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Abstract

Random walk graph kernel has been used as an impor-
tant tool for various data mining tasks including clas-
sification and similarity computation. Despite its use-
fulness, however, it suffers from the expensive computa-
tional cost which is at least O(n3) or O(m2) for graphs
with n nodes and m edges.

In this paper, we propose Ark, a set of fast
algorithms for random walk graph kernel computation.
Ark is based on the observation that real graphs have
much lower intrinsic ranks, compared with the orders
of the graphs. Ark exploits the low rank structure to
quickly compute random walk graph kernels in O(n2)
or O(m) time.

Experimental results show that our method is up
to 97,865× faster than the existing algorithms, while
providing more than 91.3% of the accuracies.

1 Introduction

Many real-world, complex objects with structural prop-
erties can be naturally modeled as graphs. For instance,
the Web can be naturally represented as a graph with
the Web pages as nodes and hyper links as edges. In the
medical domain, the symptom-lab test graph of a given
patient, which can be constructed from his/her medi-
cal records, provides a good indicator of the structure
information of possible disease s/he carries (e.g., the as-
sociation between a particular symptom and some lab
test, the co-occurrence of different symptom). How can
we characterize the difference of the current web graph
from the one from the last year to spot potential ab-
normal activities? How can we measure the similarities
among different patients so that we can segment them
into different categories?

Graph kernel [43] provides a natural tool to answer
the above questions. Among others, one of the most
powerful graph kernel is based on random walks, and
has been successfully applied to many real world appli-
cations (see Section 6 for a review). Despite its success,
one main challenge remains open in terms of the scal-
ability. To date, the best known algorithm to compute
random walk based graph kernel is cubic in terms of the
number of the nodes in the graph. Consequently, most,

if not all, of the current random walk graph kernel al-
gorithms quickly become computationally infeasible for
the graphs with more than hundreds of nodes.

To address this issue, we propose a family of fast
algorithms to compute random walk graph kernel. The
key observation is that many real graphs have much
lower intrinsic ranks, compared with the orders of the
graphs. The heart of our proposed algorithms is to
leverage such low-rank structure as an intermediate
step to speed up the computation. Our experimental
evaluations on many real graphs show that the new
proposed methods (1) are much faster than the existing
ones (up to 97,865× speed-up); (2) scale to the graphs
with 325,729 nodes that all the existing methods fail to
compute; and (3) bear a high approximation accuracy
(more than 91.3%).

The main contributions of this paper are as follows.

1. Algorithms. We propose Ark, a set of fast
algorithms to compute random walk graph kernel,
which significantly reduce the time complexity (see
Table 2 for a comparison).

2. Proofs and Analysis. We show the approxima-
tion error bounds as well as the efficiency of our
methods.

3. Experiments. We perform extensive experiments
on many real world graphs, showing the speed-up
(maximum 97,865×) and the accuracy (more than
91.3%) of our proposed method.

The rest of paper is organized as follows. Section 2
presents the preliminaries of the standard random walk
graph kernel. Sections 3 and 4 describe our proposed
Ark algorithms for unlabeled and labeled graphs, re-
spectively. Section 5 presents the experimental results.
After reviewing related works in Section 6, we conclude
in Section 7.

2 Preliminaries; Random Walk Graph Kernel

In this section, we describe the preliminaries on the
random walk graph kernel whose fast algorithms will be
proposed in Sections 3 and 4. Table 1 lists the symbols
used in this paper.



Symbol Definition

G a graph

n number of nodes in a graph

m number of edges in a graph

A adjacency matrix of a graph

k(G1, G2) exact graph kernel function on graphs

G1 and G2

k̂(G1, G2) approximate graph kernel function on

graphs G1 and G2

W weight matrix in random walk kernel

c decay factor in random walk kernel

dn number of distinct node labels

r reduced rank after low rank

approximation

| · |F Frobenius norm

Table 1: Table of symbols.

2.1 Definition Random walk graph kernel has been
used for classification and measuring similarities of
graphs [20, 43]. Given two graphs, the random walk
graph kernel computes the number of common walks in
two graphs. Two walks are common if the lengths of the
walks are equal, and the label sequences are the same
(for nodes/edges labeled graphs). The computed num-
ber of common walks is used to measure the similarity
of two graphs.

We derive the random walk graph kernel for the
unlabeled and unnormalized cases, and generalize the
definition to labeled and normalized cases. Given two
graphs G1 = {V1, E1} and G2 = {V2, E2}, the direct
product graph G× = {V×, E×} of G1 and G2 is a graph
with the node set V× = {(v1, v2)|v1 ∈ V1, v2 ∈ V2}, and
the edge set E× = {((v11, v21), (v12, v22))|(v11, v12) ∈
E1, (v21, v22) ∈ E2}. A random walk on the direct
product graph G× is equivalent to the simultaneous
random walks on G1 and G2. Let p1 and p2 be the
starting probabilities of the random walks on G1 and
G2, respectively. The stopping probabilities q1 and q2
are defined similarly. Then, the number of length l
common walks on the direct product graph G× is given
by (q1⊗q2)(WT

1 ⊗WT
2 )l(p1⊗p2), where W1 and W2 are

the adjacency matrices of G1 and G2, respectively [43].
Discounting the longer walks by the decay factor c,
and summing up all the common walks for all different
lengths, we derive the equation for the random walk
graph kernel:

k(G1, G2) =
∑∞
l=0(q1 ⊗ q2)(WT

1 ⊗WT
2 )l(p1 ⊗ p2)

= (q1 ⊗ q2)(I − c(WT
1 ⊗WT

2 ))−1(p1 ⊗ p2).

