Spectral Analysis for Billion-Scale Graphs:
Discoveries and Implementation

U Kang Brendan Meeder Christos Faloutsos

Carnegie Mellon University, School of Computer Science
{ukang, bmeeder, christos}@cs.cmu.edu

Abstract. Given a graph with billions of nodes and edges, how can we find pat-
terns and anomalies? Are there nodes that participate in too many or too few
triangles? Are there close-knit near-cliques? These questions are expensive to an-
swer unless we have the first several eigenvalues and eigenvectors of the graph
adjacency matrix. However, eigensolvers suffer from subtle problems (e.g., con-
vergence) for large sparse matrices, let alone for billion-scale ones.

We address this problem with the proposed HEIGEN algorithm, which we care-
fully design to be accurate, efficient, and able to run on the highly scalable MAPRE-
DUCE (HADOOP) environment. This enables HEIGEN to handle matrices more
than /000 x larger than those which can be analyzed by existing algorithms. We
implement HEIGEN and run it on the M45 cluster, one of the top 50 supercomput-
ers in the world. We report important discoveries about near-cliques and triangles
on several real-world graphs, including a snapshot of the Twitter social network
(38Gb, 2 billion edges) and the “YahooWeb” dataset, one of the largest publicly
available graphs (/120Gb, 1.4 billion nodes, 6.6 billion edges).

1 Introduction

Graphs with billions of edges, or billion-scale graphs, are becoming common; Facebook
boasts about 0.5 billion active users, who-calls-whom networks can reach similar sizes
in large countries, and web crawls can easily reach billions of nodes. Given a billion-
scale graph, how can we find near-cliques, the count of triangles, and related graph
properties? As we discuss later, triangle counting and related expensive operations can
be computed quickly, provided we have the first several eigenvalues and eigenvectors.
In general, spectral analysis is a fundamental tool not only for graph mining, but also
for other areas of data mining. Eigenvalues and eigenvectors are at the heart of numer-
ous algorithms such as triangle counting, singular value decomposition (SVD), spectral
clustering, and tensor analysis [10]. In spite of their importance, existing eigensolvers
do not scale well. As described in Section 6, the maximum order and size of input
matrices feasible for these solvers is million-scale.

In this paper, we discover patterns on near-cliques and triangles, on several real-
world graphs including a Twitter dataset (38Gb, over 2 billion edges) and the “Ya-
hooWeb” dataset, one of the largest publicly available graphs (/20Gb, 1.4 billion nodes,
6.6 billion edges). To enable discoveries, we propose HEIGEN, an eigensolver for
billion-scale, sparse symmetric matrices built on the top of HADOOP, an open-source
MAPREDUCE framework. Our contributions are the following:



2 UKang Brendan Meeder Christos Faloutsos

1. Effectiveness: With HEIGEN we analyze billion-scale real-world graphs and report
discoveries, including a high triangle vs. degree ratio for adult sites and web pages
that participate in billions of triangles.

2. Careful Design: We choose among several serial algorithms and selectively paral-
lelize operations for better efficiency.

3. Scalability: We use the HADOOP platform for its excellent scalability and imple-
ment several optimizations for HEIGEN, such as cache-based multiplications and
skewness exploitation. This results in linear scalability in the number of edges, the
same accuracy as standard eigensolvers for small matrices, and more than a 76 %
performance improvement over a naive implementation.

Due to our focus on scalability, HEIGEN can handle sparse symmetric matrices with
billions of nodes and edges, surpassing the capability of previous eigensolvers (e.g.
[20] [16]) by more than 1,000 x. Note that HEIGEN is different from Google’s PageR-
ank algorithm since HEIGEN computes top &k eigenvectors while PageRank computes
only the first eigenvector. Designing top k eigensolver is much difficult and subtle than
designing the first eigensolver, as we will see in Section 4. With this powerful tool we
are able to study several billion-scale graphs, and we report fascinating patterns on the
near-cliques and triangle distributions in Section 2.

The HEIGEN algorithm (implemented in HADOOP) is available at
http://www.cs.cmu.edu/~ukang/HEIGEN. The rest of the paper presents the
discoveries in real-world networks, design decisions and details of our method, experi-
mental results, and conclusions.

