
Revealing Class Structure with Concept Lattices∗

Uri Dekel†

ISRI, School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
udekel@cs.cmu.edu

Yossi Gil
Department of Computer Science

Technion – Israel institute of Technology
Haifa, Israel 32000

yogi@cs.technion.ac.il

Abstract

This paper promotes the use of a mathematicalcon-
cept latticebased upon the binary relation of accesses be-
tween methods and fields as a novel visualization of indi-
vidual JAVA classes. We demonstrate in a detailed real-
life case study that such a lattice is valuable for reverse-
engineering purposes, in that it helps reason about the in-
terface and structure of the class and find errors in the ab-
sence of source code. Our technique can also serve as a
heuristic for automatic feature categorization, enabling it
to assist efforts of re-documentation.

1. Introduction

Belady and Lehman’s [3] seminallaws of program evo-
lution dynamicsstate that code repairs tend to destroy the
structure of a software system, and increase its level of en-
tropy (or disorder). This paper deals with the problem of
understanding, analyzing, and even restoring order in large
object-oriented (OO) classes whose entropy increased with
time due to what is calledhorizontal evolution[27].

The code listings of large classes can span dozens of
pages, and although many development environments in-
clude class browsing tools, most follow the style of offering
a simple alphabetical list of the features of the class. The
question which drives our curiosity here is:Can the cohe-
sive OO nature of a class be used to present its features in a
more meaningful order and thus to systematically reveal its
structure?

Our answer is based on applying, for the first time,
the technique offormal concept analysis(FCA) to the
task of studying individual OO classes.FCA, germi-
nated by Birkhoff [5] and considerably enriched by Gan-

∗Research supported in part by the Bar-Nir Bergreen software technol-
ogy center for excellence.
†Research was carried out while the author was a graduate student at

the Technion – Israel Institute of Technology

ter and Wille [14, 36], is a mathematical technique for
clustering abstract entities, commonly calledobjects1, that
share commonattributes into formal conceptsorganized
in a concept lattice. This technique found many differ-
ent applications in software engineering, such asconfigu-
ration management[31], debugging [1], searching in soft-
ware libraries [13, 23, 29], and construction of class hierar-
chies [16,32].

A very prominent such application is in studying legacy,
non-OO code, usually with the purpose of finding mod-
ules, and even organizing these in a hierarchical, OO-
structure [2, 21, 24, 30, 35]. In such applications, objects
are often the global variables of the program, while the at-
tributes are procedures or subroutines. A formal concept
is then a maximal set of variables and a maximal set of
procedures such thatall variables are used by all proce-
dures and all procedures use all variables. Formal con-
cepts or clusters of concepts serve as candidates for mod-
ules or classes, while the partial order relation, depicted in
the lattice, makes candidates for a containment relationship
between modules or module abstraction levels.

Thus, our research makes the next obvious step: ap-
ply FCA in a similar fashion to OO code, where fields take
the role of global variables and methods that of procedures
or programs. In doing so we can reveal the structure and
improve our understanding of classes.

We describe the “context of a class“ abstraction, and
show its usefulness for effective class analysis. In essence,
this abstraction is a tabular representation of the binary re-
lation “method accesses field” of the class. We further aug-
ment the chest of tools available to reverse engineers with
the “class sparse lattice“ abstraction, a visual and topolog-
ical encoding of the context abstraction. We argue that the
sparse lattice provides an even more effective means of ex-
amining the class context, since groups of methods are clus-
tered together, and edges indicate the relations between the
groups.

1Not to be confused with the objects of object oriented programming

The rest of this paper describes both abstractions in
depth, and explains why we expect them to be useful as
means to obtaining a general understanding of a class, prior
to more elaborate reverse-engineering, re-engineering, or
code-inspection efforts. Our theoretical claims are sup-
ported, in part, by data obtained from an ensemble of
circa 6,000JAVA classes, as well as from a detailed case
study. A preliminary user study [11] provides some support
for these claims.

We also suggest a methodology for examining theinter-
face and implementationof an unfamiliar large class. Its
benefits to class customers are in shortening the learning
curve; to developers in the ability to find inconsistencies,
missing or superfluous operations; to documenters in assist-
ing afeature categorization[26, pp.103–108].

This methodology was applied in a number of case stud-
ies [10], one of which serves as our main running example
here. An evidence to the efficacy of the methodology is that
with no background and with minimal effort, we revealed
problems which were confirmed as new errors by the devel-
opers and were fixed in subsequent versions. While auto-
matic tools may reveal some of the more localized errors,
our approach assists in discovering delocalized problems
which are more difficult to find and require an understand-
ing of the class and its interface as a whole.

An extension of the methodology [9, 10] utilizes the lat-
tice for selecting an efficient reading order of the source
code, if available. We also describe theembedded call
graph, an amalgam of sparse lattices and call graphs, which
has the potential of combining the two visual methods to
obtain new insights about the class.

Outline Section 2 is a concise overview ofFCA, demon-
strating its application for reverse-engineering a smallJAVA

class. Thecontext abstractionandsparse lattice abstraction
are presented in Section 3. The first stage of the method-
ology, which involves studying the interface and obtaining
an abstract understanding of the class, is described in Sec-
tion 4. Section 5 is dedicated to Stage II, in which we zoom-
in into details of the implementation, all without dealing
with the source code. Theembedded call graphis described
in Section 6. Finally, Section 7 concludes and outlines di-
rections for future research.

2. Concept Analysis

This section reviews the theory ofFCA and demon-
strates how it can be used in studyingPnt3D , a simpleJAVA

class.
FCA starts with acontextwhich is a triple〈O,A,R〉,

whereO andA are sets andR ⊆ O×A. We say thatR is
abinary relationbetween theset of objectsO and theset of
attributesA. Table 1 depicts such a relation, where the set

of objects consists of the 4 fields ofPnt3D , and the set of
attributes consists of its 12 methods. Check marks denote
that a field is accessed, directly or indirectly, by a method.

attributes

g
e

tX
se

tX

g
e

tY
se

tY
se

tX
Y

g
e

tC
o

lo
r

se
tC

o
lo

r
P

n
t3

D

g
e

tZ
se

tZ
se

tX
Y

Z
d

ra
w

objects

x X X X X X X
y X X X X X X
z X X X X X
color X X X X

Table 1. Context of the Pnt3Dclass

The fact that the relation in Table 1 can be generated
automatically from thecompiledclass file, makes the tech-
nique useful for reverse engineering.