More generally, the random walk graph kernel is
defined as follows.

Definition 1. (Random Walk Graph Kernel)
Let G1 and G2 be two graphs. Let p1 and p2 be the
starting probabilities of the random walks on G1 and
G2, respectively. Similarly, let q1 and q2 be the stopping
probabilities of the random walks on G1 and G2,
respectively. The random walk graph kernel k(G1, G2)
is determined by

(2.1) k(G1, G2) := qT (I − cW )−1p,

where W is a weight matrix, c is a decay factor,
p = p1 ⊗ p2, and q = q1 ⊗ q2. �

The weight matrix W is determined by two factors:
normalization and labels on nodes/edges.

Normalization. Let A1 and A2 be the adjacency
matrices of G1 and G2, respectively. For unnormalized
case, the weight matrix is given by W = AT1 ⊗ AT2 .
For normalized case, the weight matrix is given by
W = AT1D

−1
1 ⊗AT2D

−1
2 , where D1 and D2 are diagonal

matrices whose ith diagonal elements are given by∑
j A1(i, j) and

∑
j A2(i, j), respectively.

Labels. Nodes and edges can be labeled. First, we
consider node labeled graphs. Let G1 have n1 nodes and
G2 have n2 nodes. Let l1 and l2 be the node label vectors
of G1 and G2, respectively. The ((i−1) ·n2+j)th row of
the weight matrixW is zeroed out if the ith element l1(i)
of l1 and the jth element l2(j) of l2 do not have the same
labels. Note that for this case the starting probability
p = p1⊗ p2 is also changed similarly: ((i− 1) ·n2 + j)th
element of p is zeroed out if the ith element l1(i) of
l1 and the jth element l2(j) of l2 do not have the
same labels. Second, we consider edge labeled graphs.
Let W1 and W2 be the normalized or unnormalized
adjacency matrices of G1 and G2, respectively. The
((i1−1) ·n2 + i2, (j1−1) ·n2 + j2)th element of W is 1 if
and only if the edge labels of WT

1 (i1, j1) and WT
2 (i2, j2)

are the same.

2.2 Computing Random Walk Graph Kernel
We describe methods for computing the random walk
graph kernel. For simplicity, we assume that both the
graphs G1 and G2 have n nodes and m edges.

Naive Method. The naive algorithm is to com-
pute the Equation (2.1) by inverting the n2×n2 matrix



W . Since inverting a matrix takes time proportional to
the cube of the number of rows/columns, the running
time is O(n6).

Sylvester Method. If the weight matrix can be
decomposed into one or two sums of Kronecker prod-
ucts, Sylvester method solves the Equation (2.1) in
O(n3) time [43]. However, there are two drawbacks
in Sylvester method. First, the method requires the
two graphs to have the same number of nodes, which
is often not true. Second, the theoretical running time
of Sylvester method on the weight matrix composed of
more than two Kronecker products is unknown.

Spectral Decomposition Method. For unla-
beled and unnormalized matrices, spectral decomposi-
tion method runs in O(n3) time. The problem of spec-
tral decomposition method is that it can’t run on the
labeled graph or normalized matrix.

Conjugate Gradient Method. Conjugate gradi-
ent (CG) method is used to solve linear systems effi-
ciently. To use CG for computing random walk graph
kernel, we first solve (I − cW )x = p for x using CG,
and compute qTx. Each iteration of CG takes O(m2)
since the most expensive operation is the matrix-vector
multiplication. Thus CG takes O(m2iF ) time where
iF denote the number of iterations. A problem of the
CG method is its high memory requirement: it requires
O(m2) memory.

Fixed Point Iteration Method. Fixed point
iteration method first solves (I − cW )x = p for x
by iterative matrix-vector multiplications, and then
computes qTx to compute the kernel. Note that the
fixed point iteration method converges only when the
decay factor c is smaller than |ξ1|−1 where ξ1 is the
largest magnitude eigenvalue of W . Similar to CG, the
fixed point iteration method takes O(m2iF ) time for
iF iterations, and has the same problems of requiring
O(m2) memory.

Since the Sylvester method and the spectral decom-
position method cannot be used for kernels on general
graphs, we use the conjugate gradient and the fixed
point iterations method for experimental evaluations in
Section 5.

3 Proposed Approximation: Unlabeled Graphs

As we saw in Section 2, the exact algorithms to compute
the random walk graph kernel take too much time or
require too much memory. To solve the problem, we
propose Ark (Approximate Random walk Kernel), a
set of approximation algorithms to compute the random
walk graph kernel in this and the next sections. Table 2
shows the summary of the running time comparison
of our Ark and the exact algorithms. This section
addresses unlabeled graphs which correspond to the

cases (a) and (b) in Table 2. The node labeled graphs,
which correspond to the cases (c) and (d) in Table 2,
are handled in the next section.