2 Discoveries

In this section, we show discoveries on billion-scale graphs using HEIGEN. We focus
on the structural properties of networks: spotting near-cliques and finding triangles. The
graphs we used in this and Section 5 are described in Table 1. !

|Name [ Nodes[ Edges[Description ‘
YahooWeb 1,413 M 6,636 M|{WWW pages in 2002

Twitter 62.5M 2,780 M|who follows whom in 2009/11
LinkedIn 7.5M 58 M |person-person in 2006
Kronecker |59 K ~ 177 K|282 M ~ 1,977 M|synthetic graph

Epinions 75 K 508 K|who trusts whom

Table 1. Order and size of networks.

2.1 Spotting Near-Cliques

In a large, sparse network, how can we find tightly connected nodes, such as those
in near-cliques or bipartite cores? Surprisingly, eigenvectors can be used for this pur-
pose [14]. Given an adjacency matrix W and its SVD W = UXV7, an EE-plot is

! YahooWeb, LinkedIn: released under NDA.
Twitter: http://www.twitter.com/
Kronecker: http://www.cs.cmu.edu/~ukang/dataset
Epinions: not public data.



Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation 3

defined to be the scatter plot of the vectors U; and U for any ¢ and j. EE-plots of some
real-world graphs contain clear separate lines (or ‘spokes’), and the nodes with the
largest values in each spoke are separated from the other nodes by forming near-cliques
or bipartite cores. Figures 1 shows several EE-plots and spyplots (i.e., adjacency matrix
of induced subgraph) of the top 100 nodes in top eigenvectors of YahooWeb graph.

0.05 0.05 01 01

0.05 0.05
1 ' : !
Bl L E — 5 0 ° = 0
-0.05 -0.05
-0.05 -0.05 -0.1 -0.1
-0.05 0 0.05 -0.05 0 0.05 -0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
i U, u,

(a) Uy vs. Uy (b) Us vs. Uz (c) Uz vs. Us (d) Ug vs. Ug

(e) U, spoke (f) Uz spoke (g) Us spoke (h) U4 spoke (i) Structure of
bi-clique
Fig. 1. EE-plots and spyplots from YahooWeb. (a)-(d): EE-plots showing the values of nodes in
the ¢th eigenvector vs. in the jth eigenvector. Notice the clear ‘spokes’ in top eigenvectors signify
the existence of a strongly related group of nodes in near-cliques or bi-cliques as depicted in (i).
(e)-(h): Spyplots of the top 100 largest nodes from each eigenvector. Notice that we see a near
clique in Us, and bi-cliques in U1, Us, and Usy. (i): The structure of ‘bi-clique’ in (e), (f), and (h).

In Figure 1 (a) - (d), we observe clear ‘spokes,” or outstanding nodes, in the top
eigenvectors. Moreover, the top 100 nodes with largest values in U;, Us, and U4 form a
‘bi-clique’, shown in (e), (f), and (h), which is defined to be the combination of a clique
and a bipartite core as depicted in Figure 1 (i). Another observation is that the top seven
nodes shown in Figure 1 (g) belong to indymedia.org which is the site with the
maximum number of triangles in Figure 2.

Observation 1 (Eigenspokes) EE-plots of YahooWeb show clear spokes. Additionally,
the extreme nodes in the spokes belong to cliques or bi-cliques.

2.2 Triangle Counting

Given a particular node in a graph, how are its neighbors connected? Do they form
stars? Cliques? The above questions about the community structure of networks can
be answered by studying triangles (three nodes connected to each other). However,
directly counting triangles in graphs with billions of nodes and edges is prohibitively
expensive [19]. Fortunately, we can approximate triangle counts with high accuracy
using HEIGEN by exploiting its connection to eigenvalues [18]. In a nutshell, the total
number of triangles in a graph is related to the sum of cubes of eigenvalues, and the
first few eigenvalues provide extremely good approximations. A slightly more elaborate
analysis approximates the number of triangles in which a node participates, using the
cubes of the first few eigenvalues and the corresponding eigenvectors.

