
Mining Tera-Scale Graphs with
MapReduce: Theory, Engineering

and Discoveries
U Kang

October 2011
CMU-CS-11-XXX

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Christos Faloutsos, chair

Tom Mitchell
Garth Gibson

Robert Grossman, University of Chicago

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2011 U Kang

Keywords: graph mining, MAPREDUCE

Abstract

How do we find patterns and anomalies, on graphs with billions of nodes and edges, which
do not fit in memory? How to use parallelism for such Tera- or Peta-scale graphs? In this
thesis, we propose a carefully selected set of fundamental operations, that help answer those
questions, including diameter estimation, solving eigenvalues, and inference on graphs. We
package all these operations in PEGASUS, which, to the best of our knowledge, is the first
such library, implemented on the top of the HADOOP platform, the open source version of
MAPREDUCE.

One of the key observations in this thesis is that many graph mining operations are essen-
tially repeated matrix-vector multiplications. We describe a very important primitive for PE-
GASUS, called GIM-V (Generalized Iterated Matrix-Vector multiplication). GIM-V is highly
optimized, achieving (a) good scale-up on the number of available machines, (b) linear run-
ning time on the number of edges, and (c) more than 9 times faster performance over the
non-optimized version of GIM-V.

Finally, we run experiments on real graphs. Our experiments ran on DiscCloud and M45,
one of the largest HADOOP clusters available to academia. We report our findings on several
real graphs, including one of the largest publicly available Web graphs, thanks to Yahoo!,
with ∼6,7 billion edges. Some of our most impressive findings are (a) the discovery of adult
advertisers in the who-follows-whom on Twitter, and (b) the 7-degrees of separation in the
Web graph.

Based on our current work, we propose the followings: large scale tensor analysis, graph
layout for better compression, and anomaly detection in network data.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Completed Work . 1
1.3 Proposed Work . 2
1.4 Overview . 2

2 Survey 4
2.1 Large Scale Graph Mining . 4
2.2 MAPREDUCE and HADOOP . 5

3 Completed Work 6
3.1 Discoveries . 6

3.1.1 Radius Plots . 6
3.1.2 Connected Components . 8
3.1.3 Triangle Counting . 8

3.2 Algorithms for Large Graph Mining . 9
3.2.1 Structure Analysis . 9
3.2.2 Eigensolver . 11
3.2.3 Inference . 11
3.2.4 Storage and Indexing . 12

4 Ongoing and Proposed Work 13
4.1 Task 1: Large Scale Tensor Analysis . 13
4.2 Task 2: Graph Layout and Compression . 13
4.3 Task 3: Anomaly Detection in Network Data . 14
4.4 Timeline . 14

5 Conclusion 15

iv

Chapter 1

Introduction

1.1 Motivation

Graphs are ubiquitous: computer networks, social networks, mobile call networks, the World Wide Web
[Broder et al., 2000], protein regulation networks to name a few. The large volume of available data,
the low cost of storage and the stunning success of online social networks and web2.0 applications all
lead to graphs of unprecedented size. Typical graph mining algorithms silently assume that the graph
fits in the memory of a typical workstation, or at least on a single disk; the above graphs violate these
assumptions, spanning multiple Giga-bytes, and heading to Tera- and Peta-bytes of data. A promising tool
is parallelism, and specifically MAPREDUCE [Dean and Ghemawat, 2004] and its open source version,
HADOOP.

The first question we investigate in our work is: what are the patterns and anomalies that we can discover
in large, real-world graphs with billions of nodes and edges? Large graphs have interesting patterns or
regularities including radius, connected components, triangles, and etc. Discovering the patterns helps
us spot anomalies which can be useful for applications ranging from cyber-security (computer networks),
phone companies(fraud detection), social networks (spammer detection), to name a few.

The second question we address is: how can we design efficient MAPREDUCE algorithms which lead to
discoveries in graphs of such scale? There are several challenges to answer the question. First, how can
we formulate many graph mining algorithms using simple operations that can be efficiently implemented
on MAPREDUCE? Second, how to store the graphs efficiently so that storage spaces are minimized and
graph mining queries can be answered quickly?

1.2 Completed Work

We divide this work into two main sections: discoveries, and algorithms for large graph mining.

We first show discoveries on very large, real-world graphs. The discoveries include patterns and anomalies
in connected components [Kang et al., 2010a][PDF], radius plots [Kang et al., 2010b][PDF] [Kang et al.,
2011e][PDF], and triangle counting [Kang et al., 2011b][PDF].

1

http://www.cs.cmu.edu/~ukang/papers/CCEvolICDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiSDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf

Next, we describe algorithms for mining large graphs, including the ones that enabled the discoveries.
The algorithms include structure analysis (GIM-V [Kang et al., 2009][PDF] [Kang et al., 2011f][PDF]
and HADI [Kang et al., 2010b][PDF] [Kang et al., 2011e][PDF]), eigensolver (HEIGEN) [Kang et al.,
2011b][PDF], and inferences (HA-LFP) [Kang et al., 2011a][PDF]. We also study efficient storage and
indexing methods for large graphs (GBASE) [Kang et al., 2011d][PDF].