3.1 Asymmetric W (Ark-U) We first consider
node unlabeled graphs with the normalized weight ma-
trix, which correspond to the case (a) in Table 2.
Let two graphs G1 and G2 have the adjacency matri-
ces A1 and A2, respectively. Let W1 = A1D

−1
1 and

W2 = A2D
−1
2 be the row normalized adjacency matrix

of G1 and G2, where D1 and D2 are diagonal matrices
whose ith diagonal elements are given by

∑
j A1(i, j)

and
∑
j A2(i, j), respectively. In this setting, the weight

matrix W is given by

W = WT
1 ⊗WT

2 .

Since the W matrix is large, we approximate W
using its low-rank approximation. More precisely, we
define the r-approximation of a matrix as follows.

Definition 2. (r-Approximation of a Matrix)
Given a matrix A, the r-approximation Â of A is a
matrix satisfying the following equation:

Â =
∑
σi∈SA

σiuiu
T
i ,

where ui is a singular vector of A with σi as the
corresponding singular value, and SA, a subset of the set
of singular values of A, contains top r singular values
of A. �

The r-approximation gives a good approximation of
the original matrix since the singular value decomposi-
tion (SVD) gives the best low rank approximation [41].

Our goal is an approximate random walk kernel
which is defined as follows.

Definition 3. (Approx. Random Walk Kernel)
Given a random walk graph kernel function
k(G1, G2) := qT (I − cW )−1p, the approximate

random walk graph kernel k̂(G1, G2) is given by

k̂(G1, G2) := qT (I − cŴ )−1p,

where Ŵ is a low rank approximation of W .

We want the Ŵ matrix to be as close as possible
to W , while preserving a low rank. Ideally, Ŵ can be
a r-approximation of W . A simple but naive approach
to get the r-approximation of W is to use rank-r SVD
of W . However, such method is inefficient since the
running time is O(m2r), and the W matrix needs to
be explicitly constructed. Our proposed idea is to use



Case Normalization of W # of Node Labels Exact Ark

(a) Normalized 1 O(n3) O(n2r4 + r6 +mr)

(b) Unnormalized 1 O(n3) O((m+ n)r + r2)

(c) Normalized dn O(m2iF ) O(dnn
2r4 + r6 +mr)

(d) Unnormalized dn O(m2iF ) O(dnn
2r4 + r6 +mr)

Table 2: Summary of the running time comparison of our Ark and the exact algorithms. n is the number of
nodes, m is the number of edges, r is the reduced rank after low rank approximation, dn is the number of node
labels, and iF is the number of iterations in the conjugate gradient or the fixed point iteration methods. Note
our proposed Ark is faster than the exact method, since n >> r. Ark-U handles the case (a) in Section 3.1.
Ark-U+ addresses the case (b) in Section 3.2, and Ark-L deals with the cases (c) and (d) in Section 4.

the top r SVD of WT
1 and WT

2 to compute the r-
approximation of the weight matrix W . This approach
has another advantage of not needing to explicitly
construct the W matrix. We first give the algorithm,
called Ark-U, and prove its correctness. Algorithm 1
shows our approximation algorithm.

Algorithm 1 Ark-U: approximate random walk kernel
for unlabeled nodes and asymmetric W

Input: Adjacency matrix A1 of a graph G1,
adjacency matrix A2 of a graph G2,
starting and ending probabilities p1 and q1 for G1,
starting and ending probabilities p2 and q2 for G2,
decay factor c.

Output: Approx. random walk kernel k̂(G1, G2)
1: W1 ← A1D

−1
1 ; // row normalize A1

2: W2 ← A2D
−1
2 ; // row normalize A2

3: U1Λ1V
T
1 ←WT

1 ; //top r SVD on WT
1

4: U2Λ2V
T
2 ←WT

2 ; //top r SVD on WT
2

5: Λ̃← ((Λ1 ⊗ Λ2)−1 − c(V T1 ⊗ V T2 )(U1 ⊗ U2))−1;
6: L← (qT1 U1 ⊗ qT2 U2);
7: R← (V T1 p1 ⊗ V T2 p2);

8: k̂(G1, G2)← (qT1 p1)(qT2 p2) + cLΛ̃R;

We show that Algorithm 1 is correct.

Theorem 3.1. (Correctness of Ark-U) The Al-
gorithm 1 (Ark-U) gives the approximate random
walk kernel

k̂(G1, G2) = qT (I − cŴ )−1p,

where Ŵ is a r-approximation of W = WT
1 ⊗WT

2 .

Proof. Let U1Λ1V
T
1 and U2Λ2V

T
2 be the top r singular

value decompositions of WT
1 and WT

2 , respectively. Let
us define Ŵ as follows:

Ŵ := U1Λ1V
T
1 ⊗ U2Λ2V

T
2

= (U1 ⊗ U2)(Λ1 ⊗ Λ2)(V T1 ⊗ V T2 ).