Using the top k eigenvalues computed with HEIGEN, we analyze the distribution
of triangle counts of real graphs including the Linkedin, Twitter social, and YahooWeb



4 UKang Brendan Meeder Christos Faloutsos

10° Linkedin 2006+ o Cwitter —+ 1] 6} + + YahooWeb  +
+ 106 L7y +,§
10° I 5|
+, 105 10 #Ey i, @
PR
10 4 104 Sni
€03 g 0 E 3 Spikes
S I
3 §10°t Th 1 Sarah 810 X
102 " 0% Power 1021
, |Triangle ! | Law » John  Barack Enangle indimedia
10" Power 10" b Hill cCain Oba{na 101 Power .org
Law w4 | 1ary Law 44 Ho X
10° : = 1000, QImtqn ; : A= i 10° } il )
10° 10" 10 10° 10* 10° 10° 107 10° 10" 102 10° 10* 10° 10° 107 10° 10° 102 10*  10° _10® 10"
Number of Participating Triangles Number of Participating Triangles Number of Participating Triangles
(a) LinkedIn (58M edges) (b) Twitter (2.8B edges) (c) YahooWeb (6.6B edges)

Fig. 2. The distribution of the number of participating triangles of real graphs. In general, they
obey the “triangle power-law.” Moreover, well-known U.S. politicians participate in many trian-
gles, demonstrating that their followers are well-connected. In the YahooWeb graph, we observe
several anomalous spikes which possibly come from cliques.

graphs in Figure 2. We first observe that there exists several nodes with extremely large
triangle counts. In Figure 2 (b), Barack Obama is the person with the fifth largest num-
ber of participating triangles, and has many more than other U.S. politicians. In Figure 2
(c), the web page 1ists.indymedia.org contains the largest number of triangles;
this page is a list of mailing lists which apparently point to each other.

We also observe regularities in triangle distributions and note that the beginning part
of the distributions follows a power-law.

Observation 2 (Triangle power law) The beginning part of the triangle count distri-
bution of real graphs follows a power-law.

In the YahooWeb graph in Figure 2 (c), we observe many spikes. One possible
reason of the spikes is that they come from cliques: a k-clique generates k nodes with

(*z") triangles.

Observation 3 (Spikes in triangle distribution) In the Web graph, there exist several
spikes which possibly come from cliques.

The rightmost spike in Figure 2 (c) contains 125 web pages that each have about 1
million triangles in their neighborhoods. They all belong to the news site ucimc.org,
and are connected to a tightly coupled group of pages.

Triangle counts exhibit even more interesting patterns when combined with the de-
gree information as shown in the degree-triangle plot of Figure 3. We see that celebrities
have high degree and mildly connected followers, while accounts for adult sites have
many fewer, but extremely well connected, followers. Degree-triangle plots can be used
to spot and eliminate harmful accounts such as those of adult advertisers and spammers.

Observation 4 (Anomalous Triangles vs. Degree Ratio) In Twitter, anomalous accounts
have very high triangles vs. degree ratio compared to other regular accounts.

All of the above observations need a fast, scalable eigensolver. This is exactly what
HEIGEN does, and we describe our proposed design next.



Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation 5

{ Adult
6 | Advertiser @ Obama

5 |Sarah

10° Sara
i Palin
t bV

Number of Triangle

o
(S

<Hillary [ Twiter ¥ )
10 10° 108 107
Degree

Fig. 3. The degree vs. participating triangles of some ‘celebrities’ (rest: omitted, for clarity) in
Twitter accounts. Also shown are accounts of adult sites which have smaller degree, but belong to
an abnormally large number of triangles (= many, well connected followers - probably, ‘robots’).

3 Background - Sequential Algorithms

In the next two sections, we describe our method of computing eigenvalues and eigen-
vectors of billion-scale graphs. We first describe sequential algorithms to find eigenval-
ues and eigenvectors of matrices. We limit our attention to symmetric matrices due to
the computational difficulties; even the best methods for non-symmetric eigensolver re-
quire much more computation than symmetric eigensolvers. We list the alternatives for
computing the eigenvalues of symmetric matrix and the reasoning behind our choice.

— Power method: the simplest and most famous method for computing the topmost
eigenvalue. However, it can not find the top & eigenvalues.