1.3 Proposed Work

The proposed work branches into three.

Large Scale Tensor Analysis. We propose to design an efficient tensor decomposition(e.g. Tucker and
PARAFAC) on MAPREDUCE. Tensors, or multi-dimensional arrays, give rich information of complex
objects: examples include predicates(subject, verb, object) in knowledge bases, hyperlinks and anchor
texts in Web graphs, sensor stream(time, location, and type), and DBLP conference-author-keyword re-
lations [Kolda and Sun, 2008]. The goal is to handle tensors with millions or billions of nonzero en-
tries.

Graph Layout and Compression. We propose to study a method for laying out the edges of real world
graphs, so that they can be easily compressed, and graph mining algorithms based on block matrix-vector
multiplication can run quickly. We observe that many traditional researches for graph compression are
not suitable for real world graphs which do not have clear-cut communities often. Our main idea is based
on the power-law characteristic of complex networks: real world networks have many ‘hub’ nodes with
high centralities, and the removal of such hub nodes disconnects the graph quickly. Exploiting the idea,
we recursively cut ‘hub’ nodes from the graph, and carefully reorder the rest of the nodes so that nonzero
elements are clustered compactly.

Anomaly Detection in Network Data. We propose to find patterns and anomalies in network data, including
P2P network and the StackOverflow Q & A data (stackoverflow.com). For example, we want to
detect an insider adversary in a bank who shares sensitive customer information to outside adversary
through P2P network. We plan to design a scalable method, as well as to apply previously described tools,
for the anomaly detection in the data.

1.4 Overview

An outline of the thesis work is shown in Table 1.1. Following a survey of related work in Chapter 2, we
discuss the completed work in Chapter 3 with two subsections in the following order: the discoveries, and
the algorithms for large graph mining. Completed work includes seven published conference papers and
two published journal papers. Proposed work and a time-line for completion (end date October 2012) is
outlined in Chapter 4.

2

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusKAIS.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiSDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HalfpICDE2011.pdf
http://www.cs.cmu.edu/~ukang/papers/GbaseKDD2011.pdf

Table 1.1: Outline of thesis work. Click the [PDF] next to the citations, to obtain the pdf of the corre-
sponding paper.

Completed Work Ongoing and Proposed Work
Discoveries Section 3.1 Section 4.3

• Patterns and anomalies in radius
plots [Kang et al., 2011e][PDF]

• Patterns and anomalies in connected
components [Kang et al., 2011b][PDF]

• Patterns and anomalies in triangle
counting [Kang et al., 2010a][PDF]

• Anomaly detection in network data

Algorithms for
Large Graph Min-
ing

Section 3.2 Section 4.1, 4.2

• Structure analysis (GIM-V [Kang et al.,
2011f][PDF] and HADI [Kang et al.,
2011e][PDF])

• Eigensolver (HEIGEN) [Kang et al.,
2011b][PDF]

• Inference (HA-LFP) [Kang et al.,
2011a][PDF]

• Storage and indexing (GBASE) [Kang
et al., 2011d][PDF]

• Large Scale Tensor Analysis
• Graph Layout and Compression

3

http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/CCEvolICDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusKAIS.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HalfpICDE2011.pdf
http://www.cs.cmu.edu/~ukang/papers/GbaseKDD2011.pdf

Chapter 2

Survey

The related works are categorized into two parts: large scale graph mining and MAPREDUCE/HADOOP.

2.1 Large Scale Graph Mining

Research on large scale graph mining has been receiving significant attention. We study existing works
on the areas including structural analysis(radius and connected components), eignesolver, and infer-
ences.

Radius. The typical algorithms to compute the radius and the diameter of a graph include Breadth First
Search (BFS) and Floyd’s algorithm ([Cormen et al., 1990]). Both approaches are prohibitively slow for
large graphs, requiring O(n2 + nm) and O(n3) time, where n and m are the number of nodes and edges,
respectively. For the same reason, related BFS or all-pair shortest-path based algorithms like [Ferrez
et al., 1998], [Bader and Madduri, 2008], [Ma and Ma, 1993], [Sinha et al., 1986] can not handle large
graphs. A sampling approach starts BFS from a subset of nodes, typically chosen at random as in [Broder
et al., 2000]. Despite its practicality, this approach has no obvious solution for choosing the representative
samples for BFS.

Connected Components. There are many algorithms for computing connected components of a graph,
using Breadth-First Search, Depth-First-Search, “propagation” [Shiloach and Vishkin, 1982, Awerbuch
and Shiloach, 1983, Hirschberg et al., 1979], or “contraction” [Greiner, June 1994] . These works rely on
a shared memory model which limits their ability to handle large, disk-resident graphs.