Every subset of the objects,O ⊆ O, has a corresponding
subset ofcommon attributes, denotedO. An attributea ∈
A is in O iff every object inO hasa. Similarly, every subset
of attributes,A ⊆ A, has a corresponding set ofcommon
objects, A, such that an objecto ∈ O is in A iff it has every
attribute inA.

A pair 〈O, A〉 such thatO = A andO = A is called a
(formal) concept. In the context ofPnt3D , one such concept
is formed by the set of three fields{x , y , z}, which are all
accessed by the three methods{Pnt3D , draw , setXYZ }.

A conceptc1 = 〈O1, A1〉 is a subconceptof (or dom-
inated by) conceptc2 = 〈O2, A2〉, denotedc1 ≤ c2,
if O1 ⊆ O2 (or, equivalentlyA1 ⊇ A2). If there is no
third conceptc3 such thatc1 < c3 and c3 < c2 then c2

dominatesc1 directly. SetP (c) (resp.C(c)) is the set of
concepts which directly dominate (are dominated by)c.

The partial order between concepts can be depicted as a
Hasśe diagramcalled aconcept lattice. The concept lattice
of classPnt3D is depicted in Figure 1.

x

getX() setX()
setXY() Pnt3D()
setXYZ() draw()

C3

getX() setX() getY() getY() setXY() Pnt3D()
getColor() setColor() getZ() setZ() setXYZ() draw()

C1

x y

setXY() Pnt3D() setXYZ() draw()

C5

Pnt3D() setXYZ() draw()

x y z C7

x y color z

Pnt3D() draw()

C8

color
getColor()
setColor()
Pnt3D() Draw()

C2 y

getY() setY()
setXY() Pnt3D()
setXYZ() draw()

C4 z

Pnt3D() getZ()
setZ() setXYZ()
draw()

C6

Figure 1. Concept lattice of the Pnt3Dclass.

Wille’s fundamental theorem on concept lattices[36]
states that every concept lattice is acomplete lattice: The
unique infimum of conceptsc1 = 〈O1, A1〉 and c2 =
〈O2, A2〉 is the concept〈O1 ∩O2, A1 ∪A2〉, while their

unique supremum is the concept〈O1 ∪O2, A1 ∩A2〉. It
follows that every lattice has a uniquetop concept(C8 in
Figure 1) and a uniquebottom concept(C1).

Let n = |O| be the number of fields of a class, andm =
|A| be the number of its methods. Then,`, the number of
different concepts, might be exponential inn andm (pre-
cisely` ≤ 2min(n,m)). The fact that̀ = 8 in Pnt3D , even
though in this class2min(n,m) = 16, indicates that its fields
tend to be used together.

Much redundant information is depicted in Figure 1. The
sparse lattice(Figure 2) is a more compact representation
in which fields and methods are listed only in the concept
which introducesthem; a field (a method) is introduced in
the unique lowest (highest) concept in which it appears.

color
getColor()
setColor()

setXY() C5

C1

C2

setXYZ() C7

Pnt3D()
draw()

C8

z
getZ()
setZ()

C6x
getX()
setX()

C3 y
getY()
setY()

C4

Figure 2. Sparse lattice of the Pnt3Dclass.

The sparse lattice partitions the set of methods and fields
into disjoint subsets (some of which may be empty), each
containing methods which use exactly the same fields, and
hence likely to be related. The structure thus imposed on
the method-set makes it much easier to study. All the fields
used by a certain method can be collected by traversing
the concepts which are dominated by the concept of this
method. Conversely, all the methods which use a certain
field are collected from this field’s concept, and from all the
concepts which dominate it.

The uncluttered representation of Figure 2 highlights its
asymmetric structure. A moment’s pondering reveals that
the coordinates are not symmetric. The reason is prob-
ably thatPnt3D inherits from a class which represents a
two dimensional point. One can also surmise from Fig-
ure 2 thatPnt3D has two main components: coordinates
and color.

3. The Context- and Sparse Lattice- Abstrac-
tions, and Structured Class Exploration

The implicit assumption in the classical application
of FCA to the modularization of legacy non-OO code is
variable-access module cohesion, whose strongest version
is that all the functions of a module should use all of its
variables. The natural question is whetherOO classes obey
a similarfield-access class cohesionassumption. In a data-

set of5, 846 non-trivial non-internal classes [10], we found
that95.5% of all classes are not strongly cohesive.

We believe, based on our own manual code inspec-
tion, that the lack of cohesion in many of these classes re-
veals their internal structure and indicates imperfections, in-
consistencies, asymmetries and even errors of design and
implementation. This claim is strengthened by the fa-
mousLCOM (lack of cohesion in methods) metric and its
variants [8, 17], all expressing the belief that there should
be a considerable overlap between the sets of fields used by
each method.

In its most general form, our first research claim can be
stated as follows:

Claim I (The Class Context Abstraction).The class con-
text is a powerful means for understanding the function-
ality and the implementation of a class.

Large nontrivial classes, whose interface may constitute
hundreds of features and whose implementation may in-
volve dozens of fields, are the primary candidates to en-
joy the context’s summarizing and abstracting representa-
tion. The size of these large classes may exceed that of
some modules in legacy systems, and might lead them to
suffer from the same disorder imposed by continuous main-
tenance.

Classes of such scale are quite abundant: In our data-set,
as many as a quarter of allpublic methods were found
in classes with 100 methods or more. Theshopping list
approach[26, pp.80–83] encourages the programmer to de-
velop large classes; it is particularly easy to do so thanks to
inheritance. The laws of program evolution dynamics [3]
lead us to believe that such classes tend to increase in size
and consequently in complexity just like large modules in
legacy software.

Instead of examining the voluminous listing of a large
class, the user may choose a shorter representation which,
at the cost of omitting some of the details, gives a better
global grasp of the class structure. Our first claim is that
the context defined by a large class is indeed an abstraction;
i.e., it offers a useful global perspective of the class. Our
user study [11] suggests that programmers equipped with
the context abstraction become more effective in detecting
certain defects in a large class.

There is also a theoretical rationale supporting Claim I:
We argue thatthe structure of class instances, as implied by
fields, is fundamental to understanding the class. For exam-
ple, consider a class representing a process in an operating
systems kernel, including data structures such as page ta-
bles, process ids, register files, lists of open files, etc. Then,
the set of fields used by a synchronization operation will
reveal much of the fundamentals of the operating system
design.

We argue further thatthe set of fields constituting the
structure of a class is less volatile than the set of services

it provides. Consider the famous example of the alterna-
tive implementations of a complex number class using the
cartesian or the polar representation. Switching between
these alternatives is tantamount to rewriting the entire class,
and is therefore less likely to happen than changing the ser-
vices to the class. Similarly, almost every method in a class
representing a rectangle would have to be rewritten when
switching from a two-corners representation to a location-
and-dimensions representation. We also believe that for a
fixed representation, it is often the case thatall possible im-
plementations of the same service will use the same set of
fields.