— Simultaneous iteration (or QR): an extension of the Power method to find top
k eigenvalues. It requires large matrix-matrix multiplications that are prohibitively
expensive for billion-scale graphs.

— Lanczos-NO(No Orthogonalization): the basic Lanczos algorithm [5] which ap-
proximates the top k eigenvalues in the subspace composed of intermediate vectors
from the Power method. The problem is that while computing the eigenvalues, they
can ‘jump’ up to larger eigenvalues, thereby outputting spurious eigenvalues.

Although all of the above algorithms are not suitable for calculations on billion-
scale graphs using MAPREDUCE, we present a tractable, MAPREDUCE-based algo-
rithm for computing the top k eigenvectors and eigenvalues in the next section.

4 Proposed Method

In this section we describe HEIGEN, a parallel algorithm for computing the top % eigen-
values and eigenvectors of symmetric matrices in MAPREDUCE.

4.1 Summary of the Contributions

Efficient top k eigensolvers for billion-scale graphs require careful algorithmic con-
siderations. The main challenge is to carefully design algorithms that work well on
distributed systems and exploit the inherent structure of data, including block structure
and skewness, in order to be efficient. We summarize the algorithmic contributions here
and describe each in detail in later sections.



1. Careful Algorithm Choice: We carefully choose a sequential eigensolver algo-
rithm that is efficient for MAPREDUCE and gives accurate results.

2. Selective Parallelization: We group operations into expensive and inexpensive
ones based on input sizes. Expensive operations are done in parallel for scalability,
while inexpensive operations are performed faster on a single machine.

3. Blocking: We reduce the running time by decreasing the input data size and the

UKang Brendan Meeder Christos Faloutsos

amount of network traffic among machines.

4. Exploiting Skewness: We decrease the running time by exploiting skewness of
data.

4.2 Careful Algorithm Choice

In Section 3, we considered three algorithms that are not tractable for analyzing billion-
scale graphs with MAPREDUCE. Fortunately, there is an algorithm suitable for such a
purpose. Lanczos-SO (Selective Orthogonalization) improves on the Lanczos-NO by
selectively reorthogonalizing vectors instead of performing full reorthogonalizations.

Algorithm 1: Lanczos -SO(Selective Orthogonalization)

Input: Matrix A™*™, random n-vector b, maximum number of steps m, error threshold €

Output: Top k eigenvalues A[1..k], eigenvectors Y ™**
1: Bo <= 0,v0 < 0, vy < b/[|b];
2: fort=1..mdo

PN AW

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

v < Aw;; // Find a new basis vector
a; +— vlv;
v 4 v — Bi—1vi—1 — a;v;; /] Orthogonalize against two previous basis vectors
Bi = |lvll;
T; < (build tri-diagonal matrix from « and B);
QDQT < EIG(T:); !/ Eigen decomposition of T}
for j =1..ido

if 3./Qli, j]| < VEI|Ti]| then

r < ViQl:, jl;
v < v — (rTw)r; // Selectively orthogonalize

end if
end for
if (v was selectively orthogonalized) then

Bi < ||v]|; // Recompute normalization constant 3;
end if
if 8; = 0 then

break for loop;
end if
Vi1 < 11/ Bi;

end for
T < (build tri-diagonal matrix from « and f3);

QDQT « EIG(T); // Eigen decomposition of T
A[1..k] < top k diagonal elements of D; // Compute eigenvalues
Y <+ Vi Qg; // Compute eigenvectors. Q) is the columns of @) corresponding to A

The main idea of Lanczos-SO is as follows: We start with a random initial basis
vector b which comprises a rank-1 subspace. For each iteration, a new basis vector



Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation 7

is computed by multiplying the input matrix with the previous basis vector. The new
basis vector is then orthogonalized against the last two basis vectors and is added to the
previous rank-(m — 1) subspace, forming a rank-m subspace. Let m be the number of
the current iteration, (),,, be the n X m matrix whose ith column is the ith basis vector,
and A be the matrix for which we want to compute eigenvalues. We also define 7},, =
Q7 AQn, to be am x m matrix. Then, the eigenvalues of T},, are good approximations
of the eigenvalues of A . Furthermore, multiplying @,,, by the eigenvectors of T;,, gives
good approximations of the eigenvectors of A. We refer to [17] for further details.