Then, Ŵ is a r-approximation of W since the
diagonal elements of the matrix Λ1 ⊗ Λ2 contain the
top r largest singular values of WT

1 ⊗WT
2 .

Thus,

qT (I − cŴ )−1p

= qT (I − c(U1 ⊗ U2)(Λ1 ⊗ Λ2)(V T1 ⊗ V T2 ))−1p

= qT (I + c(U1 ⊗ U2)Λ̃(V T1 ⊗ V T2 ))p

= qT p+ cqT (U1 ⊗ U2)Λ̃(V T1 ⊗ V T2 )p

= (qT1 p1)(qT2 p2) + c(qT1 U1 ⊗ qT2 U2)Λ̃(V T1 p1 ⊗ V T2 p2),

where the second equality comes from the Sherman-
Morrison Lemma [29]. �

We show the time and the space complexities of
Algorithm 1. Note that the time complexity O(n2r4 +
mr + r6) of Ark-U is smaller than the best exact
algorithm’s complexity O(n3), since r is very small (6
is enough, as we see in Section 5) and considered as a
constant.

Theorem 3.2. (Time complexity of Ark-U)
Ark-U takes O(n2r4 +mr + r6) time.

Proof. The top r decompositions in lines 3 and 4 cost
O(mr). Computing Λ̃ in line 5 takes O(n2r4 + r6).
Computing line 6, 7 and 8 takes O(nr + r4). �

Theorem 3.3. (Space complexity of Ark-U)
Ark-U requires O(m+ n2r2) space.

Proof. The storage of W1 and W2 require O(m) space.
The top r decompositions in lines 3 and 4 require O(nr).
Line 5 to 8 require O(n2r2) space, thus making the total
space complexity O(m+ n2r2). �

3.2 Symmetric W (Ark-U+) Ark-U can be used
for both the symmetric and the asymmetric weight ma-
trices. For symmetric weight matrix, however, we pro-
pose Ark-U+, an even faster approximation algorithm.
Ark-U+ handles the case (b) in Table 2.



We first describe the weight matrix W in this
setting. Assume two graphs G1 and G2 have the
symmetric adjacency matrices A1 and A2, respectively.
Then, the weight matrix W is given by

W = AT1 ⊗AT2 ,

where W is also symmetric by the nature of Kro-
necker products [23]. Our proposed idea is to use the
eigen decomposition, instead of SVD, to compute the
r-approximation of W . Since the eigen decomposition
and the SVD on symmetric matrices are different only
up to signs, the eigen decomposition gives the correct
r-approximation. The computational advantage is that
we need to store only one n× r eigenvector matrix, in-
stead of two n×r singular vector matrices. Algorithm 2
shows our Ark-U+ algorithm for symmetric W .

Algorithm 2 Ark-U+: approximate random walk
kernel for unlabeled nodes and symmetric W

Input: Adjacency matrix A1 of a graph G1,
adjacency matrix A2 of a graph G2

starting and ending probabilities p1 and q1 for G1,
starting and ending probabilities p2 and q2 for G2,
decay factor c.

Output: Approx. random walk kernel k̂(G1, G2)
1: U1Λ1U

T
1 ← AT1 ; //top r eigen decomposition on W1

2: U2Λ2U
T
2 ← AT2 ; //top r eigen decomposition on W2

3: Λ̃← ((Λ1 ⊗ Λ2)−1 − cI)−1;
4: L← (qT1 U1 ⊗ qT2 U2);
5: R← (UT1 p1 ⊗ UT2 p2);

6: k̂(G1, G2)← (qT1 p1)(qT2 p2) + cLΛ̃R;

We show that Algorithm 2 is correct.

Theorem 3.4. (Correctness of Ark-U+) The
Algorithm 2 (Ark-U+) gives the approximate random
walk kernel

k̂(G1, G2) = qT (I − cŴ )−1p,

where Ŵ is a r-approximation of W = AT1 ⊗AT2 .

Proof. Let U1Λ1U
T
1 and U2Λ2U

T
2 be the top r eigen

decompositions of A1 and A2, respectively. Let us define
Ŵ as follows:

Ŵ := U1Λ1U
T
1 ⊗ U2Λ2U

T
2(3.2)

= (U1 ⊗ U2)(Λ1 ⊗ Λ2)(UT1 ⊗ UT2 ).

Then, Ŵ is a r-approximation of W since the
diagonal elements of the matrix Λ1 ⊗ Λ2 contain the
top r largest eigen values of AT1 ⊗AT2 .

Thus,

qT (I − cŴ )−1p

= qT (I − c(U1 ⊗ U2)(Λ1 ⊗ Λ2)(UT1 ⊗ UT2 ))−1p

= qT (I + c(U1 ⊗ U2)Λ̃(UT1 ⊗ UT2 ))p

= qT p+ cqT (U1 ⊗ U2)Λ̃(UT1 ⊗ UT2 )p

= (qT1 p1)(qT2 p2) + c(qT1 U1 ⊗ qT2 U2)Λ̃(UT1 p1 ⊗ UT2 p2),

where the second equality comes from the Sherman-
Morrison Lemma [29]. �

We show the time and the space complexities of
Algorithm 2. Note that the time and the space com-
plexities of Ark-U+ are smaller than those of Ark-U
due to the exploitation of the symmetricity.