Eigensolver. There are many parallel eigensolvers for large matrices: the work by Zhao et al. [Zhao
et al., 2007], HPEC [Guarracino et al., 2006], PLANO [Wu and Simon, 1999], PREPACK [R.B. et al.,
1998], SCALABLE [Blackford et al., 1997], PLAYBACK [Alpatov et al., 1997] are several examples.
All of them are based on MPI with message passing, which has difficulty in dealing with billion-scale
graphs. The maximum order of matrices analyzed with these tools is less than 1 million [Wu and Simon,
1999] [Song et al., 2008], which is far from that of the web-scale data with billions of nodes and edges.

4

Very recently(March 2010), the Mahout project [Mah] provides SVD on top of HADOOP. Due to insuffi-
cient documentation, we were not able to find the input format and run a head-to-head comparison. But,
reading the source code, we discovered that Mahout suffers from two major issues: (a) it assumes that the
vector (b, with n=O(billion) entries) fits in the memory of a single machine, and (b) it implements the full
re-orthogonalization which is inefficient.

Inference. Belief Propagation(BP) [Pearl, 1982] is an efficient inference algorithm for probabilistic
graphical models. Since its proposal, it has been widely, and successfully, used in a myriad of domains
to solve many important problems. BP is computationally-efficient; its running time scales linearly with
the number of edges in the graph. However, for graphs with billions of nodes and edges — a focus of
our work — this cost becomes significant. There are several recent works that investigated parallel BP
on multicore shared memory [Gonzalez et al., 2009b] and MPI [Gonzalez et al., 2009a, Mendiburu et al.,
2007]. However, all of them assume the graphs would fit in the main memory (of a single computer, or a
computer cluster). Our work specifically tackles the important, and increasingly prevalent, situation where
the graphs would not fit in main memory.

2.2 MAPREDUCE and HADOOP

MAPREDUCE is a programming framework [Dean and Ghemawat, 2004] [Aggarwal et al., 2004] for
processing huge amounts of unstructured data in a massively parallel way. MAPREDUCE has two ma-
jor advantages: (a) the programmer is oblivious of the details of the data distribution, replication, load
balancing etc. and furthermore (b) the programming concept is familiar, i.e., the concept of functional
programming. Briefly, the programmer needs to provide only two functions, a map and a reduce. The
typical framework is as follows [Lämmel, 2008]: (a) the map stage sequentially passes over the input file
and outputs (key, value) pairs; (b) the shuffling stage groups of all values by key, and (c) the reduce stage
processes the values with the same key and outputs the final result.

HADOOP is the open source implementation of MAPREDUCE. HADOOP provides the Distributed File
System (HDFS) and PIG, a high level language for data analysis [Olston et al., 2008]. Due to its
power, simplicity, fault tolerance, and low maintenance costs, HADOOP is a very promising tool for large
scale graph mining applications, something already reflected in academia, see [Papadimitriou and Sun,
2008] [Kang et al., 2009][PDF] [Kang et al., 2011f][PDF]. In addition to PIG, there are several high-level
language and environments for advanced MAPREDUCE-like systems, including Sphere [Grossman and
Gu, 2008], SCOPE [Chaiken et al., 2008], and Sawzall [Pike et al., 2005].

5

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusKAIS.pdf

Chapter 3

Completed Work

In this chapter, we first present the discoveries of patterns and anomalies in large, real-world graphs. Then,
we describe the algorithms including the ones that enabled such discoveries. Table 3.1 lists the graphs
used. The experiments were performed in the DiscCloud and M45 HADOOP clusters. The DiscCloud
cluster, provided by Parallel Data Lab in CMU, has 64 machines with 256 Terabyte storage and 1 Terabyte
memory in total. The M45 cluster by Yahoo!, one of the largest HADOOP clusters available to academia,
has total 480 machines with 1.5 Petabyte storage and 3.5 Terabyte memory in total.

Graph Nodes Edges File Size Description
YahooWeb 1.4 B 6.6 B 116 G web page links in 2002

Twitter 62.5 M 2.8 B 56 G who follows whom in Nov. 2009
U.S. Patent 6 M 16 M 0.3 G patent citations from 1975 to 1999
Kronecker 177 K 1,977 M 25 G synthetic Kronecker graphs [Leskovec et al., 2005]

120 K 1,145M 13.9 G
59 K 282 M 3.3 G

Erdős-Rényi 177 K 1,977 M 25 G random graphs [Erdős and Rényi, 1959]
120 K 1,145 M 13.9 G

59 K 282 M 3.3 G

Table 3.1: Datasets. B: Billion, M: Million, K: Thousand, G: Gigabytes

3.1 Discoveries

We report interesting discoveries in large, real-world graphs. They include the patterns and anomalies in
radius plots, connected components, and triangle counting.

3.1.1 Radius Plots

Problem 1. What are the central nodes and outliers in graphs? How closely are nodes in graphs con-
nected? How do they change over time?

Our main idea. These questions can be answered by radius plot, which is the distribution of the radius
of nodes. The radius r(v) of node v is the distance between v and a reachable node farthest away from v.

