Revealing Class Structure with Concept Lattices

Uri Dekelf
ISRI, School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
udekel@cs.cmu.edu

Yossi Gil
Department of Computer Science

Technion — Israel institute of Technology

Haifa, Israel 32000
yogi@cs.technion.ac.il

Abstract ter and Wille [14, 36], is a mathematical technique for
clustering abstract entities, commonly callgjects, that
This paper promotes the use of a mathematicah- share commorattributesinto formal conceptsorganized
cept latticebased upon the binary relation of accesses be- in a concept lattice This technique found many differ-
tween methods and fields as a novel visualization of indi- ent applications in software engineering, suckcasfigu-
vidual JAvA classes. We demonstrate in a detailed real- ration managemeni31], debugging [1], searching in soft-
life case study that such a lattice is valuable for reverse- ware libraries [13, 23, 29], and construction of class hierar-
engineering purposes, in that it helps reason about the in- chies [16, 32].
terface and structure of the class and find errors in the ab- A very prominent such application is in studying legacy,
sence of source code. Our technique can also serve as aon-OO code, usually with the purpose of finding mod-
heuristic for automatic feature categorization, enabling it ules, and even organizing these in a hierarchical, OO-
to assist efforts of re-documentation. structure [2, 21, 24, 30, 35]. In such applications, objects
are often the global variables of the program, while the at-
tributes are procedures or subroutines. A formal concept
is then a maximal set of variables and a maximal set of
procedures such thaitl variables are used by all proce-
dures and all procedures use all variableg-ormal con-

lution dynamicsstate that code repairs tend to destroy the C€PtS Of clusters of concepts serve as candidates for mod-
structure of a software system, and increase its level of en-U€s Or classes, while the partial order relation, depicted in
tropy (or disorder). This paper deals with the problem of the lattice, makes candidates for a coptamment relationship
understanding, analyzing, and even restoring order in largeP€tWeen modules or module abstraction levels.
object-oriented (OO) classes whose entropy increased with Thus, our research makes the next obvious step: ap-
time due to what is calletorizontal evolutior{27]. ply FCA in a similar fashion to OO code, where fields take
The code listings of large classes can span dozens ofthe role of global variables and methods that of procedures
pages, and although many development environments in-Of programs. In doing so we can reveal the structure and
clude class browsing tools, most follow the style of offering improve our understanding of classes.
a simple alphabetical list of the features of the class. The We describe the “context of a class" abstraction, and
question which drives our curiosity here i8an the cohe- show its usefulness for effective class analysis. In essence,
sive OO nature of a class be used to present its features in athis abstraction is a tabular representation of the binary re-
more meaningful order and thus to systematically reveal its lation “method accesses field” of the class. We further aug-
structure? ment the chest of tools available to reverse engineers with
Our answer is based on applying, for the first time, the “class sparse lattice abstraction, a visual and topolog-
the technique offormal concept analysi§FCA) to the ical encoding of the context abstraction. We argue that the
task of studying individual OO classesFCA, germi- sparse lattice provides an even more effective means of ex-
nated by Birkhoff [5] and considerably enriched by Gan- amining the class context, since groups of methods are clus-
. _ tered together, and edges indicate the relations between the
*Research supported in part by the Bar-Nir Bergreen software technol-

ogy center for excellence. groups.
TResearch was carried out while the author was a graduate student at
the Technion — Israel Institute of Technology

1. Introduction

Belady and Lehman’s [3] seminkws of program evo-

INot to be confused with the objects of object oriented programming

The rest of this paper describes both abstractions inof objects consists of the 4 fields BAit3D, and the set of
depth, and explains why we expect them to be useful asattributes consists of its 12 methods. Check marks denote
means to obtaining a general understanding of a class, priothat a field is accessed, directly or indirectly, by a method.
to more elaborate reverse-engineering, re-engineering, or
code-inspection efforts. Our theoretical claims are sup- attributes
ported, in part, by data obtained from an ensemble of
circa 6,000JavA classes, as well as from a detailed case
study. A preliminary user study [11] provides some support
for these claims.