The class context can be represented in a variety of ways:
as a list of facts, a table, a bipartite graph, etc. In the ex-
perimental validation of our first claim, we used a tabular
representation, similar to Table 1. We argue further, that the
sparse lattice(see e.g., Figure 2) artifact ofFCA enables an
even more effective examination of the context.

Claim II (The Sparse Lattice Abstraction).The sparse
lattice is an effective means for examining the class con-
text abstraction.

The sparse lattice and the tabular context represent the
same data; each representation can be generated from the
other. By definition, the sparse lattice summarizes the con-
text abstraction in that each field and each method occurs
precisely once, while similarities between rows or columns
are captured by the organization of the methods and fields
into concepts; identical rows and columns are effectively
compressed by the concept lattice. Further, the sparse lattice
organizes these formal concepts in a compacthierarchical
structure.

On the other hand, the sparse lattice is not always shorter
than the context. If the context is such that each method
does not access one unique field, but all the others, then the
number of concepts is exponential, although many of them
are empty.

We find, however, that the tendency of fields to be used
together by methods, as in thePnt3D example, is asweep-
ing phenomenon: Indeed, in 99.5% of classes in our data-
set, the number of concepts is linear (n < m + f). More-
over, in 77.4% of classes,n < m, i.e., in considering con-
cepts we need to examine fewer pieces of information than
in considering isolated methods. In other words, the num-
ber of concepts (including empty ones) in the sparse lattice
is usually smaller than the number of rows in the context.

The second claim not only says that the sparse lattice is
shorter than the context (so is a “zipped” representation),
but that this lattice is effective in discovering theinternal
structureof large classes. It can help identify layers in their
implementation, and may be useful for tasks such asfeature
categorization[26, pp.103–108] and documentation (since
related features are placed together and organized in a hi-
erarchy),code inspection[15], requirement tracing[4] and

otherwisere-engineeringthe class.
Furthermore, we claim that one can use standard tech-

niques ofFCA in the analysis of the sparse lattice. A case in
point arehorizontal-summands, which were previously [24]
used to find implicit modules in flat non-OO programs, and
which might indicate that a class can be decomposed into
independent units.

The case for sparse lattices is also made by our user
study [11], which shows that programmers are more pro-
ductive in detecting delocalized defects in the interface
and implementation of a class when allowed to use this
summarizing representation. The study shows that even a
five-minute introduction is sufficient for users to grasp the
essence of this representation, and that their productivity in-
creases if they are offered structural aids in their work.

Claim III (The Structured Methodology Hypothesis).
The class structure is more readily revealed by the
sparse lattice abstraction when users follow a structured
methodology.

It is a colossal empirical research effort to find the set
of optimal structural aids, and then theiroptimal order of
application. Our support ofClaim III is in a demonstra-
tion of one (not-necessarily optimal) such set and order of
application. Concretely, we present anFCA-basedtoolbox
of views and diagrams which can be (almost) automatically
generated. These tools are used in our methodology both
for abstracting the class information, and for focusing on
interesting details.

Our methodology is intended, in part, to improve the un-
structured ad-hoc study of classes which developers make
in the course of themicro development process[6]. In par-
ticular, it does not incur the overhead of a rigorous process,
and can be invoked on a per-need basis. The tools are easy
to implement, learn and use, and can be smoothly integrated
into development environments.

Our running example here2 is classMolecule , a large
class (77public members, over 1,500 LOC) drawn from
the Chemistry Development Kit(CDK) [7, 33]3, an open-
source library ofJAVA classes for chemoinformatics and
computational chemistry. The library serves as a basis for
other applications, such asJChemPaint[19], JMol [20],
andSeneca[28]. Prior to the case study selection we were
not familiar with the library or affiliated with its authors in
any way; nor did we have any particular knowledge of the
application domain.

Class Molecule represents an entity that should
be familiar to a wide scientific audience4; yet it
sports a large interface consisting of77 public mem-

2Another detailed worked-out example, drawn from a graph-theory do-
main, can be found elsewhere [9,10].

3We analyzed build 20020518, released in May 2002.
4A chemical molecule consists of atoms that are connected by bonds; it

can be thought of as a graph where vertices are atoms and edges are bonds.

bers. The classextends AtomContainer , which in
turn extends ChemObject . Prior to the analysis the class
wasflattened[25, p.106]; in this paper little distinction was
made between members based on their origin.

Each of the next three sections describes a stage of our
methodology, and demonstrates it on theMolecule class.

4. Stage I: Interface Analysis

In the course of presenting our methodology, we are
going to show how different errors can be systematically
discovered, and how an understanding of the class can be
gained in the process. While some of these errors are lo-
calized and can be detected with other tools and techniques,
many are delocalized and tend to evade inspectors using tra-
ditional methods. Note that we do not see error-detection as
the primary goal of our methodology (automatic tools may
discover many of these problems), but use it to demonstrate
how our approach assists in reasoning about the class.

The first stage of our methodology is to study the class
interface, where the concept latticepartitions the public

methods into concepts and organizes them inlayersof ab-
straction. Even though this stage is primarily concerned
with the interface, the process is not pure, and we are some-
times forced to peek into the implementation, since, as
shown by the running example, details of the implemen-
tation can sneak into the interface. Conversely, an incom-
plete interface definition must be elaborated by examining
the implementation.

There are 7 steps or activities in this stage, which are not
necessarily carried out in sequence; the first ones construct
the lattice and zoom-out to obtain a general understanding,
and the later ones zoom-in to investigate specific details.
We now turn to describing them briefly; a more detailed
discussion can be found in [10].
Step 1: Become familiar with the abstracted entity and
the environment of the class. Even though the concepts
and their lattice are created automatically, their interpreta-
tion can only be done by a human mental effort, to which
the main clues are the names and signatures of methods.
In order to make sense of these identifiers, it is essential to
become familiar with thevocabularyand with thehuman
contextat which the class operates.
Step 2: Context selection. The lattice construction be-
gins with aselection of an appropriate class context. For
interface analysis, we start with what is called theflat-
short formin the EIFFEL jargon [25, p.106]. The selected
context consists ofpublic methods only, regardless of
their static status; methods defined in ancestors are in-
cluded, unless they were overridden.5 All the fields of the

5Methods declared injava.lang.Object are not included un-
less overridden because they are common to allJAVA classes.

class are included in the context, regardless of their visi-
bility and static status. The incidence relation includes
read- or write-access. Note that we do not distinguish be-
tween direct and indirect access to a field. Also, as custom-
ary in the relevant literature, no alias-analysis is attempted.