6

The diameter of a graph is the maximum radius of nodes. The effective radius and the effective diameter
provide more robust definitions of the radius and the diameter [Kang et al., 2010b][PDF] [Kang et al.,
2011e][PDF].

We analyze the diameter and the radii of YahooWeb and U.S. patent graphs in Figure 3.1 and 3.2, respec-
tively. We have the following observations.

(a) Radius plot of YahooWeb (b) Radius plot of GCC of YahooWeb

Figure 3.1: (a) Radius plot(Count versus Radius) of the YahooWeb graph. Notice the effective diameter
is surprisingly small. Also notice the peak(marked ‘S’) at radius 2, due to star-structured
disconnected components, and multi-modality which is possibly due to a mixture of relatively
smaller subgraph. (b) Radius plot of GCC(Giant Connected Component) of YahooWeb graph.
The only node with radius 5 (marked ‘C’) is google.com.

Small Web. The effective diameter of the YahooWeb graph (year: 2002) is surprisingly small (≈ 7 ∼ 8).
google.com has the smallest radius of 5.

Multi-modality of Web graph. The Radius distribution of the Web graph has a multi-modal structure, which
is possibly due to a mixture of relatively smaller subgraphs which got loosely connected recently.

(a) U.S. Patent at 1985 (b) U.S. Patent-Expansion (c) U.S. Patent-Contraction

Figure 3.2: (a) Static radius plot(Count versus Radius) of U.S. Patent. Notice the bi-modal structure
with ‘outsiders’, ‘core’, and ‘whiskers’. (b,c) Radius plot over time. “Expansion”: the radius
distribution moves to the right until the gelling point. “Contraction”: the radius distribution
moves to the left after the gelling point.

Structure of real graphs. Nodes in real graphs are grouped into three, according to the radius and mem-
berships of connected components: 1) outsiders, having the smallest radii and belonging to disconnected
components, 2) core, belonging to the GCC(Giant Connected Component) and having relatively small
radii, and 3) ‘whiskers’, belonging to the GCC and having high radii.

7

http://www.cs.cmu.edu/~ukang/papers/HadiSDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf

Expansion-Contraction. The radius distribution expands to the right until it reaches the gelling point [Mc-
glohon et al., 2008], which is the time several disconnected components gel into a huge giant connected
component. After the gelling point, it contracts to the left.

3.1.2 Connected Components

Problem 2. What are the patterns and anomalies in the connected components of a Web graph?

Our main idea. We analyze the size distribution of connected components of the YahooWeb graph in
Figure 3.3. We have the following observation which shows the patterns of anomalous web pages [Kang
et al., 2009][PDF] [Kang et al., 2011f][PDF].

Figure 3.3: Connected Components of YahooWeb. Notice the two anomalous spikes which deviate sig-
nificantly from the constant-slope tail.

Anomalous connected components. In Figure 3.3, we found two outstanding spikes which deviate from
the ‘power-law’ like size distributions of small disconnected components. In the first spike at size 300,
more than half of the components have exactly the same structure and they were made from a domain
selling company where each component represents a domain to be sold. The spike happened because the
company replicated sites using the same template. In the second spike at size 1101, more than 80 % of
the components are adult sites disconnected from the giant connected component. Again, the adult sites
are generated from a template. By looking at the distribution plot of connected components, we could find
interesting communities with special purposes which are disconnected from the rest of the Internet.

3.1.3 Triangle Counting

Problem 3. What are the patterns and anomalies in the triangle counts and the degrees in social network
graphs?

Our main idea. We analyze the degree and the number of participating triangles in the Twitter ‘who
follows whom’ graph at year 2009 [Kang et al., 2011b][PDF] in Figure 3.4. We have the following
observation which can be used to spot and eliminate harmful accounts such as those of adult advertisers
and spammers.

8

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusKAIS.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf

Figure 3.4: The degree vs. participating triangles of some ‘celebrities’ in Twitter accounts. Also shown
are accounts of adult sites which have smaller degree, but belong to an abnormally large
number of triangles.The reason of the large number of triangles is that adult accounts are
often from the same provider, and they follow each other to form a clique, to possibly boost
their rankings or popularity.

Anomalous triangles vs. degree ratio. In Figure 3.4, celebrities have high degree and mildly connected
followers, while accounts for adult sites have many fewer, but extremely well connected, followers. The
reason is that adult accounts are often from the same provider, and they follow each other to possibly boost
their rankings or popularity.

3.2 Algorithms for Large Graph Mining

We describe algorithms for large scale graph mining, including the ones that enabled the discoveries in
Section 3.1.

3.2.1 Structure Analysis

Problem 4. How can we find connected components, diameter, PageRank, node proximities of very large
graphs quickly? Furthermore, how can we design a general primitive which can be applied to many
different algorithms?

Our main idea. We observe that many algorithms, like connected components, diameter, PageRank,
and node proximities, can be unified via the GIM-V primitive, standing for Generalized Iterative Matrix-
Vector multiplication [Kang et al., 2009][PDF] [Kang et al., 2011f][PDF], which is a generalization of the
standard matrix-vector multiplication. In the GIM-V, we customize the three internal operations(multiply,
sum, and assign) in the standard matrix-vector multiplications to define many different algorithms.