Theorem 3.5. (Time complexity of Ark-U+)
Ark-U+ takes O((m+ n)r + r2) time.

Proof. The top r decompositions in lines 1 and 2 cost
O(mr). Computing Λ̃ in line 3 takes O(r2) since Λ̃ is

a diagonal matrix with
λi
1λ

j
2

1−cλi
1λ

j
2

, for 1 ≤ i, j ≤ r, as its

elements. Computing line 4, 5 and 6 takes O(nr + r2).
�

Theorem 3.6. (Space complexity of Ark-U+)
Ark-U requires O(m+ nr + r2) space.

Proof. The storage of W1 and W2 require O(m) space.
The top r decompositions in lines 3 and 4 require O(nr).
Line 5 to 8 require O(nr + r2) space, thus making the
total space complexity O(m+ nr + r2). �

3.3 Error Bound How close is the approximate
random walk kernel k̂(G1, G2) to the exact kernel
k(G1, G2)? The analysis for general cases is difficult,
but for Ark-U+ which handles symmetric W we have
the following error bound.

Theorem 3.7. In Ark-U+, the difference of the exact
and the approximate random walk kernel is bounded by

|k(G1, G2)− k̂(G1, G2)| ≤
∑

(i,j)/∈H

| cλ
(i)
1 λ

(j)
2

1− cλ(i)1 λ
(j)
2

|,

where λ
(i)
1 and λ

(i)
2 are the ith largest eigenvalue of

Λ1 and Λ2, respectively, and H = {(a, b)|a, b ∈ [1, k]}
is the set of pairs (a, b) where both a and b are in the
range of [1, k].

Proof. Let W = AT1 ⊗ AT2 . Then, (U1 ⊗ U2)(Λ1 ⊗
Λ2)(UT1 ⊗ UT2 ) is an eigen decomposition of W which



includes top k largest eigenvalues of W . Let u
(i)
1 and

u
(i)
2 be the ith column of U1 and U2, respectively. Then,

ũ(i,j) := u
(i)
1 ⊗ u

(j)
2 is the eigenvector of W with the

corresponding eigenvalue λ
(i)
1 λ

(j)
2 . It follows that

(I − cW )−1

= I + c(U1 ⊗ U2)Λ̃(UT1 ⊗ UT2 )

= I +
∑

i,j∈[1,n]

λ̃(i,j)ũ(i,j)(ũ(i,j))T ,

where Λ̃ := ((Λ1 ⊗ Λ2)−1 − cI)−1, and

λ̃(i,j) :=
cλ

(i)
1 λ

(j)
2

1−cλ(i)
1 λ

(j)
2

.

Now, we consider our approximation. Let Ŵ be
the approximation of the W matrix from the top k
low rank approximations of W1 and W2, as shown in
Equation (3.2). Then,

(I − cŴ )−1 = I +
∑

i,j∈[1,k]

λ̃(i,j)ũ(i,j)(ũ(i,j))T .

Thus,

|k(G1, G2)− k̂(G1, G2)|
= |qT (I − cW )−1p− qT (I − cŴ )−1p|

= |qT (
∑

(i,j)/∈H

cλ
(i)
1 λ

(j)
2

1− cλ(i)1 λ
(j)
2

ũ(i,j)(ũ(i,j))T )p|

≤ ||qT ||2 · ||
∑

(i,j)/∈H

cλ
(i)
1 λ

(j)
2

1− cλ(i)1 λ
(j)
2

ũ(i,j)(ũ(i,j))T ||F · ||p||2

≤
∑

(i,j)/∈H

| cλ
(i)
1 λ

(j)
2

1− cλ(i)1 λ
(j)
2

|,

where in the last inequality we used the fact that
||qT ||2 ≤ ||qT ||1 = 1,
||p||2 ≤ ||p||1 = 1, and

||
∑
i aiuiu

T
i ||F =

√
tr(

∑
i a

2
iuiu

T
i ) =√∑

i a
2
i · tr(uiuTi ) =

√∑
i a

2
i ≤

∑
i |ai| for any real

numbers ai and orthonormal vectors ui. �

4 Proposed Approximation: Labeled Graphs

In this section, we describe Ark-L, an approximation
algorithm to compute the random walk graph kernel on
node labeled graphs. As discussed in the beginning of
Section 3, Ark-L addresses the cases (c) and (d) in
Table 2.

