction is SN. 



12) IF the LEAN is SP AND the STEER is MN   
THEN the Correction is MN. 

13) IF the LEAN is MP   AND the STEER is MN 
THEN the Correction is MN. 

14) IF the LEAN is LP   AND the STEER is MN   
THEN the Correction is LN. 

15) IF the LEAN is VLP   AND the STEER is MN   
THEN the Correction is VLN. 

16) IF the LEAN is VSP   AND the STEER is LN   
THEN the Correction is MN. 

17) IF the LEAN is SP   AND the STEER is LN   
THEN the Correction is MN. 

18) IF the LEAN is MP   AND the STEER is LN 
THEN the Correction is LN. 

19) IF the LEAN is LP   AND the STEER is LN 
THEN the Correction is LN. 

20) IF the LEAN is VLP   AND the STEER is LN 
THEN the Correction is VLN. 

21) IF the LEAN is VSP   AND the STEER is VLN   
THEN the Correction is MN. 

22) IF the LEAN is SP   AND the STEER is VLN   
THEN the Correction is LN. 

23) IF the LEAN is MP   AND the STEER is VLN   
THEN the Correction is LN. 

24) IF the LEAN is LP   AND the STEER is VLN 
THEN the Correction is VLN. 

25) IF the LEAN is VLP   AND the STEER is VLN   
THEN the Correction is VLN. 

26) IF the LEAN is VSN AND the STEER is VSP    
THEN the Correction is VSP. 

27) IF the LEAN is SN   AND the STEER is VSP    
THEN the Correction is SP. 

28) IF the LEAN is MN   AND the STEER is VSP   
THEN the Correction is MP. 

29) IF the LEAN is LN   AND the STEER is VSP   
THEN the Correction is MP. 

30) IF the LEAN is VLN   AND the STEER is VSP   
THEN the Correction is LP. 

31) IF the LEAN is VSN   AND the STEER is SP 
THEN the Correction is SP. 

32) IF the LEAN is SN   AND the STEER is SP   
THEN the Correction is SP. 

33) IF the LEAN is MN   AND the STEER is SP 
THEN the Correction is MP. 

34) IF the LEAN is LN   AND the STEER is SP 
THEN the Correction is LP. 

35) IF the LEAN is VLN   AND the STEER is SP 
THEN the Correction is VLP. 

36) IF the LEAN is VSN   AND the STEER is MP   
THEN the Correction is SP. 

37) IF the LEAN is SN AND the STEER is MP 
THEN the Correction is MP. 

38) IF the LEAN is MN   AND the STEER is MP   
THEN the Correction is MP. 

39) IF the LEAN is LN   AND the STEER is MP   
THEN the Correction is LP. 

40) IF the LEAN is VLN   AND the STEER is MP 
THEN the Correction is VLP. 

41) IF the LEAN is VSN   AND the STEER is LP   
THEN the Correction is MP. 

42) IF the LEAN is SN   AND the STEER is LP   
THEN the Correction is MP. 

43) IF the LEAN is MN   AND the STEER is LP   
THEN the Correction is LP. 

44) IF the LEAN is LN   AND the STEER is LP   
THEN the Correction is LP. 

45) IF the LEAN is VLN   AND the STEER is LP   
THEN the Correction is VLP. 

46) IF the LEAN is VSN   AND the STEER is VLP   
THEN the Correction is MP. 

47) IF the LEAN is SN   AND the STEER is VLP   
THEN the Correction is LP. 

48) IF the LEAN is MN   AND the STEER is VLP   
THEN the Correction is LP. 

49) IF the LEAN is LN   AND the STEER is VLP   
THEN the Correction is VLP. 

50) IF the LEAN is VLN   AND the STEER is VLP   
THEN the Correction is VLP. 

 
3.3 Defuzzification 
 

Defuzzification refers to the way a crisp value is 
extracted from a fuzzy set as a representative value. The 
defuzzified output is obtained by using the above fuzzy 
sets and fuzzy rules. The ‘centroid’ method is used as the 
defuzzification strategy. 

 
 

4 Simulation tests and Validation of the 
Controller 

 
The block diagram of the fuzzy controller is given in 

Figure 6. Using equations (1 & 2) of the lagrangian 
bicycle model, the variation of lean and steer with time 
can be studied. The effectiveness of the controller is 
established by validating its control effort for different 
velocities of the autonomous bicycle. Here, three such 
constant velocity cases, namely, 5m/s, 10 m/s and 15 m/s 
are illustrated. 