We also suggest a methodology for examiningittier- X Vv
face and implementatiorof an unfamiliar large class. Its
benefits to class customers are in shortening the learning
curve; to developers in the ability to find inconsistencies, color Vv
missing or superfluous operations; to documenters in assist-
ing afe%ture cpategorizati(r))[QG, pp.103-108]. Table 1. Contextof the Pnt3Dclass

This methodology was applied in a number of case stud-
ies [10], one of which serves as our main running example
here. An evidence to the efficacy of the methodology is that
with no background and with minimal effort, we revealed Every subset of the object§, C O, has a corresponding

problems which were confirmed as new errors by the devel'subset ofcommon attributesdenoted). An attributea €

opers and were fixed in subsequent versions. 'While auto-A is in O iff every object inO hasa. Similarly, every subset
matic tools may reveal some of the more localized errors, of attributes,A C A, has a corresponding set @bmmon

our approach ass_is_ts in di_scovering de_localized IOrObIemsobjects:ﬂ, such that an objeet € O is in A iff it has every
yvh|ch are more dlffl_cult_ to find and require an understand- attribute inA.
ing of the claas and its interface as a whole. - A pair (0, A) such that0 = A and0 = A is called a
. An extenS|o_n of the mathodology [9, 10] utiizes the lat- (formal) conceptIn the context oPnt3D , one such concept
tice fOI’. seleatlng an efficient readmg order of the source is formed by the set of three fields, y, z}, which are all
code, if available. We also de;cnbe teenbedded call __accessed by the three methd@sit3D , draw , setXYZ }.
graph an amalgam of sparse lattices and gall graphs, which A concepter — (01, Ar) is asubconcepdf (or dom-
has fche pot_en'aal of combining the two visual methods to inated by) concepte, — (Os, As), denotede; < e,
obtain new insights about the class. if O; C O (or, equivalentlyd; D A,). If there is no
Outline Section 2 is a concise overviewBECA, demon- third conceptes such thate; < ¢z andes < c; thenc,
strating its application for reverse-engineering a sidralh dominatesc; directly. SetP(c) (resp.C(c)) is the set of
class. Theontext abstractioandsparse lattice abstraction ~ concepts which directly dominate (are dominateddy)
are presented in Section 3. The first stage of the method- The partial order between concepts can be depicted as a
ology, which involves studying the interface and obtaining Has® diagramcalled aconcept lattice The concept lattice
an abstract understanding of the class, is described in Secof classPnt3D is depicted in Figure 1.
tion 4. Section 5 is dedicated to Stage Il, in which we zoom-

X196
X1as
Alob
Ales
AX18S
Joj0D18b

10]0D19S
2196

agiud
Z19s
ZAX19s
melp

<
<

<\
<<=

s109lgo

NENENE

The fact that the relation in Table 1 can be generated
automatically from theompiledclass file, makes the tech-
nique useful for reverse engineering.

in into details of the implementation, all without dealing
with the source code. Trembedded call grapis described Xy 2 i
in Section 6. Finally, Section 7 concludes and outlines di- Pl b el
rections for future research. e ——
color c2] [x c3 [y ¢4 [z C6
getColor() getX() setX() | |getY() setY() | |Pnt3D() getZ()
2. Concept Analysis oDy Dray] Sovet) ot | |sobva rawd | raw !

getX() setX() getY() getY() ’sng() Pnt3D() C“
getColor() setColor() getZ() setZ() setXYZ() draw()

This section reviews the theory ¢fCA and demon-

strates how it can be used in studyPig3D , a simpleJava Figure 1. Concept lattice of the Pnt3Dclass.
class.

FCA starts with acontextwhich is a triple(O, A, R), Wille's fundamental theorem on concept lattic@6]
whereO andA are sets an®R C O x A. We say thaR is states that every concept lattice i€@mplete lattice The
abinary relationbetween theet of object® and theset of unique infimum of concepts; = (O;,A;) andcy =

attributesA.. Table 1 depicts such a relation, where the set (O, As) is the conceptO; N Oz, A1 U As), while their

unique supremum is the concefi?; U Oz, A1 N A). It set of5, 846 non-trivial non-internal classes [10], we found

follows that every lattice has a uniguep concepi{Cs in that95.5% of all classes are not strongly cohesive.