4.1 Weight Matrix As we saw in Section 2, the
weight matrix W for node labeled graphs is constructed

by zeroing out rows of the Kronecker products of nor-
malized or unnormalized matrices. Specifically, given
the normalized or unnormalized adjacency matrices W1

and W2 of G1 and G2, respectively, the weight matrix
W is given by

W = L̃(WT
1 ⊗WT

2 ),

where L̃ is a diagonal matrix whose (i, i)th element
is 0 if the ith row of (WT

1 ⊗ WT
2 ) is zeroed out due

to label inconsistency, or 1 otherwise. Let L
(j)
1 be a

diagonal label matrix whose ith element is 1 if the node

i of the graph G1 has the label j, and 0 otherwise. L
(j)
2 is

defined similarly for the graph G2. Then, L̃ is expressed
by the sums of Kronecker products:

L̃ =

dn∑
j=1

L
(j)
1 ⊗ L

(j)
2 ,

where dn is the number of distinct node labels.
Finally, the starting probability p = p1 ⊗ p2 is changed
to L̃p = L̃(p1⊗p2) since the random walk is not started
for nodes with inconsistent labels.

4.2 Approximation (Ark-L) We first show the ap-
proximation algorithm, Ark-L, for random walk kernel
on node labeled graphs, and show its correctness. Algo-
rithm 3 shows our approximation algorithm. We assume
that W1 and W2 can be either row-normalized or unnor-
malized adjacency matrix of G1 and G2, respectively.

Algorithm 3 Ark-L: approximate random walk kernel
for labeled nodes
Input: Weight matrix W1 of a graph G1,

weight matrix W2 of a graph G2,

label matrices L
(1)
1 to L

(dn)
1 of G1,

label matrices L
(1)
2 to L

(dn)
2 of G2,

starting and ending probability p1 and q1 for G1,
starting and ending probability p2 and q2 for G2,
decay factor c.

Output: Approx. random walk kernel k̂(G1, G2)
1: U1Λ1V

T
1 ←WT

1 ; //top r SVD on WT
1

2: U2Λ2V
T
2 ←WT

2 ; //top r SVD on WT
2

3: Λ̃ ← ((Λ1 ⊗ Λ2)−1 − c(
∑dn
j=1 V

T
1 L

(j)
1 U1 ⊗

V T2 L
(j)
2 U2))−1;

4: L← (
∑dn
j=1 q

T
1 L

(j)
1 U1 ⊗ qT2 L

(j)
2 U2);

5: R← (
∑dn
j=1 V

T
1 L

(j)
1 p1 ⊗ V T2 L

(j)
2 p2);

6: k̂(G1, G2)← (
∑dn
j=1(qT1 L

(j)
1 p1)(qT2 L

(j)
2 p2)) + cLΛ̃R;

We show that Algorithm 3 is correct.



Theorem 4.1. (Correctness of Ark-L) The Al-
gorithm 3 (Ark-L) gives the approximate random walk
kernel

k̂(G1, G2) = qT (I − cŴ )−1L̃p,

where Ŵ = L̃Ŵr, and Ŵr is a r-approximation of
WT

1 ⊗WT
2 .

Proof. Let U1Λ1V
T
1 and U2Λ2V

T
2 be the top r singular

value decompositions of W1 and W2, respectively. Let
us define Ŵr as follows:

Ŵr := U1Λ1V
T
1 ⊗ U2Λ2V

T
2

= (U1 ⊗ U2)(Λ1 ⊗ Λ2)(V T1 ⊗ V T2 ).

Then, Ŵr is a r-approximation of WT
1 ⊗WT

2 since
the diagonal elements of the matrix Λ1⊗Λ2 contain the
top r largest singular values of WT

1 ⊗WT
2 .

Thus,

qT (I − cL̃Ŵr)
−1L̃p

= qT (I − cL̃(U1 ⊗ U2)(Λ1 ⊗ Λ2)(V T1 ⊗ V T2 ))−1L̃p

= qT (I + cL̃(U1 ⊗ U2)Λ̃(V T1 ⊗ V T2 ))L̃p

= qT L̃p+ cqT (

dn∑
j=1

Lj1U1 ⊗ Lj2U2)Λ̃(V T1 ⊗ V T2 )L̃p

= (

dn∑
j=1

(qT1 L
(j)
1 p1)(qT2 L

(j)
2 p2)) + c·

(

dn∑
j=1

qT1 L
(j)
1 U1 ⊗ qT2 L

(j)
2 U2)Λ̃(

dn∑
j=1

V T1 L
(j)
1 p1 ⊗ V T2 L

(j)
2 p2)

where the second equality comes from the Sherman-
Morrison Lemma [29]. �

We show the time and the space complexities of
Algorithm 3. Note that the time complexity O(dnn

2r4+
mr + r6) of Ark-L is smaller than the best exact
algorithm’s complexity O(m2iF ) since n >> r and
n >> dn.

Theorem 4.2. (Time complexity of Ark-L)
Ark-L takes O(dnn

2r4 +mr + r6) time.

Proof. The top r decompositions in lines 1 and 2 cost
O(mr). Computing Λ̃ in line 3 takes O(dnn

2r4 + r6).
Computing line 4, 5 and 6 takes O(dnnr + dnr

2 + r4).
�

Theorem 4.3. (Space complexity of Ark-L)
Ark-L requires O(m+ n2r2) space.

Proof. The storage of W1 and W2 require O(m) space.
The top r decompositions in lines 1 and 2 require O(nr).
Line 5 to 8 require O(n2r2) space, thus making the total
space complexity O(m+ n2r2). �

5 Experiments

We perform experiments to answer the following ques-
tions.