If we used exact arithmetic, the newly computed basis vector would be orthogonal
to all previous basis vectors. However, rounding errors from floating-point calculations
compound and result in the loss of orthogonality. This is the cause of the spurious eigen-
values in Lanczos-NO. Orthogonality can be recovered once the new basis vector is
fully re-orthogonalized to all previous vectors. However, doing this becomes expensive
as it requires O(m?) re-orthogonalizations, where m is the number of iterations. A bet-
ter approach uses a quick test (line 10 of Algorithm 1) to selectively choose vectors that
need to be re-orthogonalized to the new basis [6]. This selective-reorthogonalization
idea is shown in Algorithm 1.

The Lanczos-SO has all the properties that we need: it finds the top & largest eigen-
values and eigenvectors, it produces no spurious eigenvalues, and its most expensive
operation, a matrix-vector multiplication, is tractable in MAPREDUCE. Therefore, we
choose Lanczos-SO as our choice of the sequential algorithm for parallelization.

4.3 Selective Parallelization

Among many sub-operations in Algorithm 1, which operations should we parallelize?
A naive approach is to parallelize all the operations; however, some operations run
more quickly on a single machine rather than on multiple machines in parallel. The
reason is that the overhead incurred by using MAPREDUCE exceeds gains made by
parallelizing the task; simple tasks where the input data is very small complete faster
on a single machine. Thus, we divide the sub-operations into two groups: those to be
parallelized and those to be run in a single machine. Table 2 summarizes our choice
for each sub-operation. Note that the last two operations in the table can be done with
a single-machine standard eigensolver since the input matrices are tiny; they have m
rows and columns, where m is the number of iterations.

4.4 Blocking

Minimizing the volume of information sent between nodes is important to designing ef-
ficient distributed algorithms. In HEIGEN, we decrease the amount of network traffic by
using the block-based operations. Normally, one would put each edge ”(source, desti-
nation)” in one line; HADOOP treats each line as a data element for its “'map()’ function.
Instead, we propose to divide the adjacency matrix into blocks (and, of course, the cor-
responding vectors also into blocks), and put the edges of each block on a single line,
and compress the source- and destination-ids. This makes the map() function a bit more
complicated to process blocks, but it saves significant transfer time of data over the
network. We use these edge-blocks and the vector-blocks for many parallel operations
in Table 2, including matrix-vector multiplication, vector update, vector dot product,
vector scale, and vector L2 norm. Performing operations on blocks is faster than doing



8 UKang Brendan Meeder Christos Faloutsos

Operation Description [Input[P? |
Y<—y+ax vector update Large|Yes
v—aTa vector dot product Large|Yes
Y — ay vector scale Large|Yes
[lyl| vector L2 norm Large |Yes
y <+ M "z large matrix-large,dense vector multiplication Large | Yes
Yy MM large matrix-small vector multiplication (n > m) Large | Yes
A, — MIPX™ NT¥Flarge matrix-small matrix multiplication (n >> m > k) Large|Yes
[1T| matrix L2 norm which is the largest singular value of the matrix|Tiny |No

EIG(T) symmetric eigen decomposition to output Q DQ™ Tiny |No

Table 2. Parallelization Choices. The last column (P) indicates whether the operation is paral-
lelized in HEIGEN. Some operations are better to be run in parallel since the input size is very
large, while others are better in a single machine since the input size is small and the overhead of
parallel execution overshadows its decreased running time.

so on individual elements since both the input size and the key space decrease. This
reduces the network traffic and sorting time in the MAPREDUCE Shuffle stage. As we
will see in Section 5, the blocking decreases the running time by more than 4 x.

4.5 Exploit Skewness: Matrix-Vector Multiplication

HEIGEN uses an adaptive method for sub-operations based on the size of the data. In
this section, we describe how HEIGEN implements different matrix-vector multiplica-
tion algorithms by exploiting the skewness pattern of the data. There are two matrix-
vector multiplication operations in Algorithm 1: the one with a large vector (line 3) and
the other with a small vector (line 11).