Having defined GIM-V, the next question is to design efficient methods for the generalized matrix-vector
multiplication in MAPREDUCE. Our first main idea is to put together several nonzero elements into square
blocks, and perform the block-wise matrix-vector multiplication instead of element-wise multiplication.
Our second main idea is to cluster the graph so that nonzero elements in the adjacency matrix are closely
located, and then compress the nonzero bit strings of each block by standard compression algorithms like

9

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusKAIS.pdf

gzip. This compression greatly saves space, which leads to faster running time of block-wise matrix-vector
multiplication.

We compared our proposed CCB method which combines the block encoding, clustering, and compres-
sion, with other methods including RAW(naive method), NNB(only block encoding), and NCB(block
encoding and compression without clustering). Figure 3.5 shows the result of the disk space and the run-
ning time comparison. The ‘Random’ graph refers to both Kronecker and Erdős-Rényi graphs. Note that
GIM-V CCB provides up to 43× smaller storage, 9.2× faster running time. Furthermore, GIM-V CCB
enjoys linear scalability on the number of machines and edges, as shown in Figure 3.6.

(a) File size (b) Running time

Figure 3.5: (a) Effect of different encoding methods for GIM-V. The Y-axis is in log scale. Notice our
proposed compressed block encoding on clustered graph(CCB) achieves the best compres-
sion, reducing up to 43× smaller than the original(RAW). The ‘Random’ graph has better
performance gain than real-world graphs since the density is much higher. (b) Running time
comparison of PageRank queries over different storage methods. The CCB method performs
the best, outperforming RAW method up to 9.2×.

 1

 1.5

 2

 2.5

 3

 3.5

 25 50 75 100

’’S
ca

le
 u

p’
’:

1/
T

M

Number of Machines

YahooWeb
Twitter

Random

 80

 100

 120

 140

 160

 180

 200

282M 1146M 1977M

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Number of Edges

10 machines
25 machines
40 machines

(a) Scale-up with machines (b) Scale-up with edges

Figure 3.6: (a) Machine scalability of our proposed CCB method. The Y-axis shows the ratio of the
running time TM with M machines, and T25, for PageRank queries. Note the running times
scale up near-linearly with the number of machines. (b) Edge scalability of our proposed CCB
method. The Y-axis shows the running time in seconds, for PageRank queries on Kronecker
graphs. Note the running times scale up near-linearly with the number of edges for all the
settings(10, 25, and 40 machines).

10

3.2.2 Eigensolver

Problem 5. How can we design a scalable eigensolver? How can we handle skewed matrix-matrix
multiplication where one matrix is much larger than the other?

Our main idea. Given a billion-scale graph, how can we find near-cliques, the count of triangles, and
related graph properties? All of them can be found quickly if we have the first several eigenvalues and
eigenvectors of the adjacency matrix of the graph [Tsourakakis et al., 2009][PDF] [Prakash et al., 2010].
Despite their importance, existing eigensolvers do not scale well. We developed HEIGEN [Kang et al.,
2011b][PDF], an eigensolver for billion-scale, sparse symmetric matrices, on MAPREDUCE.

A challenge in HEIGEN is to design an efficient method for skewed matrix-matrix multiplication, where
the first matrix is much larger than the second matrix. Our main idea is to broadcast the smaller matrix
to all the mappers, so that the second matrix can be joined with the elements of the first matrix in the
mapper. This can greatly reduce the network traffic and decrease the running time. Figure 3.7 shows the
running time comparison of matrix-matrix multiplication methods. Our proposed CBMM(Cache-Based
Matrix-Matrix multiplication) method outperforms naive methods by 76×.

Figure 3.7: Comparison of running times between different skewed matrix-matrix multiplication meth-
ods in MAPREDUCE. Our proposed CBMM outperforms naive methods by at least 76×. The
slowest matrix-matrix multiplication algorithm(MM) even didn’t finish and the job failed due
to the excessive data.

3.2.3 Inference

Problem 6. How to scale-up the inference, or “guilt by association” algorithm for very large graphs with
billions of nodes and edges?

Our main idea. Inference in graphs is an important problem, which often corresponds, intuitively, to
“guilt by association” scenarios. For example, if a person is a drug-abuser, probably its friends are so, too;
if a node in a social network is of male gender, his dates are probably females. The typical way to handle
this is belief propagation [Pearl, 1982], and we tackle the scalability issue of the belief propagation.

We observe that belief propagation cannot be formulated by a generalized matrix-vector multiplication on
the original adjacency matrix and a vector. Instead, we formulate the belief propagation by a generalized
matrix-vector multiplication on the line graph matrix and the message vector [Kang et al., 2011a][PDF].
Our key contribution is to compute the multiplication without explicitly constructing the line graph: in-
stead, we use the original adjacency matrix to compute the multiplication on the line graph, which lead to
faster running time on MAPREDUCE.