Figure 1) and a uniquleottom conceptCt). We believe, based on our own manual code inspec-
Letn = |O| be the number of fields of a class, amnd= tion, that the lack of cohesion in many of these classes re-

|A| be the number of its methods. Thefthe number of veals their internal structure and indicates imperfections, in-

different concepts, might be exponentialrirandm (pre- consistencies, asymmetries and even errors of design and

cisely/ < 2min(nm)) The fact tha? = 8 in Pnt3D, even implementation. This claim is strengthened by the fa-

though in this clasg™i»("-m) = 16, indicates thatits fields ~mousLCOM (lack of cohesion in methods) metric and its

tend to be used together. variants [8, 17], all expressing the belief that there should
Much redundant information is depicted in Figure 1. The be a considerable overlap between the sets of fields used by

sparse lattic(Figure 2) is a more compact representation €ach method.

in which fields and methods are listed only in the concept In its most general form, our first research claim can be

which introducesthem:; a field (a method) is introduced in Stated as follows:

the unique lowest (highest) concept in which it appears. [Claim | (The Class Context Abstractionjhe class con-

text is a powerful means for understanding the function-

grn;fv(D)() ° ality and the implementation of a class.

[selXYZ() C7] Large nontrivial classes, whose interface may constitute
[etXY) CY hundreds of features and whose implementation may in-
volve dozens of fields, are the primary candidates to en-

color C2| |[x C3 |y C4| [z C6
getColor()| [getX()| [getY()| |getz() joy the context’s summarizing and abstracting representa-
setColor()] [setX()] |set¥()] |setZ() tion. The size of these large classes may exceed that of
some modules in legacy systems, and might lead them to
suffer from the same disorder imposed by continuous main-

Figure 2. Sparse lattice of the Pnt3Dclass. tenance.

Classes of such scale are quite abundant: In our data-set,

The sparse lattice partitions the set of methods and fieldsas many as a quarter of allblic methods were found
into disjoint subsets (some of which may be empty), eachin classes with 100 methods or more. Téteopping list
containing methods which use exactly the same fields, andapproach[26, pp.80-83] encourages the programmer to de-
hence likely to be related. The structure thus imposed onvelop large classes; it is particularly easy to do so thanks to
the method-set makes it much easier to study. All the fieldsinheritance. The laws of program evolution dynamics [3]
used by a certain method can be collected by traversinglead us to believe that such classes tend to increase in size
the concepts which are dominated by the concept of thisand consequently in complexity just like large modules in
method. Conversely, all the methods which use a certainlegacy software.
field are collected from this field’s concept, and from allthe Instead of examining the voluminous listing of a large
concepts which dominate it. class, the user may choose a shorter representation which,

The uncluttered representation of Figure 2 highlights its at the cost of omitting some of the details, gives a better
asymmetric structure. A moment's pondering reveals thatglobal grasp of the class structure. Our first claim is that
the coordinates are not symmetric. The reason is prob-the context defined by a large class is indeed an abstraction;
ably thatPnt3D inherits from a class which represents a i.e., it offers a useful global perspective of the class. Our
two dimensional point. One can also surmise from Fig- user study [11] suggests that programmers equipped with
ure 2 thatPnt3D has two main components: coordinates the context abstraction become more effective in detecting
and color. certain defects in a large class.

There is also a theoretical rationale supporting Claim I
We argue thathe structure of class instances, as implied by
fields, is fundamental to understanding the cldssr exam-
ple, consider a class representing a process in an operating
systems kernel, including data structures such as page ta-

The implicit assumption in the classical application bles, process ids, register files, lists of open files, etc. Then,
of FCA to the modularization of legacy non-OO code is the set of fields used by a synchronization operation will
variable-access module cohesjamhose strongest version reveal much of the fundamentals of the operating system
is that all the functions of a module should use all of its design.
variables. The natural question is whetBED classes obey We argue further thathe set of fields constituting the
a similarfield-access class cohesiaasumption. In a data- structure of a class is less volatile than the set of services