The first matrix-vector operation multiplies a matrix with a large and dense vector,
and thus it requires a two-stage standard MAPREDUCE algorithm by Kang et al. [9]. In
the first stage, matrix elements and vector elements are joined and multiplied to make
partial results which are added together to get the result vector in the second stage.

The other matrix-vector operation, however, multiplies with a small vector. HEIGEN
uses the fact that the small vector can fit in a machine’s main memory, and distributes
the small vector to all the mappers using the distributed cache functionality of HADOOP.
The advantage of the small vector being available in mappers is that joining edge ele-
ments and vector elements can be done inside the mapper, and thus the first stage of the
standard two-stage matrix-vector multiplication can be omitted. In this one-stage algo-
rithm the mapper joins matrix elements and vector elements to make partial results, and
the reducer adds up the partial results. The pseudo code of this algorithm, which we call
CBMV(Cache-Based Matrix-Vector multiplication), is shown in Algorithm 2. We want
to emphasize that this operation cannot be performed when the vector is large, as is
the case in the first matrix-vector multiplication. The CBMYV is faster than the standard
method by 57 x as described in Section 5.

4.6 Exploiting Skewness: Matrix-Matrix Multiplication

Skewness can also be exploited to efficiently perform matrix-matrix multiplication (line
26 of Algorithm 1). In general, matrix-matrix multiplication is very expensive. A stan-
dard, yet naive, way of multiplying two matrices A and B in MAPREDUCE is to mul-
tiply A[:,4] and BJi,:] for each column i of A and sum the resulting matrices. This



Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation 9

Algorithm 2: CBMV(Cache-Based Matrix-Vector Multiplication) for HEIGEN
Input: Matrix M = {(idsrc, (¢dast, mval))}, Vector x = {(id, vval)}
Output: Result vector y
Stagel-Map(key k, value v, Vector ) // Multiply matrix elements and the vector
tdsre < k3
(idast, mual) < v;
Output(idsrc, (mval x x[idgst])); // Multiply and output partial results

Stage1-Reduce(key k, values V'[]) // Sum up partial results
sum < 0;
forv € V do
sum < sum —+ v,
: end for
: Output(k, sum);

SOV XN E RN 2

—_

algorithm, which we call MM(direct Matrix-Matrix multiplication), is very inefficient
since it generates huge matrices and sums them up many times. Fortunately, when one
of the matrices is very small, we can utilize the skewness to make an efficient MAPRE-
DUCE algorithm. This is exactly the case in HEIGEN; the first matrix is very large,
and the second is very small. The main idea is to distribute the second matrix by the
distributed cache functionality in HADOOP, and multiply each element of the first ma-
trix with the corresponding rows of the second matrix. We call the resulting algorithm
Cache-Based Matrix-Matrix multiplication, or CBMM. There are other alternatives to
matrix-matrix multiplication: one can decompose the second matrix into column vec-
tors and iteratively multiply the first matrix with each of these vectors. We call the al-
gorithms, introduced in Section 4.5, Iterative matrix-vector multiplications (IMV) and
Cache-based iterative matrix-vector multiplications (CBMV). The difference between
CBMYV and IMV is that CBMV uses cache-based operations while IMV does not. As
we will see in Section 5, the best method, CBMM, is faster than naive methods by 76x.

4.7 Analysis
We analyze the time and the space complexity of HEIGEN. In the lemmas below, m is

the number of iterations, |V'| and | E| are the number of nodes and edges, and M is the
number of machines.

Lemma 1 (Time Complexity). HEIGEN rakes O(m IV‘AJZIE‘ log |V‘;§I|E|) time.

Proof. (Sketch) The running time of one iteration of HEIGEN is dominated by the
matrix-large vector multiplication whose running time is O(m ‘V‘;}‘E‘ logV! ]\tle‘ ). O

Lemma 2 (Space Complexity). HEIGEN requires O(|V| + |E|) space.

Proof. (Sketch) The maximum storage is required at the intermediate output of the two-
stage matrix-vector multiplication where O(|V'| 4 |E|) space is needed. O
S Performance

In this section, we present experimental results to answer the following questions:
— Scalability: How well does HEIGEN scale up?