Applying thus FCA toMolecule conveniently orga-
nizes its 75 methods and twopublic fields in 26 concepts.

Step 3: Layers-based lattice layout. We expect more so-
phisticated methods to use more fields, and hence to be lo-
cated higher in the lattice. In examining many class lattices
we also found that concepts at the same “layer” tend to have
similar properties. For example, each ofC2, C3, C4, andC6

in Figure 2 dominates the bottom concept directly. They are
also similar in that each introduces a single field with an ac-
cessor and mutator for it. Figure 3 shows a partitioning of
an example lattice intolayers.

Layer 1 (Bottom)

Layer 2

Layer 3

Layer 4

Layer 5

Top Layer

Top String

Bottom String

Bottom Concept

Top Concept

1

2

3

22

23

24

20

21

17

16

15

18 19

144

5 6

7 8

109

11 12

13

Figure 3. Layers and components in an exam-
ple lattice

Formally,6 the bottom string (resp. top string) con-
sists of the bottom (top) concept and all conceptsc such
that P (c′) = {c} (resp. C(c′) = {c}) for c′ which is in
the bottom (top) string. A conceptc is in thebottom layer,
also calledlayer 1, if c is not in the bottom string, but all its
descendants are. Thetop layer is defined similarly, except
that it cannot include concepts of the bottom layer. All other
concepts are ininternal layers. Conceptc belongs to layeri
if it (i) does not belong to the top layer,(ii) dominates only
concepts in layeri−1 and below, and(iii) dominates at least
one concept in layeri− 1.

Lattices are drawn so that concepts in the same layer
appear at the same horizontal level. Figure 4 lays out the
(sparse) concept lattice thus computed of classMolecule .7

The figure is very clutted as it displays the full signatures
of all 77 members. Nevertheless, the layout highlights the

6A slightly different definition of layers is employed [31, 34] to find
visually pleasing layouts of lattices.

7Due to space restrictions, conceptsC2–C9 appear at different heights
even though they belong to the same layer, and non-public fields are
listed although they are ignored until the second stage.

fact that about half (14/26) of the concepts are in the bot-
tom layer; i.e., represent basic operations such as inspec-
tors, mutators, accessors, or delegators on minimal sets of
variables.
Step 4: Simplify concepts’ annotations. To simplify the
picture, we now try to manuallyreplace the list of methods
in the label of each concept with a more concise, semantical
description of its role. In doing so we rely on the vocabulary
and information gathered in the first step. Unknown terms
and methods are prudently retained for further exploration.

In many cases, these textual descriptions can be further
summarized by actuallynaming the concepts. Therespon-
sibility legendof Figure 5 describes our specialized notation
scheme for these names, including provisions for free text
and concatenation of responsibilities.8 The figure itself de-
picts theoutline latticeof Molecule .

Guided by the newly found concept names and the lay-
ers, an examination of Figure 5 reveals that the inter-
face of Molecule can be divided into four main cate-
gories:(i) Management of (nearly) the entire state, as done
in C23, C24 and (probably)C25. (ii) Management of a large
number of almost-independent fields in a record like fash-
ion (C2–C9). We infer that these fields are independent
since no method uses them together, except for those in
the first category.(iii) Direct management of interdepen-
dent properties.These features includeatomCount , atom ,
bond andbondCount . Their interdependency is revealed
by the fact that they are united in second and higher lay-
ers. (iv) Other methods dealing with abstractions of ties
between atoms and bonds.
Step 5: Horizontal decomposition. Consider again the
concept lattice of classPnt3D in Figure 2. If the top-
and bottom- concepts of the lattice are removed, we obtain
two disjoint graph components, one dealing with coordi-
nates and the other with color. These components suggest
a restructuring of the class as an aggregate of two classes,
Coordinate and Color . A lattice consisting of disjoint
components connected by the top- and bottom- concepts is
calledhorizontally decomposable(HD).

More precisely, letG be the undirected graph obtained
from a concept latticeL by ignoring edge directionality and
removing the top- and bottom-strings. IfG is unconnected,
then we say thatL is horizontally decomposableinto com-
ponents(or horizontal summands), each corresponding to a
connected component ofG. Singleton components are also
calledtrivial components.9 For example, the lattice in Fig-
ure 3 isHD into the four shaded components; only one of
these components is trivial.

The crucial characteristic ofHD is thatmethods in one
component cannot invoke methods or access fields in other

8A more detailed listing and discussion of the responsibilities legend
appears in [10].

9The literature [14] offers a slightly different definition.

components. Thus, each component represents an indepen-
dent functionality offered by the class. Functionalities are
combined (if at all) only in high-level operations.

The lattice ofMolecule (Figure 4) isHD into two com-
ponents, one of which,{C15}, is trivial. In examiningC15

we see that its sole responsibility is to manage atitle

property. Even without delving into the details of the im-
plementation,HD highlights a potential problem:title is
not handled by the constructor which appears inC24 in the
other component, nor by theclone method inC23. An-
other probable glitch is that the field itself ispublic al-
though it has an inspector and a mutator).

Further HD of the other large component yields eight
trivial components (C2–C9), and a large non-trivial com-
ponent,L, consisting ofC10–C14, C16–C23 andC26 (sur-
rounded by a dashed line in the figure). The trivial compo-
nents correspond to the independent features of the class;
each such component introduces an auxiliary field and sev-
eral methods to manage it. Again, there is a potential prob-
lem with these fields because the cloning operation appears
in L and does not access them.
Step 6: The abstraction lattice. It is clear that compo-
nentL represents a more cohesive portion of the interface,
which has to do with atoms, bonds and their interrelation-
ship. However, the significance of each of the14 concepts
and20 direct-dominance relations in it is not immediately
obvious. In general, the outline lattice may still present too
much information, which needs to be abstracted further.

We use methods of the top layer to group together con-
cepts at lower levels. The rationale is that these methods use
the largest subsets of fields and represent the highest level
of abstraction; if two fields (or sets of fields) are always
used together in higher abstractions, then we are inclined to
believe that there is a strong tie between the two sets.

Consider the formal context where objects are thecon-
cepts of the class lattice, attributes are theconcepts in the
top layer, and an object has an attribute whenever there is
a dominance relationship between the corresponding con-
cepts.FCA will then yield theabstraction lattice, whose
concepts areclusters(each with a semi-lattice structure) of
concepts from the original lattice.