To demonstrate control on highly unstable bicycle 
system and to verify the fuzzy lean controller a 
MATLAB code has been written to implement the fuzzy 
control system. The steps involved in the control are as 
follows.  

The bicycle model is simulated with controller effort 
without specific time intervals. Between the consecutive 
efforts of the controller, the model is left to its natural 
dynamics. The maximum lean that the controller allows 
the bicycle to reach is ± 0.05 radians (=± 2.87º). The 
moment the bicycle reaches boundary value, the lean and 
steer values are fed to the controller and the lean 



correction is determined. The controller reverses the 
direction of the lean rate, without change in magnitude 
i.e. rate continuous and waits until the bicycle reaches 
the corrected lean position, running autonomously. This 
position’s lean and steer are now fed back to the 
controller and the lean correction is determined. This 
process keeps repeating.  

 

 
Figure 6: Block Diagram of the Simulation Model and 

the Fuzzy Control System 
 

Illustration (i): Assuming that the velocity of the 
bicycle is constant at 5 m/s, the variation of lean and 
steer with time for the controlled autonomous bicycle is 
given in Figure 7 and Figure 8 respectively. 

 
Figure 7: Controlled Lean Variation at 5 m/s 

 
Figure 8: Controlled Steer Variation at 5 m/s 

The graphs in Figure 7 and Figure 8 show that the 
bicycle traveling at an unstable velocity of 5 m/s is 
controlled by the fuzzy lean controller. It can be noted 
that, after 7.3465 seconds, the bicycle has become 
completely stabilized repeatedly reaching lean values of 
± 0.0423 radians (= ± 2.42º) and steer values of ±0.0053 
radians (=± 0.30º). Hence the fuzzy lean controller 
stabilizes the bicycle within the range specified for 
stability i.e. a lean within ± 2.87º. As evident, the steer 
has extremely small variations in steady state. 

Illustration (ii): Assuming that the velocity of the 
bicycle is constant at 10 m/s, the variation of lean and 

steer with time for the controlled autonomous bicycle is 
given in Figure 9 and Figure 10 respectively. The graphs 
show that the bicycle traveling at a velocity of 10 m/s, 
stabilizes itself after 13.2951 seconds, as a result of the 
controller effort. 

 
Figure 9: Controlled Lean Variation at 10 m/s 

 
Figure 10: Controlled Steer Variation at 10 m/s 

Illustration (iii): Assuming that the velocity of the 
bicycle is constant at 15 m/s, the variation of lean and 
steer with time for the controlled autonomous bicycle is 
given in Figure 11 and Figure 12 respectively. 

 
Figure 11: Controlled Lean Variation at 15 m/s  

 
Figure 12: Controlled Steer Variation at 15 m/s  



The graphs in Figure 11 and Figure 12 show that the 
bicycle traveling at a velocity of 15 m/s is controlled by 
the fuzzy lean controller. It can be noted that, just after a 
single controller action, the lean and steer of the bicycle 
become zero after 35 seconds. The non-oscillatory 
behavior is because it is at the middle of the stable 
velocity region with real and distinct roots, which cause 
the lean vary exponentially [12]. 

 
 

5 Conclusions 
 
An autonomous bicycle’s equilibrium values for 

lean and steer are theoretically zero. The aim in 
developing a controller is to achieve these values and to 
maintain them. The fuzzy lean controller that we have 
developed achieves a result that is very close to these 
equilibrium values at all velocities and reaches this 
equilibrium value at 15m/s. The bicycle system is 
inherently less stable at lower speeds and conversely, for 
higher speeds, it exhibits more inherent stability. This is 
proved by the fact that the controller is able to stabilize 
the bicycle in less time spans at higher velocities. It is 
able to stabilize the autonomous bicycle easily in the 
stable velocity region and requires considerable effort in 
the unstable velocity region. The stabilizing steer value 
decreases with increase in bicycle velocity. This shows 
that the controller that we have developed is very 
efficient in controlling the steer as well. It clearly proves 
that the autonomous bicycle system can be effectively 
stabilized by just controlling its lean. 
 
 
6 Appendix 

 
Terms used in Equations of Motion 

0=++++ ψψψχχ χψχψχψχχχχ KCMKM rr &&&&&
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