3. The Context- and Sparse Lattice- Abstrac-
tions, and Structured Class Exploration

it provides Consider the famous example of the alterna- otherwisere-engineeringhe class.
tive implementations of a complex number class using the Furthermore, we claim that one can use standard tech-
cartesian or the polar representation. Switching betweenniques ofF CA in the analysis of the sparse lattice. A case in
these alternatives is tantamount to rewriting the entire class point arehorizontal-summandsvhich were previously [24]
and is therefore less likely to happen than changing the serused to find implicit modules in flat non-OO programs, and
vices to the class. Similarly, almost every method in a classwhich might indicate that a class can be decomposed into
representing a rectangle would have to be rewritten whenindependent units.
switching from a two-corners representation to a location- The case for sparse lattices is also made by our user
and-dimensions representation. We also believe that for astudy [11], which shows that programmers are more pro-
fixed representation, it is often the case thlhpossible im- ductive in detecting delocalized defects in the interface
plementations of the same service will use the same set oind implementation of a class when allowed to use this
fields summarizing representation. The study shows that even a
The class context can be represented in a variety of waysfive-minute introduction is sufficient for users to grasp the
as a list of facts, a table, a bipartite graph, etc. In the ex- essence of this representation, and that their productivity in-
perimental validation of our first claim, we used a tabular creases if they are offered structural aids in their work.
representation, similar to Table 1. We argue further, that the
sparse latticdsee e.g., Figure 2) artifact 8{CA enables an
even more effective examination of the context.

Claim 1l (The Structured Methodology Hypothesis).

The class structure is more readily revealed by| the
sparse lattice abstraction when users follow a structured
Claim Il (The Sparse Lattice Abstraction).he sparse methodology.

lattice is an effective means for examining the class ¢on- X - .
It is a colossal empirical research effort to find the set

text abstraction. : of optimal structural aidsand then theioptimal order of

The sparse lattice and the.tabular context represent theapplication Our support ofClaim Il is in a demonstra-
same data; each representation can be generated from thg,n of one (not-necessarily optimal) such set and order of
other. By definition, the sparse lattice summarizes the CoN-gpplication. Concretely, we present BEA-basedoolbox
text abstraction in that each field and each method occursyf yiews and diagrams which can be (almost) automatically
precisely once, while similarities between rows or columns generated. These tools are used in our methodology both
are captured by the organization of the methods and fieldsg, apstracting the class information, and for focusing on
into concepts; identical rows and columns are effectively interesting details.
compressed by the concept lattice. Further, the sparse lattice o, methodology is intended, in part, to improve the un-
organizes these formal concepts in a competarchical gyryctured ad-hoc study of classes which developers make
structure o in the course of thenicro development proce§s]. In par-

On the other hand, the sparse lattice is not always shortegjcyjar, it does not incur the overhead of a rigorous process,
than the context. If the context is such that each methodgnq can be invoked on a per-need basis. The tools are easy
does not access one unique field, but all the others, then thg, implement, learn and use, and can be smoothly integrated
number of concepts is exponential, although many of them;; development environments.

are empty. . Our running example hetds classMolecule , a large

We find, however, that the tendency of fields to be used 555 (77public members, over 1,500 LOC) drawn from
Fogether by methods, as i'n tPat3D example, i§ &Weep- the Chemistry Development K{CDK) [7, 33F, an open-
ing phenomenanindeed, in 99.5% of classes in our data- soyrce library oflava classes for chemoinformatics and
set, the number of concepts is linear € m + f). More- compytational chemistry. The library serves as a basis for
over, in 77.4% of classg& <m,i.e,in con.5|der|ng.con- other applications, such a(ChemPaint[19], JMol [20],
cepts we need to examine fewer pieces of information thanangsenecd28]. Prior to the case study selection we were
in considering isolated methods. In other words, the num- 4t familiar with the library or affiliated with its authors in

ber of concepts (including empty ones) in the sparse Iatticeany way: nor did we have any particular knowledge of the
is usually smaller than the number of rows in the context. application domain.