The abstraction lattice of Figure 5 is not very interesting
(all concepts are in a single cluster). Instead we consider
the abstraction lattice of componentL, depicted in Figure 6.
An edge between clusters indicates that at least one concept
(usually a high level one) in the dominating cluster domi-
nates at least one concept in the dominated cluster; cluster
names were chosen manually. The abstraction lattice orga-
nizes the 14 original concepts in 8 clusters, while reducing
the number of edges from 20 to 10.

The abstraction lattice heuristics groups together related
operations, even if they were separated into different con-
cepts due to differences in their (low-level) implementation.

co
nt

ai
ns

(B
on

d)
:b

oo
le

an
ge

tB
on

d(
A

to
m

,A
to

m
):

B
on

d
ge

tB
on

ds
()

:B
on

d[
]

ge
tB

on
dC

ou
nt

(A
to

m
):

in
t

ge
tB

on
dO

rd
er

S
um

(A
to

m
):

in
t

ge
tC

on
ne

ct
ed

A
to

m
s(

A
to

m
):

A
to

m
[]

ge
tC

on
ne

ct
ed

A
to

m
sV

ec
to

r(
A

to
m

):
V

ec
to

r
ge

tC
on

ne
ct

ed
B

on
ds

(A
to

m
):

B
on

d[
]

ge
tD

eg
re

e(
A

to
m

):
in

t
ge

tH
ig

he
st

C
ur

re
nt

B
on

dO
rd

er
(A

to
m

):
do

ub
le

ge
tM

in
im

um
B

on
dO

rd
er

(A
to

m
):

do
ub

le
re

m
ov

eB
on

d(
B

on
d)

:B
on

d
re

m
ov

eB
on

d(
in

t)
:B

on
d

re
m

ov
eB

on
d(

A
to

m
,A

to
m

):
B

on
d

at
om

s(
):

E
nu

m
er

at
io

n
sh

al
lo

w
C

op
y(

):
O

bj
ec

t

ad
dL

is
te

ne
r(

C
he

m
O

bj
ec

tL
is

te
ne

r)
:v

oi
d

re
m

ov
eL

is
te

ne
r(

C
he

m
O

bj
ec

tL
is

te
ne

r)
:v

oi
d

ge
tR

em
ar

k(
O

bj
ec

t)
:O

bj
ec

t
se

tR
em

ar
k(

O
bj

ec
t,O

bj
ec

t)
:v

oi
d

ad
d(

A
to

m
C

on
ta

in
er

):
vo

id
ad

dB
on

ds
(d

ou
bl

e)
:v

oi
d

cl
on

e(
):

O
bj

ec
t

ge
tIn

te
rs

ec
tio

n(
A

to
m

C
on

ta
in

er
):

A
to

m
C

on
ta

in
er

re
m

ov
eA

llE
le

m
en

ts
()

:v
oi

d

M
ol

ec
ul

e(
)

M
ol

ec
ul

e(
A

to
m

C
on

ta
in

er
)

M
ol

ec
ul

e(
in

t,i
nt

)
M

ol
ec

ul
e(

M
ol

ec
ul

e)

fl
ag

s:
b

o
o

le
an

[]

p
o

in
te

rs
:V

ec
to

r[
]

co
nt

ai
ns

(A
to

m
):

bo
ol

ea
n

ge
t2

D
C

en
te

r(
):

P
oi

nt
2D

ge
t3

D
C

en
te

r(
):

P
oi

nt
3D

ge
tA

to
m

s(
):

A
to

m
[]

ge
tA

to
m

N
um

be
r(

A
to

m
):

in
t

ge
tL

as
tA

to
m

()
:A

to
m

re
m

ov
eA

to
m

(A
to

m
):

vo
id

re
m

ov
eA

to
m

(in
t)

:v
oi

d

ad
dA

to
m

(A
to

m
):

vo
id

ge
tD

eg
re

e(
in

t)
:in

t

ge
tC

on
ne

ct
io

nM
at

rix
()

:d
ou

bl
e[

][]
re

m
ov

e(
A

to
m

C
on

ta
in

er
):

vo
id

re
m

ov
eA

to
m

A
nd

C
on

ne
ct

ed
B

on
ds

(A
to

m
):

vo
id

to
S

tr
in

g(
):

:S
tr

in
g

ad
dB

on
d(

in
t,i

nt
,in

t)
:v

oi
d

ad
dB

on
d(

in
t,i

nt
,in

t,i
nt

):
vo

id

ad
dB

on
ds

(A
to

m
C

on
ta

in
er

):
vo

id
ad

dB
on

d(
B

on
d)

:v
oi

d
re

m
ov

eA
llB

on
ds

()
:v

oi
d

se
tP

ro
pe

rt
y(

O
bj

ec
t,O

bj
ec

t)
:v

oi
d

ge
tP

ro
pe

rt
y(

O
bj

ec
t)

:O
bj

ec
t

se
tP

hy
si

ca
lP

ro
pe

rt
y(

O
bj

ec
t,O

bj
ec

t)
:v

oi
d

ge
tP

hy
si

ca
lP

ro
pe

rt
y(

O
bj

ec
t)

:O
bj

ec
t

ad
dC

he
m

N
am

e(
S

tr
in

g)
:v

oi
d

ge
tC

he
m

N
am

e(
in

t)
:S

tr
in

g
ge

tC
he

m
N

am
es

()
:V

ec
to

r
ge

tC
he

m
N

am
es

C
ou

nt
()

:in
t

se
tC

he
m

N
am

es
(V

ec
to

r)
:v

oi
d

ge
tB

ei
ls

te
in

R
N

()
:S

tr
in

g
se

tB
ei

ls
te

in
R

N
(S

tr
in

g)
:v

oi
d

ge
tC

as
R

N
()

:S
tr

in
g

se
tC

as
R

N
(S

tr
in

g)
:v

oi
d

ge
tA

ut
on

om
N

am
e(

):
S

tr
in

g
se

tA
ut

on
om

N
am

e(
S

tr
in

g)
:v

oi
d

ge
tF

irs
tA

to
m

()
:A

to
m

se
tA

to
m

A
t(

in
t,A

to
m

):
vo

id
ge

tA
to

m
A

t(
in

t)
:A

to
m

se
tA

to
m

s(
A

to
m

[])
:v

oi
d

ge
tA

to
m

C
ou

nt
()

:in
t

se
tA

to
m

C
ou

nt
(in

t)
:v

oi
d

ge
tB

on
dA

t(
in

t)
:B

on
d

se
tB

on
dA

t(
in

t,B
on

d)
:v

oi
d

se
tB

on
ds

(B
on

d[
])

:v
oi

d
ge

tB
on

dC
ou

nt
()