Q1 How fast are our Ark algorithms compared to
exact methods?

Q2 What are the accuracies of our Ark algorithms
compared to exact methods?

Q3 How do the accuracies of Ark change with the
number of eigenvalues?

Q1 is answered in Section 5.2, and Q(2,3) are
answered in Section 5.3.

5.1 Experimental Setting For the exact methods,
we run both the conjugate gradient and the fixed point
iterations, and choose the one with the smaller running
time. We use the graphs in Table 3 with the following
details.

• WWW-Barabasi: a Web graph snapshot of nd.edu
domain.

• HEP-TH: a citation network in the area of theoret-
ical high energy physics.

• AS-Oregon: a router connection graph.

Name Nodes Edges

WWW-Barabasi 325,729 2,207,671
HEP-TH 27,400 704,036
AS-Oregon 13,579 74,896

Table 3: Summary of graphs used.

We use the decay factor c = 0.1 for Ark-U and
Ark-L. For Ark-U+, we choose c = 0.0001 since it was
the largest c that allows the fixed point iteration method
to converge (see Section 2.2 for more information on
the convergence of the fixed point iteration method).
All the experiments were performed in a Linux machine
with 48 GB memory, and quad-core AMD 2400 MHz
CPUs.

5.2 Scalability We first present the scalability re-
sults. For each graph, we extract the principal sub-
matrices (=upper, left part of the adjacency matrix) of
different lengths, and compute the graph kernel using
the two copies of the extracted subgraphs. Figure 1



shows the running time comparison of our approxima-
tion vs. exact methods for real world graphs.

Ark-U. In the first column of Figure 1, Ark-U
is compared against the exact method on unlabeled,
asymmetric graphs. Note that for all the graphs, Ark-
U is 6× to 11× faster than the exact method. The exact
method is not plotted for all the number of nodes since
it failed with the ‘out of memory’ error.

Ark-U+. In the second column of Figure 1, Ark-
U+ is compared against the exact method and Ark-U
on unlabeled, symmetric graphs. Note that for all the
graphs, Ark-U+ is 389× to 522× faster than the exact
and Ark-U method. The exact and Ark-U method is
not plotted for all the number of nodes since they failed
with the ‘out of memory’ error.

Ark-L. Finally, in the third column of Figure 1,
Ark-L is compared against the exact method. Note
that we omitted the plots for the exact method beyond
500 data points since they took more than 5 hours.
Again, Ark-L is 695× to 97,865× faster than the exact
method.

5.3 Accuracy We present the accuracy of Ark. The
accuracy is defined by the relative error of our approxi-
mation with regard to the exact kernel:

accuracy =
|k̂(G1, G2)− k(G1, G2)|

k(G1, G2)
.

Accuracy with the Number of Nodes. We fix
the number of eigenvalues to 6, and show the accuracy
by increasing the number of nodes. Table 4 shows
the result. Note that for all the graphs, Ark gives
more than 90% accuracies. Note also that only top 6
eigenvalues for 2,000 node graph resulted in more than
91.3% accuracies.

Accuracy with the Number of Eigenvalues.
We fix the number of nodes to 500, and show the
accuracy by increasing the number of eigenvalues used
for the approximation. Table 5 shows the result. Note
that for all the graphs, Ark gives more than 90%
accuracies. Note also that increasing the number of
eigenvalues increase the accuracy.

6 Related Work

The related works branch into three: graph ker-
nel/similarity, node similarity, and low-rank approxima-
tion.

Graph Kernel/Similarity. There have been in-
teresting researches in the recent years to classify or
measure the similarity between two graphs by kernels.
Applications include chemical and biological data clas-
sification [20, 32, 35], and outlier detection [15]. Kernels
for discrete objects have been studied by Haussler [14],

and many graph kernels have been proposed after that.
There are three major groups in graph kernels: kernels
based on walks and paths [9, 20, 10, 3, 42, 43], kernels
based on limited-size subgraphs [16, 36, 21], and kernels
based on subtree patterns [25, 35, 15]. Among them,
random walk based kernels have been proved to be one
of the most successful methods [5, 4, 34]. Vishwanathan
et al [43] proposed a unified theoretic framework for var-
ious random walk based kernels. However, all the ex-
isting algorithms for random walk based kernel require
at least cubic running time, which is infeasible for large
graphs. There has been works for approximating tree
kernels [33, 30, 31] which are not directly connected to
our work. Other remotely related work includes [28],
which explored different heuristic to measure the Web
graph similarities.

Node Similarity. There are also many works on
measuring the similarity between nodes on the same
graph, e.g., random walk with restart [27, 39], sink-
augmented delivered current [8], cycle free effective con-
ductance [22], survivable network [13], direction-aware
proximity [38], ObjectRank [2], RelationalRank [11],
SimRank [18] and its fast approximation [24]

Low-Rank Approximation. Many real world
graphs have low intrinsic ranks. Low rank approxima-
tion [12, 6, 1] plays a very important role in mining
such graphs, e.g., community detection, anomaly detec-
tion, etc. For static graphs, the most popular choices
include SVD/PCA [12, 19] and random projection [17].
For dynamic graphs, a lot of SVD based techniques have
been proposed, such as dynamic tensor analysis [37], in-
cremental spectral clustering [26] etc. More recent work
in this line includes example-based low-rank approxima-
tion [40], non-negative matrix factorization [44], etc. Fi-
nally, there has been works for approximating the SVD
itself, using sampling [7].