The second claim not only says that the sparse lattice is ~ Class Molecule represents an entity that should
shorter than the context (so is a “zipped” representation),pe familiar to a wide scientific audiertte yet it

but that this lattice is effective in dis_cove_ring thﬁer_nal _ sports a large interface consisting of public mem-
structureof large classes. It can help identify layers in their
implementation, and may be useful for tasks sucteatire 2Another detailed worked-out example, drawn from a graph-theory do-

. _ . . main, can be found elsewhere [9, 10].
categorization26, pp.103-108] and documentation (since 3We analyzed build 20020518, released in May 2002,

related feature_s are plaCEd tOQet'her and Org?-nized in a hi- 4A chemical molecule consists of atoms that are connected by bonds; it
erarchy),code inspectioffil 5], requirement tracing4] and can be thought of as a graph where vertices are atoms and edges are bonds.

bers. The clasextends AtomContainer , which in class are included in the context, regardless of their visi-
turnextends ChemObject . Prior to the analysis the class bility and static ~ status. The incidence relation includes
wasflattened25, p.106]; in this paper little distinction was read- or write-access. Note that we do not distinguish be-

made between members based on their origin. tween direct and indirect access to a field. Also, as custom-
Each of the next three sections describes a stage of ouary in the relevant literature, no alias-analysis is attempted.
methodology, and demonstrates it on khglecule class. Applying thus FCA toMolecule conveniently orga-
nizes its 75 methods and twablic fields in 26 concepts.
4. Stage |: Interface Analysis Step 3: Layers-based lattice layoutWe expect more so-

phisticated methods to use more fields, and hence to be lo-
In th f i thodol cated higher in the lattice. In examining many class lattices
(N the course ot presenting our methodology, We are.,q 5154 found that concepts at the same “layer” tend to have
going to show how different errors can be systematically similar properties. For example, each@f, Cis, C;, andC
discovered, and how an understanding of the class can bem Figure 2 dominates the bottom concept directly. They are

ga:ir;e% |nnt:e p;r%cejsé \t/vgl\ll(:ition:he ?f[th:esenzr:orir?ire IO'also similar in that each introduces a single field with an ac-
calized and can be detecte OtNErtools and IechNIqUES, o554 and mutator for it. Figure 3 shows a partitioning of
many are delocalized and tend to evade inspectors using tra o

o . an example lattice inttayers
ditional methods. Note that we do not see error-detection as

the primary goal of our methodology (automatic tools may

Top Concept

discover many of these problems), but use it to demonstrate Top String

how our approach assists in reasoning about the class.
The first stage of our methodology is to study the class Toplayer .

interface, where the concept lattipartitions the public LaverS .

methods into concepts and organizes thedayersof ab- ~ -oo--e-eo
straction. Even though this stage is primarily concerned o5
with the interface, the process is not pure, and we are some- “Layer 1 (Bottom)
times forced to peek into the implementation, since, as
shown by the running example, details of the implemen- Bottom String
tation can sneak into the interface. Conversely, an incom-
plete interface definition must be elaborated by examining
the implementation.

There are 7 steps or activities in this stage, which are not
necessarily carried out in sequence; the first ones construct
the lattice and zoom-out to obtain a general understanding,
and the later ones zoom-in to investigate specific details.
We now turn to describing them briefly; a more detailed
discussion can be found in [10].

Step 1: Become familiar with the abstracted entity and
the environment of the class Even though the concepts

and their lattice are created automatically, their interpreta- that it cannot include concepts of the bottom layer. Al other

tion can only be done by a human mental effort, to which o X
.) concepts are imternal layers Concept belongs to layei
the main clues are the names and signatures of methods

. I . . ifit (i not belong to the top layéii minat nl
In order to make sense of these identifiers, it is essential to M doe_zs ° .be ong fo the top a_ye‘g) do_ ates only
.) : concepts in layer— 1 and below, andiii) dominates at least
become familiar with thevocabularyand with thehuman

. one concept in layer— 1.
contextat which the class operates. : :
. _ . Lattices are drawn so that concepts in the same layer
Step 2: Context selection The lattice construction be-