:in
t

ti
tl

e:
S

tr
in

g
ge

tT
itl

e(
):

S
tr

in
g

se
tT

itl
e(

S
tr

in
g)

:v
oi

d

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
1

C
21

C
23

C
24

C
25

C
20

C
17

C
22

C
16

C
18

C
19

C
26

re
m

ar
ks

:H
as

h
ta

b
le

ch
em

O
b

je
ct

s:
V

ec
to

r

p
h

ys
ic

al
P

ro
p

er
ti

es
:H

as
h

ta
b

le

p
ro

p
er

ti
es

:H
as

h
ta

b
le

ca
sR

N
:S

tr
in

gb
ei

ls
te

in
R

N
:S

tr
in

g

ch
em

N
am

es
:V

ec
to

r

au
to

n
o

m
N

am
e:

S
tr

in
g at
o

m
C

o
u

n
t:

in
t

at
o

m
s:

A
to

m
[]

g
ro

w
A

rr
ay

S
iz

e:
in

t
b

o
n

d
C

o
u

n
t:

in
t

b
o

n
d

s:
B

o
n

d
[]

Figure 4. Concept lattice of the Molecule class
(Non-public fields, underlined, are included to conserve space, but should be ignored until Section 5. ComponentL is outlined.)

{physical
property}

Index-based atom degree

shallow copy | #atom

{listener}{remark} {property}
{{chemical

name}}
@autonom

name {{bond}} @bondCount _title | @title{{atom}}@atomCount

{{atom}} | centerpoints

add bond

bind atomsadd atom "connection matrix" | toString | unbind atoms

{{bond}} | bond order |
atom degree | connected atoms

clone | merge | intersect | clear

_flags | CONS

_pointers

@beilsteinRN@casRN
C2 C3

C4

C5 C6 C7

C8 C9

C10 C11
C12

C13 C14 C15

C16 C26 C17

C19

C21

C23

C22

C20

C24

C18

C25

C1

Responsibility Legend
_x an exposed field named x
@x operate on a single x
{x} operate on a single x in a collection
{{x}} operate on multiple x's in a collection
#x get an enumeration or iterator of x
| additional responsibility
CONS constructor
"x" x is an unfamiliar name.
text free-text name

Figure 5. Outline lattice of Molecule , component L, and the responsibility legend.

{{bond}} | bond order |
atom degree | connected atoms

Index-based atom degree

atoms

{{bond}} @bondCount

"connection matrix" | toString | unbind atoms

add bond

bind atoms

base
unknown

add atom

bonds

atom-bond

entire-state

add bond

add atom
C18 C21 C22

C19 C20

C17

C12
C13 C14

{{atom}} | centerpoints
C16

@atomCount
C10

{{atom}}
C11

shallow copy | #atom
C1

C26

clone | merge | intersect | clear
C23

Figure 6. Abstraction lattice of component L
of Molecule

Stated differently, we have apyramid of abstractions, where
methods which use the same set of fields are in the same
concept, and sets of methods which are used together are in
the same cluster.

Kuipers and Moonen [21] propose another clustering
technique, which, unlike ours, relies on theuser to point
out related concepts, to be merged by the system. To see
that automatic clustering works, consider for example con-
ceptsC22 (bind atoms) andC20 (add bond). The automatic
clustering of these highlights the similarity between the ser-
vices. In examining the lattice structure it is even easy to
surmise thatC22 inserts a bond between existing atoms,
while C20 may lead to an inconsistency by binding together
atoms which are in other molecules. Another example is
the cluster namedbonds, which reveals that the notions of
“atom degree” and “bond” are highly related.

We can also observe that both theadd bond andadd atom

clusters use the twounknownconcepts (the concepts with
no public methods or fields), which are even clustered to-
gether. An educated guess (which is confirmed if the code
is examined) is thatunknown contains utilities related to re-
sizing the two collections.

Note that not every bit of information in the abstraction
lattice is significant. For example, it is not clear why clus-
tersbase andatoms are distinct.
Step 7: Match services against expectations. It is now
time to examine in detail the services supplied by the class,

matching these against the expectations built in the first two
steps.

The pyramid of abstractions serves as a directory of ser-
vices. In searching for a functionality we may first mark all
related clusters, and then zoom to concepts and methods,
examining first their name, then their full signature and per-
haps accompanying documentation. Partial matches against
our expectations and other discoveries made along the way
are dynamically added to our work list. For example, in
searching forbond managementfunctionality we examine
clustersbonds and add bonds (atom-bond is left for future
study); all the concepts in these clusters seem directly re-
lated to bond management.

The pyramidical search for functionalities and the care-
ful examination of signatures highlights inconsistencies
and other design flaws. For instance, within conceptC17

we find thatgetMinimumBondOrder returns adouble ,
whereas another method in the same concept,getBond-

OrderSum , which presumably computes the sum of bond
orders, returns anint . Examining methodsgetHighest-

CurrentBondOrder andgetMinimumBondOrder , occur-
ring in the same concept, suggests that the class design-
ers did not apply a consistent naming convention. We also
find three methods:getDegree(Atom) , getBondCount-

(Atom) and getBondOrderSum(Atom) , whose distinct
responsibilities are not clear from their names.

From examining multiple concepts we discover addi-
tional problems, such as an unclear semantic distinction
between the twogetBondCount operations. We also no-
tice hints of asymmetries and interface inconsistencies in
the smaller concepts.

5. Stage II: Implementation Analysis

We now begin to delve into implementation details. At
this stage, our study is carried outwithout inspecting the
source code. Instead, we elaborate the class lattice by exam-
ining method signatures and adding the non-public fields
which were omitted in the previous stage. By studying the
fields that each method uses, and the methods that use each

field, we hope to understand how the class state is realized,
and how this state can be viewed and modified by the class
methods. We can also utilize theembedded call graph, a
particular representation of themethods call graphwhich
can be computed from the compiled representation.

There are 7 steps in this stage, some of which can be
thought of as check-list items of code inspection. Again,
and as customary in methodologies, the precedence relation
between steps is not very strict.
Step 1: Identify unused fields. In the early stages of devel-
opment, unusedprivate fields are common as most meth-
ods are still stubs; such fields tend to disappear as the class
nears completion. In mature classes, maintenance can re-
sult in dead codeanddead fields. If such fields exist, then
they will appear in the top concept, and the lattice would
have a top string. InMolecule , the only unused field is
pointers , but since it ispublic , we must check whether
it is used by other clients before it can be removed. Nearby,
we notice theflags field which is only used by the con-
structor.
Step 2: Discover fields’ role. Fields are examined by their
introducing concept. Each of the 9 trivial componentsC2–
C9 andC15 represents a field with accessor methods. As
the lattice shows, these fields are independent, exhibiting
a record-like behavior. The role of many of them can be
inferred by examining the signatures of the methods which
accompany it.