11

http://www.cs.cmu.edu/~ukang/papers/kdd09.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HalfpICDE2011.pdf

Figure 3.8 shows the scalability of our proposed HA-LFP algorithm. HA-LFP scales up linearly with the
number of edges and the machines, respectively.

(a) Scale-up with machines (b) Scale-up with edges

Figure 3.8: (a) “Scale-up” (throughput 1/TM , where TM is the running time with M machines) versus
number of machines M , of HA-LFP on the YahooWeb graph. Notice the near-linear scale-up
close to the ideal(dotted line). (b) Running time of 1 iterations of message update in HA-LFP
on Kronecker graphs. Notice that the running time scales-up linear to the number of edges.

3.2.4 Storage and Indexing

Problem 7. How to store and index graph edge files so that graph mining queries can be answered
quickly?

Our main idea. We consider targeted graph mining queries whose answers require the access to only
parts of the graph. Examples of targeted queries include k-step in/out-neighbors, and egonet queries [Akoglu
et al., 2010]. Our GBASE [Kang et al., 2011d][PDF] system solves the problem of efficiently storing and
indexing large graphs, with the following main ideas. In the indexing stage, we make rectangular blocks
of adjacency matrix, and store several blocks into grids where each grid corresponds to a square-shaped
area in the adjacency matrix. In the query stage, only relevant grids are selected based on the queries. Fig-
ure 3.9 shows the performance of this ‘grid selection(GS)’ strategy. Applying the grid selection reduces
the running time by 2.6×(CCB+GS vs. CCB), and the grid selection strategy combined with clustering
and compression performs 4.6× faster than the naive method (CCB+GS vs. RAW).

Figure 3.9: Running times of targeted queries over different storage and indexing methods, on Twitter
graph. 1-Nh and 2-Nh denote the 1-step and the 2-step neighborhood queries, respectively.
Note that the CCB+GS(grid selection method combined with the clustered zip block encod-
ing) outperforms the others by 4.6× at maximum.

12

http://www.cs.cmu.edu/~ukang/papers/GbaseKDD2011.pdf

Chapter 4

Ongoing and Proposed Work

4.1 Task 1: Large Scale Tensor Analysis

Problem 8. How can we design a scalable algorithm for large scale tensor analysis?

Our main idea. Tensors, or multi-dimensional arrays are everywhere: predicates(subject, verb, ob-
ject) in knowledge bases [Carlson et al., 2010], hyperlinks and anchor texts in Web graphs [Kolda et al.,
2005], sensor stream(time, location, and type) [Sun et al., 2006], and DBLP conference-author-keyword
relations [Kolda and Sun, 2008], to name a few. Analysis of multi-dimensional arrays by tensor decom-
positions, as shown in Figure 4.1, have interesting applications including clustering, trend detection, and
anomaly detection [Kolda and Sun, 2008]. We propose to design an efficient tensor decomposition(e.g.
Tucker and PARAFAC) on MAPREDUCE.

Figure 4.1: A tensor, or a multi-dimensional array, and its decomposition.

4.2 Task 2: Graph Layout and Compression

Problem 9. How can we layout edges of a graph so that they are better compressed and graph mining
queries are answered quickly?

Our main idea. Graph layout and compression is an important problem for reducing storage space and
answering graph mining queries quickly. The traditional research focus was to find homogeneous regions
or communities in the graph so that nodes inside a region are tightly connected to each other than to nodes

13

in other regions. However, clear-cut communities in real world graphs are hard to be found [Leskovec
et al., 2008] due to ‘hub’ nodes having high centralities [Kang et al., 2011c][PDF]. We propose to study
a method for laying out the edges of real world graphs, so that they can be easily compressed, and graph
mining algorithms based on block matrix-vector multiplication can run quickly. Our main idea is based
on the observation that real world graphs are easily disconnected by hubs: removing hubs from a graph
creates many small disconnected components, and the remaining giant connected component is substan-
tially smaller than the original graph. We recursively cut the hubs, and carefully reorder the hubs and
disconnected components to achieve better compression.

4.3 Task 3: Anomaly Detection in Network Data

Problem 10. What are the patterns and anomalies in network data?

Our main idea. We propose to find patterns and anomalies in network data, including P2P network
and the StackOverflow Q & A data (stackoverflow.com). The P2P network data contains users,
machines, files, and the communication records containing ‘who searched which files’ information. The
StackOverflow Q & A data contains ‘who answered to whom how many times’ records. In both of the
data, the goal is to find suspicious users, who behave in a different way compared to other normal users.
For example, we want to detect an insider adversary in a bank who shares sensitive customer information
to outside adversary through P2P network. We plan to design a scalable method, as well as to apply
previously described tools, for the anomaly detection in the data.

4.4 Timeline

Each of task 4.1, 4.2, and 4.3 will take approximately 2-3 months a piece. Projected dissertation comple-
tion is in October 2012.

• October 2011: Thesis proposal.