. . . . appear at the same horizontal level. Figure 4 lays out the
gins with aselec_t|on of an appropriate cl_ass contextor (sparse) concept lattice thus computed of clasiecule .’
mﬁer{&;ce "’.‘”"’:'hys'é' we _start W'chSWh?to és c_?rllled ﬂ:mt d The figure is very clutted as it displays the full signatures
short formin the EIFFEL jargon [25, p.106]. The selecte of all 77 members. Nevertheless, the layout highlights the
context consists opublic methods only, regardless of

their static ~ status; methods qef'”ed n an_cestors are IN- - sp glightly different definition of layers is employed [31, 34] to find
cluded, unless they were overriddemll the fields of the visually pleasing layouts of lattices.

"Due to space restrictions, concepits—Cy appear at different heights
5Methods declared ifava.lang.Object are not included un- even though they belong to the same layer, and mdsiic ~ fields are
less overridden because they are common tdaa#l classes. listed although they are ignored until the second stage.

Bottom Concept

Figure 3. Layers and components in an exam-
ple lattice

Formally® the bottom string (resp. top string con-
sists of the bottom (top) concept and all concepsuch
that P(¢') = {c} (resp. C(¢) = {¢}) for ¢/ which is in
the bottom (top) string. A conceptis in thebottom layer
also calledayer 1, if cis not in the bottom string, but all its
descendants are. Thep layeris defined similarly, except

fact that about half (14/26) of the concepts are in the bot- componentsThus, each component represents an indepen-
tom layer; i.e., represent basic operations such as inspecdent functionality offered by the class. Functionalities are
tors, mutators, accessors, or delegators on minimal sets otombined (if at all) only in high-level operations.
variables. The lattice ofMolecule (Figure 4) isHD into two com-
Step 4: Simplify concepts’ annotations To simplify the ponents, one of whicH,C15}, is trivial. In examiningCis
picture, we now try to manuallgeplace the list of methods we see that its sole responsibility is to managttle
in the label of each concept with a more concise, semanticalproperty. Even without delving into the details of the im-
description of its roleIn doing so we rely on the vocabulary plementationHD highlights a potential problentite is
and information gathered in the first step. Unknown terms not handled by the constructor which appear€’in in the
and methods are prudently retained for further exploration. other component, nor by thgone method inCss. An-
In many cases, these textual descriptions can be furtheiother probable glitch is that the field itself pgiblic al-
summarized by actuallgaming the conceptsTherespon- though it has an inspector and a mutator).
sibility legendof Figure 5 describes our specialized notation ~ Further HD of the other large component yields eight
scheme for these names, including provisions for free texttrivial components ¢>—Cy), and a large non-trivial com-
and concatenation of responsibilit®&d.he figure itself de- ponent,L, consisting ofCy—C14, C16—C23 and Cyg (Sur-
picts theoutline latticeof Molecule . rounded by a dashed line in the figure). The trivial compo-
Guided by the newly found concept names and the lay- nents correspond to the independent features of the class;
ers, an examination of Figure 5 reveals that the inter- each such component introduces an auxiliary field and sev-
face of Molecule can be divided into four main cate- eral methods to manage it. Again, there is a potential prob-
gories: (i) Management of (nearly) the entire stages done lem with these fields because the cloning operation appears
in C3, C24 and (probablyY’ss. (i) Management of alarge in L and does not access them.
number of almost-independent fields in a record like fash- Step 6: The abstraction lattice It is clear that compo-
ion (C2—Co). We infer that these fields are independent nentZ represents a more cohesive portion of the interface,
since no method uses them together, except for those invhich has to do with atoms, bonds and their interrelation-
the first category.(iii) Direct management of interdepen- ship. However, the significance of each of thieconcepts
dent propertiesThese features includgomCount , atom, and20 direct-dominance relations in it is not immediately
bond andbondCount . Their interdependency is revealed obvious. In general, the outline lattice may still present too
by the fact that they are united in second and higher lay- much information, which needs to be abstracted further.
ers. (IV) Other methods dealing with abstractions of ties We use methods of the top |ayer to group together con-
between atoms and bonds. cepts at lower levels. The rationale is that these methods use
Step 5: Horizontal decomposition Consider again the the largest subsets of fields and represent the highest level
concept lattice of clas®nt3D in Figure 2. |If the top- of abstraction; if two fields (or sets of fields) are always
and bottom- concepts of the lattice are removed, we obtainused together in higher abstractions, then we are inclined to
two disjoint graph components, one dealing with coordi- believe that there is a strong tie between the two sets.
nates and the other with color. These components suggest Consider the formal context where objects arecdba-
a restructuring of the class as an aggregate of two classesgepts of the class latticattributes are theoncepts in the
Coordinate andColor . A lattice consisting of disjoint top layer, and an object has an attribute whenever there is
components connected by the top- and bottom- concepts iss dominance relationship between the corresponding con-
calledhorizontally decomposabl@iD). cepts.FCA will then yield theabstraction lattice whose
More precisely, leG be the undirected graph obtained concepts arelusters(each with a semi-lattice structure) of
from a concept lattic& by ignoring edge directionality and concepts from the original lattice.
removing the top- and bottom-strings.G¥ is unconnected, The abstraction lattice of Figure 5 is not very interesting
then we say thak is horizontally decomposablato com- (gl concepts are in a single cluster). Instead we consider
ponentgor horizontal summandseach corresponding to & the abstraction lattice of componentdepicted in Figure 6.
connected component G. Singleton components are also - An edge between clusters indicates that at least one concept
calledtrivial component$ For example, the lattice in Fig- (usually a high level one) in the dominating cluster domi-
ure 3 isHD into the four shaded components; only one of pates at least one concept in the dominated cluster; cluster
these components is trivial. names were chosen manually. The abstraction lattice orga-
The crucial characteristic ofD is thatmethods in one nijzes the 14 original concepts in 8 clusters, while reducing
component cannot invoke methods or access fields in othethe number of edges from 20 to 10.
8A more detailed listing and discussion of the responsibilities legend The_ abStraCtlor,] lattice heuristics grOUp,S toq?ther related
appears in [10]. operations, even if they were separated into different con-
9The literature [14] offers a slightly different definition. cepts due to differences in their (low-level) implementation.