We now examine componentL (Outlined in Fig-
ure 4) and examine the five fields that it introduces:
atoms:Atom[] , atomCount: int , bonds:Bond[] ,
bondCount: int , and growArraySize: int . The roles
of the first four fields are hinted by their names: each
collection is apparently maintained using an array and
an associated counter field which tracks the number of
occupied slots.

The role ofgrowArraySize is slightly more difficult to
reveal since it is used only in conjunction with other meth-
ods. Based on its name and on the fact that all the domi-
nating concepts deal with addition and removal, we guess
thatMolecule dynamically grows the arrays of bonds and
atoms, and that this field specifies the chunk size. The fact
that the same field is shared for the two independent collec-
tions may be erroneous.
Step 3:Assess the quality of field names. When the role of
each field is more or less understood, we should check that
it is named properly (e.g.,mappingFromXtoY is preferable
to hashTableOfY because purpose is preferable to imple-
mentation). For instance,C3, which maintains “listeners”,
operates on a vector field namedchemObjects , and inserts
objects of typeChemObjectListener . The name of this
field should probably be changed tochemObjectListen-

ers .
Step 4: Investigate fields interdependency. The layer-

structure of the lattice, and in particular non-empty second-
layer concepts (or first-layer concepts with multiple fields),
highlightsstrong ties between fields. In our lattice, the only
such concepts areC16 andC17 in the second layer, which
reveal thatatoms andatomCount are closely connected,
and so arebonds and bondCount . This strengthens our
conviction that the count fields are used to track the number
of array elements.

While some operations may be more efficient with this
dual-field implementation than with a standardVector ,
this complicates the class and introduces new risks.
Namely, an important class invariant is that the num-
ber of non-empty entries inatoms (bonds) must always
equalatomCount (bondCount). We make a note to vali-
date this invariant when we examine the access patterns of
individual methods.
Step 5: Examine entire-state methods. Some methods, of-
ten introduced in upper concepts, are intended to operate on
the entire state of the class instance. Their duties often in-
clude construction, cloning, serializing, and printing. In this
step we identify these methods, and check whether each of
them uses all the relevant fields. Exceptions may indicate
that a field is redundant and might be removed, or that there
is an error in the implementation of the method.

We already learned from the outline lattice
of Molecule (Figure 5) that thetitle and flags

fields are not initialized or cloned due to a bug. The
location ofshallowCopy in the bottom concept indicates
an obvious error in its implementation, as no fields are
used. In fact, its signature indicates that it is actually a
shallow-clone operation. Examining conceptsC23 andC24

reveals an error inclone since (unlike the constructors) it
only handles the fields dealing with atoms and bonds.
Step 6: Study asymmetries. As we saw in classPnt3D ,
asymmetries in the class lattice can be very telling, and may
indicate incomplete interfaces, inappropriate use of inher-
itance, and other problems. Many asymmetries are visi-
ble in componentL. For example, a comparison ofC11

and C13 suggests that the interface misses agetFirst-

Bond method; comparison ofC10 andC14 reveals another
asymmetry, since there is asetAtomCount method, but no
setBondCount .
Step 7: Check method access patterns. Now is the time to
meticulously check, based on the information we collected
on field names and roles, that each method uses precisely
the fields that it should. By using the appropriate read-
access and write-access contexts we can also check that
methods make the expected kind of access.

Many flaws inMolecule can thus be found. The sets of
atoms and bonds can be completely replaced (usingset-

Atoms andsetBonds) without updating the count. Simi-
larly, setAtomCount is exposed to the user inC10, allow-
ing the invariant to be broken. We also see that the removal

of atoms from the molecule does not cause incident edges
to be remove.

A last step, which we shall not elaborate here, involves
examining non-public methods. To do so, we must re-
calculate the lattice using a context which includes all such
methods.

6 The Embedded Call Graph

A concept lattice partitions the methods of the class into
groups, but does not portray the interaction between them.
A methods call graphis a powerful tool for understanding
the interrelations between methods, and for making the dis-
tinction between core, auxiliary and wrapper methods. Fur-
ther, as argued in the work of Lanza and Ducasse on class
blueprints [22], the shape of this graph can give immediate
clues on the semantical organization of the class.

To assist in the analysis of classes using our methodol-
ogy, we present theEmbedded Call Graph(ECG), a novel
diagram obtained by superimposing the call graph on the
class concept lattice, such that the node of each method is
embedded in a block of the concept which introduces it.
Figure 7 depicts theECG of Pnt3D ; the ECG of a larger
class such asMolecule is much larger, and can be found
elsewhere [10].

setXYZ

getColor setColor getX setX getY setY

setXY

draw Pnt3D

getZ setZ

xcolor C3 C y zC2 C4 C6

C1

C5

C8

C7

Figure 7. Embedded call graph of Pnt3D

The ECG can also be thought of as a semantic-driven
heuristic for laying out the class call graph. The rationale
is that edge crossings are minimized since, by definition,
methods can only invoke methods that appear in the same
concept or in dominated ones. Stated differently, recursive
and mutually-recursive calls, i.e., cycles in the call graph,
are always limited to a single concept. Another important
property of theECGis that if the lattice is horizontally de-
composable, then the edges of different component never
cross. TheECGis also useful for understanding the interre-
lationship between methods in the same concept or cluster.

7. Conclusions and Future Research

This research is the first to applyFCA to the analysis of
individual OO classes. Our main claim is that the internal
structure of a class can be revealed and reasoned about using

a context lattice of the accesses relation between methods
and fields. Support to this claim was provided by a theoreti-
cal rationale and a case study demonstrating its application.
A preliminary user study [11] suggests that programmers
can quickly learn and apply the technique.

The systematic methodology we presented supports the
main claim by showing a variety of ways in which non-
trivial discoveries can be made (in a semi-structured pro-
cess) using this lattice: first by a mere inspection of the in-
terface, then by delving into implementation details, and fi-
nally by a lattice-directed examination of the source. Need-
less to say, more practical experience is required before the
methodology can be sealed and released. Other contribu-
tions include theembedded call graphof Section 6, and an
extension of our methodology to the selection of a code in-
spection order [10].