10 U Kang Brendan Meeder Christos Faloutsos

800 HEigenPLAN —— || ¢ 14000 f failed 57x  76x
800 &?‘Zﬁ%ﬁé‘éﬁ — | g 700 HEigen-BLOCK é 12000 | = fa§ter faster
£ g o E 10000
8 g %or ‘s 8000
2 S0 ® 400 H E
g 400 5 300 §4X > 6000
< 300 g ifaster £ 4000
S £ 200 c
& 200 & S 2000
100 100 o 0 H H
0
0l‘H)M 282M 1146M 1977M 0 10 20 30 40 50 60 70 80 MM MV CBMV CBMM
Number of edges in millions Number of machines Algorithm
(a) Time vs. # of edges (b) Time vs. # of machines (c) Time vs. algorithms

Fig. 4. (a) Running time vs. number of edges in 1 iteration of HEIGEN with 50 machines. Notice
the near-linear running time proportional to the edges size. (b) Running time vs. number of ma-
chines in 1 iteration of HEIGEN. The running time decreases as number of machines increase. (c)
Comparison of running time between different skewed matrix-matrix and matrix-vector multipli-
cations. For matrix-matrix multiplication, our proposed CBMM outperforms naive methods by
at least 76 . The slowest matrix-matrix multiplication algorithm(MM) even didn’t finish and the
job failed due to excessive data. For matrix-vector multiplication, our proposed CBMYV is faster
than the naive method by 57 x.

— Optimizations: Which of our proposed methods give the best performance?

We perform experiments in the Yahoo! M45 HADOOP cluster with total 480 hosts,
1.5 petabytes of storage, and 3.5 terabytes of memory. We use HADOOP 0.20.1. The
scalability experiments are performed using synthetic Kronecker graphs [12] since re-
alistic graphs of any size can be easily generated.

5.1 Scalability

Figure 4(a,b) shows the scalability of HEIGEN-BLOCK, an implementation of HEIGEN
that uses blocking, and HEIGEN-PLAIN, an implementation which does not. Notice
that the running time is near-linear in the number of edges and machines. We also note
that HEIGEN-BLOCK performs up to 4 x faster when compared to HEIGEN-PLAIN.

5.2 Optimizations

Figure 4(c) shows the comparison of running time of the skewed matrix-matrix mul-
tiplication and the matrix-vector multiplication algorithms. We used 100 machines for
YahooWeb data. For matrix-matrix multiplications, the best method is our proposed
CBMM which is 76 x faster than repeated naive matrix-vector multiplications (IMV).
The slowest MM algorithm didn’t even finish, and failed due to heavy amounts of
data. For matrix-vector multiplications, our proposed CBMYV is faster than the naive
method(IMV) by 48 x.

6 Related Works

The related works form two groups, large-scale eigensolvers and MAPREDUCE/HADOOP.

Large-scale Eigensolvers: There are many parallel eigensolvers for large matri-
ces: the work by Zhao et al. [21], HPEC [7], PLANO [20], PREPACK [15], SCAL-
ABLE [4], PLAYBACK [3] are several examples. All of them are based on MPI with
message passing, which has difficulty in dealing with billion-scale graphs. The maxi-
mum order of matrices analyzed with these tools is less than 1 million [20] [16], which



Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation 11

is far from web-scale data. Very recently(March 2010), the Mahout project [2] provides
SVD on top of HADOOP. Due to insufficient documentation, we were not able to find
the input format and run a head-to-head comparison. But, reading the source code, we
discovered that Mahout suffers from two major issues: (a) it assumes that the vector (b,
with n=0O(billion) entries) fits in the memory of a single machine, and (b) it implements
the full re-orthogonalization which is inefficient.

MapReduce and Hadoop: MAPREDUCE is a parallel programming framework
for processing web-scale data. MAPREDUCE has two major advantages: (a) it handles
data distribution, replication, and load balancing automatically, and furthermore (b) it
uses familiar concepts from functional programming. The programmer needs to provide
only the map and the reduce functions. The general framework is as follows [11]: The
map stage processes input and outputs (key, value) pairs. The shuffling stage sorts the
map output and distributes them to reducers. Finally, the reduce stage processes the
values with the same key and outputs the final result. HADOOP [1] is the open source
implementation of MAPREDUCE. It also provides a distributed file system (HDFS) and
data processing tools such as PIG [13] and Hive . Due to its extreme scalability and ease
of use, HADOOP is widely used for large scale data mining [9, 8] .