• October - December 2011: Task 4.2: graph layout and compression.

• January - March 2012: Task 4.1: large scale tensor analysis.

• April - June 2012: Task 4.3: anomaly detection in network data.

• June - August 2012: Internship.

• August - September 2012: Thesis writing.

• October 2012: Thesis defense.

14

http://www.cs.cmu.edu/~ukang/papers/CentralitySDM2011.pdf

Chapter 5

Conclusion

This thesis focuses on the discoveries in large, real-world graphs, and the algorithms for mining large
graphs that enabled such discoveries. The main contributions so far include:

• Patterns and anomalies of structural features in large, real world graphs, including the discovery of
anomalous accounts in Twitter, and the 7-degrees of separation in the Web graph.

• Scalable algorithms for mining Tera-scale graphs, including the Generalized Iterative Matrix-Vector
Multiplication, the belief propagation, and the eigensolver.

• Methods for efficient storage and indexing of large graphs.

Proposed work can be summarized as follows.

• Large scale tensor analysis.
• Graph layout for better compression and efficient query answering.
• Anomaly detection in network data.

15

Bibliography

Mahout information. http://lucene.apache.org/mahout/. 5

G. Aggarwal, M. Data, S. Rajagopalan, and M. Ruhl. On the streaming model augmented with a sorting
primitive. Proceedings of FOCS, 2004. 5

L. Akoglu, M. McGlohon, and C. Faloutsos. oddball: Spotting anomalies in weighted graphs. In PAKDD
(2), pages 410–421, 2010. 12

P. Alpatov, G. Baker, C. Edward, J. Gunnels, G. Morrow, J. Overfelt, R. van de Gejin, and Y.-J. Wu.
Plapack: Parallel linear algebra package - design overview. SC97, 1997. 4

B. Awerbuch and Y. Shiloach. New connectivity and msf algorithms for ultracomputer and pram. ICPP,
1983. 4

D. A. Bader and K. Madduri. A graph-theoretic analysis of the human protein-interaction network using
multicore parallel algorithms. Parallel Comput., 2008. 4

L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, and I. Dhillon. Scalapack users’s guide.
SIAM, 1997. 4

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer Networks 33, 2000. 1, 4

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, 2010. 13

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. VLDB, 2008. 5

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1990. 4

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI, 2004. 1, 5

P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959. 6

J.-A. Ferrez, K. Fukuda, and T. Liebling. Parallel computation of the diameter of a graph. In HPCSA,
1998. 4

J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron. Distributed parallel inference on large factor graphs.
In Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, Canada, July 2009a. 5

J. E. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally parallelizing belief propagation.
AISTAT, 2009b. 5

J. Greiner. A comparison of parallel algorithms for connected components. Proceedings of the 6th ACM
Symposium on Parallel Algorithms and Architectures, June 1994. 4

R. L. Grossman and Y. Gu. Data mining using high performance data clouds: experimental studies using

16

sector and sphere. KDD, 2008. 5

M. R. Guarracino, F. Perla, and P. Zanetti. A parallel block lanczos algorithm and its implementation for
the evaluation of some eigenvalues of large sparse symmetric matrices on multicomputers. Int. J. Appl.
Math. Comput. Sci., 2006. 4

D. Hirschberg, A. Chandra, and D. Sarwate. Computing connected components on parallel computers.
Communications of the ACM, 22(8):461–464, 1979. 4

U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system - implemen-
tation and observations. ICDM, 2009. URL http://www.cs.cmu.edu/˜ukang/papers/
PegasusICDM2009.pdf. 2, 5, 8, 9

U. Kang, M. McGlohon, L. Akoglu, and C. Faloutsos. Patterns on the connected components of terabyte-
scale graphs. In ICDM, pages 875–880, 2010a. URL http://www.cs.cmu.edu/˜ukang/
papers/CCEvolICDM2010.pdf. 1, 3

U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Radius plots for mining tera-byte
scale graphs: Algorithms, patterns, and observations. SIAM International Conference on Data Mining,
2010b. URL http://www.cs.cmu.edu/˜ukang/papers/HadiSDM2010.pdf. 1, 2, 7

U. Kang, D. H. Chau, and C. Faloutsos. Mining large graphs: Algorithms, inference, and discover-
ies. In ICDE, pages 243–254, 2011a. URL http://www.cs.cmu.edu/˜ukang/papers/
HalfpICDE2011.pdf. 2, 3, 11

U. Kang, B. Meeder, and C. Faloutsos. Spectral analysis for billion-scale graphs: Discoveries and im-
plementation. In PAKDD (2), pages 13–25, 2011b. URL http://www.cs.cmu.edu/˜ukang/
papers/HeigenPAKDD2011.pdf. 1, 2, 3, 8, 11

U. Kang, S. Papadimitriou, J. Sun, and H. Tong. Centralities in large networks: Algorithms and obser-
vations. In SDM, pages 119–130, 2011c. URL http://www.cs.cmu.edu/˜ukang/papers/
CentralitySDM2011.pdf. 14