7 Conclusions

In this paper, we propose Ark, fast algorithms for com-
puting random walk kernels. The main contributions
are the followings.

1. Algorithms. We carefully design our algorithms
to significantly reduce the time complexity.

2. Proofs and Analysis. We give theoretical analy-
sis about the error bound as well as the correctness
and the efficiency of our methods.

3. Experiments. We perform numerous experiments
on real world graphs, and show that our methods
lead to up to 97,865× speed-up with more than
91.3% accuracy.

Future research directions include fast random walk
kernel computation on time evolving graphs, and de-



(a) WWW : unlabeled, asymmetric (b) WWW : unlabeled, symmetric (c) WWW : labeled

(d) HEP-TH : unlabeled, asymmetric (e) HEP-TH : unlabeled, symmetric (f) HEP-TH : labeled

(g) Oregon : unlabeled, asymmetric (h) Oregon : unlabeled, symmetric (i) Oregon : labeled

Figure 1: Running time comparison of our approximation vs. exact methods on real world graphs. The Y axes
are in log scale. (a,d,g): Ark-U is 6× to 11× faster than the exact method. The exact method is not plotted
for all the number of nodes due to ‘out of memory’ error. (b,e,h): Ark-U+ is 389× to 522× faster than the
exact and Ark-U method. The exact and the Ark-U method is not plotted fully due to ‘out of memory’ error.
(c,f,i): Ark-L is 695× to 97,865× faster than the exact method. We didn’t plot the exact method beyond 500
nodes since they took more than 5 hours.

WWW HEP-TH Oregon
Nodes Ark-U Ark-U+ Ark-L Ark-U Ark-U+ Ark-L Ark-U Ark-U+ Ark-L

100 0.959 0.999 0.980 0.999 0.999 0.999 0.998 0.999 0.999
500 0.957 0.999 0.984 0.977 0.999 0.995 0.959 0.999 0.980

1000 0.930 0.999 * 0.962 0.999 * 0.939 0.999 *
1500 0.920 0.999 * 0.952 0.999 * 0.934 0.999 *
2000 0.913 0.999 * 0.946 0.998 * 0.928 0.999 *

Table 4: Accuracy vs. the number of nodes in our approximation. *: could not compute accuracy since the exact
method didn’t finish. We fixed the number of eigenvalues to 6. Note the high accuracies for all the graphs, despite
the small number of eigenvalues.



WWW HEP-TH Oregon
r* Ark-U Ark-U+ Ark-L Ark-U Ark-U+ Ark-L Ark-U Ark-U+ Ark-L

1 0.930 0.993 0.971 0.977 0.999 0.996 0.943 0.999 0.970
2 0.930 0.999 0.971 0.977 0.999 0.996 0.947 0.999 0.974
3 0.950 0.999 0.981 0.977 0.999 0.996 0.950 0.999 0.975
4 0.951 0.999 0.981 0.977 0.999 0.996 0.952 0.999 0.976
5 0.953 0.999 0.982 0.977 0.999 0.995 0.954 0.999 0.977
6 0.957 0.999 0.984 0.977 0.999 0.995 0.959 0.999 0.980
7 0.961 0.999 0.986 0.977 0.999 0.995 0.961 0.999 0.981
8 0.962 0.999 0.987 0.977 0.999 0.995 0.961 0.999 0.981
9 0.962 0.999 0.987 0.977 0.999 0.995 0.964 0.999 0.983

10 0.963 0.999 0.987 0.977 0.999 0.994 0.966 0.999 0.984
11 0.965 0.999 0.989 0.977 0.999 0.994 0.967 0.999 0.984
12 0.966 0.999 0.989 0.977 0.999 0.994 0.968 0.999 0.985
13 0.967 0.999 0.989 0.977 0.999 0.994 0.969 0.999 0.986
14 0.969 0.999 0.991 0.977 0.999 0.994 0.970 0.999 0.986
15 0.971 0.999 0.991 0.977 0.999 0.994 0.971 0.999 0.986
16 0.971 0.999 0.991 0.977 0.999 0.994 0.972 0.999 0.987
17 0.972 0.999 0.992 0.977 0.999 0.993 0.974 0.999 0.988
18 0.972 0.999 0.992 0.977 0.999 0.993 0.976 0.999 0.989
19 0.972 0.999 0.992 0.977 0.999 0.993 0.977 0.999 0.989
20 0.973 0.999 0.992 0.977 0.999 0.993 0.977 0.999 0.990

Table 5: Accuracy vs. the number of eigenvalues used for our approximation on real world graphs. r*: number
of eigenvalues for approximation. Note that first few eigenvalues give more than 90% of the accuracy.

signing parallel, distributed algorithms for very large
graphs which do not fit in the memory of a single ma-
chine.
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