7 Conclusion

In this paper we discovered patterns in real-world, billion-scale graphs. This was possi-
ble by using HEIGEN, our proposed eigensolver for the spectral analysis of very large-
scale graphs. The main contributions are the following:

— Effectiveness: We analyze spectral properties of real world graphs, including Twit-
ter and one of the largest public Web graphs. We report patterns that can be used
for anomaly detection and find tightly-knit communities.

— Careful Design: We carefully design HEIGEN to selectively parallelize operations
based on how they are most effectively performed.

— Scalability: We implement and evaluate a billion-scale eigensolver. Experimenta-
tion shows that HEIGEN is accurate and scales linearly with the number of edges.

Future research directions include extending the analysis and the algorithms for
multi-dimensional matrices, or tensors [10].

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grants No. I1S-0705359, 1IS0808661, 11S-0910453, and CCF-1019104, by the Defense
Threat Reduction Agency under contract No. HDTRA1-10-1-0120, and by the Army
Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053. This
work is also partially supported by an IBM Faculty Award, and the Gordon and Betty
Moore Foundation, in the eScience project. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research Laboratory or



12

U Kang Brendan Meeder Christos Faloutsos

the U.S. Government or other funding parties. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copy-
right notation here on. Brendan Meeder is also supported by a NSF Graduate Research
Fellowship and funding from the Fine Foundation, Sloan Foundation, and Microsoft.

References

(1]
[2]
[3]
[4]
(5]
[6]
(7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]
(20]

[21]

Hadoop information. http://hadoop.apache.org/.

Mahout information. http://lucene.apache.org/mahout/.

P. Alpatov, G. Baker, C. Edward, J. Gunnels, G. Morrow, J. Overfelt, R. van de Gejin, and
Y.-J. Wu. Plapack: Parallel linear algebra package - design overview. SC97, 1997.

L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, and I. Dhillon. Scalapack
users’s guide. SIAM, 1997.

L. C. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. J. Res. Nat. Bur. Stand., 1950.

J. W. Demmel. Applied numerical linear algebra. SIAM, 1997.

M. R. Guarracino, F. Perla, and P. Zanetti. A parallel block lanczos algorithm and its im-
plementation for the evaluation of some eigenvalues of large sparse symmetric matrices on
multicomputers. Int. J. Appl. Math. Comput. Sci., 2006.

U. Kang, D. H. Chau, and C. Faloutsos. Mining large graphs: Algorithms, inference, and
discoveries. IEEE International Conference on Data Engineering, 2011.

U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system -
implementation and observations. /CDM, 2009.

T. G. Kolda and J. Sun. Scalable tensor decompsitions for multi-aspect data mining. /CDM,
2008.

R. Lammel. Google’s mapreduce programming model — revisited. Science of Computer
Programming, 70:1-30, 2008.

J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic, mathematically
tractable graph generation and evolution, using kronecker multiplication. PKDD, 2005.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. In SIGMOD ’08, 2008.

B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju, and C. Faloutsos. Eigenspokes:
Surprising patterns and community structure in large graphs. PAKDD, 2010.

J.L.RB., S. D.C,, and Y. C. Arpack user’s guide: Solution of large-scale eigenvalue
problems with implicitly restarted arnoldi methods. SIAM, 1998.

Y. Song, W. Chen, H. Bai, C. Lin, and E. Chang. Parallel spectral clustering. In ECML,
2008.

L. N. Trefethen and D. B. III. Numerical linear algebra. SIAM, 1997.

C. Tsourakakis. Fast counting of triangles in large real networks without counting: Algo-
rithms and laws. In ICDM, 2008.

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: Counting triangles in
massive graphs with a coin. KDD, 2009.

K. Wu and H. Simon. A parallel lanczos method for symmetric generalized eigenvalue
problems. Computing and Visualization in Science, 1999.

Y. Zhao, X. Chi, and Q. Cheng. An implementation of parallel eigenvalue computation
using dual-level hybrid parallelism. Lecture Notes in Computer Science, 2007.