U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. Gbase: A scalable and general graph management
systemn. ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2011d. URL http:
//www.cs.cmu.edu/˜ukang/papers/GbaseKDD2011.pdf. 2, 3, 12

U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi: Mining radii of large
graphs. ACM Trans. Knowl. Discov. Data, 5:8:1–8:24, February 2011e. ISSN 1556-4681. doi: http:
//doi.acm.org/10.1145/1921632.1921634. URL http://www.cs.cmu.edu/˜ukang/papers/
HadiTKDD2011.pdf. 1, 2, 3, 7

U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: mining peta-scale graphs. Knowl. Inf. Syst., 27(2):
303–325, 2011f. URL http://www.cs.cmu.edu/˜ukang/papers/PegasusKAIS.pdf. 2,
3, 5, 8, 9

T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In ICDM, pages
363–372, 2008. 2, 13

T. G. Kolda, B. W. Bader, and J. P. Kenny. Higher-order web link analysis using multilinear algebra. In
ICDM, pages 242–249, 2005. 13

R. Lämmel. Google’s mapreduce programming model – revisited. Science of Computer Programming,
70:1–30, 2008. 5

J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic, mathematically tractable graph
generation and evolution, using kronecker multiplication. PKDD, pages 133–145, 2005. 6

17

http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusICDM2009.pdf
http://www.cs.cmu.edu/~ukang/papers/CCEvolICDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/CCEvolICDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiSDM2010.pdf
http://www.cs.cmu.edu/~ukang/papers/HalfpICDE2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HalfpICDE2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HeigenPAKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/CentralitySDM2011.pdf
http://www.cs.cmu.edu/~ukang/papers/CentralitySDM2011.pdf
http://www.cs.cmu.edu/~ukang/papers/GbaseKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/GbaseKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/HadiTKDD2011.pdf
http://www.cs.cmu.edu/~ukang/papers/PegasusKAIS.pdf

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure
in large social and information networks. In WWW, pages 695–704, 2008. 14

J. Ma and S. Ma. Efficient parallel algorithms for some graph theory problems. JCST, 1993. 4

M. Mcglohon, L. Akoglu, and C. Faloutsos. Weighted graphs and disconnected components: patterns and
a generator. KDD, pages 524–532, 2008. 8

A. Mendiburu, R. Santana, J. Lozano, and E. Bengoetxea. A parallel framework for loopy belief propaga-
tion. GECCO, 2007. 5

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08, pages 1099–1110, 2008. 5

S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-reduce. ICDM, 2008. 5

J. Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. In Proceedings of the
AAAI National Conference on AI, pages 133–136, 1982. 5, 11

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with sawzall.
Scientific Programming Journal, 2005. 5

B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju, and C. Faloutsos. Eigenspokes: Surprising
patterns and community structure in large graphs. PAKDD, 2010. 11

J. L. R.B., S. D.C., and Y. C. Arpack user’s guide: Solution of large-scale eigenvalue problems with
implicitly restarted arnoldi methods. SIAM, 1998. 4

Y. Shiloach and U. Vishkin. An o(logn) parallel connectivity algorithm. Journal of Algorithms, pages
57–67, 1982. 4

B. P. Sinha, B. B. Bhattacharya, S. Ghose, and P. K. Srimani. A parallel algorithm to compute the shortest
paths and diameter of a graph and its vlsi implementation. IEEE Trans. Comput., 1986. 4

Y. Song, W. Chen, H. Bai, C. Lin, and E. Chang. Parallel spectral clustering. In ECML, 2008. 4

J. Sun, S. Papadimitriou, and P. S. Yu. Window-based tensor analysis on high-dimensional and multi-
aspect streams. In ICDM, pages 1076–1080, 2006. 13

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: counting triangles in massive
graphs with a coin. In KDD, pages 837–846, 2009. URL http://www.cs.cmu.edu/˜ukang/
papers/kdd09.pdf. 11

K. Wu and H. Simon. A parallel lanczos method for symmetric generalized eigenvalue problems. Com-
puting and Visualization in Science, 1999. 4

Y. Zhao, X. Chi, and Q. Cheng. An implementation of parallel eigenvalue computation using dual-level
hybrid parallelism. Lecture Notes in Computer Science, 2007. 4

18

http://www.cs.cmu.edu/~ukang/papers/kdd09.pdf
http://www.cs.cmu.edu/~ukang/papers/kdd09.pdf

	Introduction
	Motivation
	Completed Work
	Proposed Work
	Overview

	Survey
	Large Scale Graph Mining
	MapReduce and Hadoop

	Completed Work
	Discoveries
	Radius Plots
	Connected Components
	Triangle Counting

	Algorithms for Large Graph Mining
	Structure Analysis
	Eigensolver
	Inference
	Storage and Indexing

	Ongoing and Proposed Work
	Task 1: Large Scale Tensor Analysis
	Task 2: Graph Layout and Compression
	Task 3: Anomaly Detection in Network Data
	Timeline

	Conclusion