109[q0:()/Adoomolreys
uonesawnu3:()swoye

pioA:([Jpuog)spuogias ploA:([Jwoly)swonyias

woly: (uivwonIah

pion:(But

O

. PploA:(Bur. NseDles

Bums:()NyseD1sh

cJ

pIoA:(193lq0‘18lgo)AuadoidiedlsAudias 123lq0:(103lgo)rewayiah

u_o>€=om;:_x<u5m_mm
puog:(6

PIOA: (LU0 IV WONISS
woly:(Jwolvisii4ieh
TJwory-swok

{Ipucg-spuoq

€10

JLIOUOINY1a:

TOTo9N

108[q0:(108lq0)Anadoidredishudieh 7 pIoA:(103[g0 '108lq0) N BWaHISS

| BULIS NdSed [———3jqeIyseq sanedoIdearsay; | S|qeIySeH Sy e wal

ploA:(6 108lq0:(198lq0)Auadoidieh

m:_:.wéwEszo:o_:Smm

ploA:(Jauaisimoalqowsayd)iau
pIoA:(1aud)sifoalgowal

Bug:ONyuIRIsiogfon 7

ploA:(19algo'1elgo)Auadoidies
BUMIS NYURIEIRY | fo1d

S[qeIySeH sanedoId

puog:(woly*woly)puoganowas
puog:(ul)puoganowal
puog:(puog)puoganowal
8|qnop:(woly)ispiopuoguwnuiuizzeh
a|gnop:(woly)iapiopuogiuandisaybieb
i (woly)saibaqiah
[Ipuog:(woyy)spuogpalosuuodieh

10198/ (WO1Y) 10109 ASWONYPa1daUU0DIH
[woy:(woyy)swoypardauuodab
wo)y)wnsapiopuogiah
I (Wwoyy)unoopuogieh
[Ipuog:()spuogieb
puog:(wory‘woly)puogieh
ueajooq;(puog)sureiuod