We are currently exploring several research directions
that build upon the foundations laid in this work. One such
direction is the application of our technique to the design
of classes in CASE tools. We believe that the process of
adding features to a class, typically carried out by adding
features to a list in aUML class hierarchy diagram, can be
more effective with a lattice-based interactive editor. Meth-
ods could be associated with fields, forming concepts, and
then additional methods with a related functionality could
be added directly into the appropriate concept. One advan-
tage of this approach is that it will reduce the number of
cases where several methods are added for the same pur-
pose. Another research direction focuses on the creation of
a suite of class metrics based upon concept lattices and their
relationship with the cohesion of the class.

In addition to theoretical work, we are currently working
on the development of interactive software tools and IDE
accessories that realize our technique, and in particular a
plug-in for theeclipse[12] framework. Work on integration
into documentation tools (e.g. [18]) is also carried out.

References

[1] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus.
Debugging temporal specifications with concept analysis.
In Proceedings of the ACM SIGPLAN’03 Conference on
Programming Language Design and Implementation, San
Diego, CA, June 9-11 2003. ACM Press.

[2] G. Antoniol, G. Casazza, M. D. Penta, and E. Merlo. A
method to reorganize legacy systems via concept analy-
sis. In Proceedings of the 9th International Workshop on
Program Comprehension, pages 281–291, Toronto, Canada,
May 2001. IEEE Computer Society Press.

[3] L. A. Belady and M. M. Lehman. Laws of program evolu-
tion dynamics.IBM Syst. J., 15(3):225–252, 1976.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
Proceedings of the 15th International Conference on Soft-

ware Engineering, pages 482–498. IEEE Computer Society
Press, 1993.

[5] G. Birkhoff. Lattice Theory. Colloqulum Publications.
American Mathematical Society, Providence, RI, USA, 2nd

edition, 1967.
[6] G. Booch.Object Solutions. Managing The Object-Oriented

Project. Addison-Wesley, 1996.
[7] Chemistry Development Kit (CDK) homepage. Reverse en-

gineered with permission.
http://cdk.sourceforge.net .

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Trans. Softw. Eng., 20(6):476–
493, 1994.

[9] U. Dekel. Applications of concept lattices to code inspection
and review. InProceedings of the Israeli Workshop on Pro-
gramming Languages and Development Environments. IBM
Haifa Research Lab, July 2002.http://www.haifa.
il.ibm.com/info/ple .

[10] U. Dekel. Revealing Java class structure with concept
lattices. Master’s thesis, Department of Computer Sci-
ence, Technion – Israel Institute of Techology, Haifa, Israel,
February 2003.

[11] U. Dekel and Y. Gil. A user study on the use of concept
lattices to detect errors in Java classes. Technical Report
CS-2003-05, Department of Computer Science, Technion –
Israel Institute of Techology, Haifa, Israel, June 2003.

[12] Eclipse project homepage. http://www.eclipse.
org .

[13] B. Fischer. Specification-based browsing of software com-
ponent libraries. InProceedings of the 13th IEEE Conference
on Automated Software Engineering, pages 74–83, Hon-
olulu, Hawaii, USA, 1998. IEEE Computer Society Press.

[14] B. Ganter and R. Wille.Concept Analysis: Mathematical
Foundations. Springer, 1999.

[15] T. Gilb and D. Graham. Software Inspection. Addison-
Wesley, 1993.

[16] R. Godin and H. Mili. Building and maintaining analysis-
level class hierarchies using galois lattices. InProceedings
of the 8th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 394–
410, Washington, DC, USA, Sept. 26 - Oct. 1 1993.

[17] B. Henderson-Sellers.Object Oriented Metrics. Object-
Oriented Series. Prentice-Hall, 1996.

[18] IBM Java documentation enhancer. http://www.
alphaworks.ibm.com/tech/docenhancer .

[19] JChemPaint project homepage.http://jchempaint.
sourceforge.net .

[20] JMol project homepage. http://jmol.
sourceforge.net .

[21] T. Kuipers and L. Moonen. Types and concept analysis
for legacy systems. InProceedings of the 8th International
Workshop on Program Comprehension, Limerick, Ireland,
June 2000. IEEE Computer Society Press.

[22] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. In Proceedings of the 16th Annual Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 300–311, Tampa Bay, Florida, Oct. 14–
18 2001.

[23] C. Lindig. Concept-based component retrieval. InWorking
Notes of the IJCAI-95 Workshop: Formal Approaches to the
Reuse of Plans, Proofs, and Programs, pages 21–25, Mon-
treal, Aug. 1995.

[24] C. Lindig and G. Snelting. Assessing modular structure of
legacy code based on mathematical concept analysis. InPro-
ceedings of the 19th International Conference on Software
Engineering, pages 349–359. IEEE Computer Society Press,
1997.

[25] B. Meyer.EIFFEL: The Language. Object-Oriented Series.
Prentice-Hall, 1992.

[26] B. Meyer. Reusable Software: The Base Object-Oriented
Component Libraries. Prentice-Hall Object-Oriented.
Prentice-Hall, 1994.

[27] M. Mezini. Maintaining the consistency of class libraries
during their evolution. InProceedings of the 12th Annual
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 1–21, Atlanta, Georgia,
Oct. 5-9 1997.

[28] Seneca project homepage. http://seneca.
sourceforge.net .

[29] Y. Shen and Y. Park. Concept-based retrieval of classes us-
ing access behavior of methods. InProc. of the Int. Conf. on
Inf. Reuse and Integration, pages 109–114, 1999.

[30] M. Siff and T. Reps. Identifying modules via concept anal-
ysis. InProceedings of the IEEE International Conference
on Software Maintenance, pages 170–179, Bari, Italy, Oct.
1997. IEEE Computer Society Press.

[31] G. Snelting. Reengineering of configurations based on math-
ematical concept analysis.ACM Trans. on Soft. Eng. &
Metho, 5(2):146–189, 1996.

[32] G. Snelting and F. Tip. Understanding class hierarchies
using concept analysis.ACM Trans. Prog. Lang. Syst.,
22(3):540–582, 2000.

[33] C. Steinbeck, D. Gezelter, B. A. Smith, E. Luttmann, and
E. L. Willighagen. The Chemistry Development Kit (CDK):
A Java library for structural chemo- and bioinformatics.
Journal of Chemical Information and Computer Sciences,
2003.

[34] K. Sugiyama, S. Tagawa, and M. Toda. Methods for vi-
sual understanding of hierarchical system structures.IEEE
Trans. on Sys., Man, and Cybernetics, 11:109–125, 1981.

[35] A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. InProceedings of the 21st

International Conference on Software Engineering, pages
246–255. IEEE Computer Society Press, 1999.

[36] R. Wille. Restructuring lattice theory: An approach based
on hierarchies of concepts. In I. Rival, editor,Ordered Sets,
pages 445–470. Reidel, 1982.