PIOA:(uI)wolyaAOWal
PIOA:(WOY)WolyaAowal
woy:()woryisenob
ui:(Wory)IequINNWoNy1ah
[woyy:()swonyeb
agiuiod:()J1a1ua0agieb
azuod:()1ewedazieb
uea|00q:(Woyy)sureiuod

91O

PIOA:(WON)Wop/PpE

81O

Burn, vm:_:on\
DPUYLO]

PIOA: (JBUIBIIODWONY)SA0WAI
[0a1anop:()xLreyuonoauU0sah

. A_uww/

ploA:()sjuswiajF|iyanowal

13UIRIIODWIONY: (JUIeIUODWOY)uonoasIaluNeh
- 108lq0:()auop
. ploA:(ajgnop)spuogppe
PIOA:(JaureluoWoNy)ppe

(anoajon)anaajo
(ur'un)ajnoajon
(1aureuoDWONY)aINI3ON
(amnasjon

Z48)

IC

140

Molecule class
but should be ignored until Section 5. Comyisroestlined.)

Figure 4. Concept lattice of the

luded to conserve space,

,areinc

fields, underlined

(Non-public

(Responsibility Legend) r
X an exposed field named x c2a O O O O OO
@x operate on a single x _flags [CONS | _ _ __ _ceecceees -

{x} operate on a single x in a collection ,m;l\mer e intersect | clear | Sseo
{xh operate on multiple x's in a collection s g e e DL T
i i (s ! : — P ——
rx ggtdiatlir;sglurr:segécl)tr:t;?bﬁirt;terator of x | [add atom | ["connection matrix" [toString [unbind atoms |
S —
CONS constructor =3 mde “based atom degree |
"x" x is an unfamiliar name. " "
VAN ‘ bo| | bond order |

ree | connected atoms |,

C16
| text free-text name . _[{{atom}} [centerpoints ' {
73 c8 co ~ atom
Mical cs co o ‘((chemicalH@autonom ,' cio
{remark}]| [{listener}] |property}| [{property}] [@casRN] @beilsteinRN]| name}} name @Count\ {{atom]}

' [shallow copy | #atom

Figure 5. Outline lattice of Molecule , component L, and the responsibility legend.

entire-state

(eione [rerge [imerseet [oear | matching these against the expectations built in the first two

e —— = steps.
["connection matrix™| toString [unbind atoms \] bind atoms . . .
— jﬁ The pyramid of abstractions serves as a directory of ser-
Lindex based a‘“%’i‘ —) L) vices. In searching for a functionality we may first mark all
bond]} | Bond order | related clusters, and then zoom to concepts and methods,
{{atom}} [centerpoints fom degree | connected atoms
examining first their name, then their full signature and per-
_@;t‘o:f S L @b:cnd; haps accompanying documentation. Partial matches against
oo ooy poe? Ibase our expectations and other discoveries made along the way
are dynamically added to our work list. For example, in
Figure 6. Abstraction lattice of component L searching folbond managemeritinctionality we examine
of Molecule clustersbonds and add bonds (atom-bond is left for future

study); all the concepts in these clusters seem directly re-
lated to bond management.

Stated differently, we havemyramid of abstractionsvhere The pyramidical search for functionalities and the care-

methods which use the same set of fields are in the samdul examination of signatures highlights inconsistencies

concept, and sets of methods which are used together are i@nd other design flaws. For instance, within cona€pt

the same cluster. we find thatgetMinimumBondOrder returns adouble
Kuipers and Moonen [21] propose another clustering Whereas another method in the same conaggtBond-

technique, which, unlike ours, relies on theerto point ~ OrderSum, which presumably computes the sum of bond

out related concepts, to be merged by the system. To se@rders, returns aint . Examining methodgetHighest-

that automatic clustering works, consider for example con- CurrentBondOrder andgetMinimumBondOrder , occur-

ceptsCas (bind atoms) and’» (add bond). The automatic ring in the same concept, suggests that the class design-

clustering of these highlights the similarity between the ser- €rs did not apply a consistent naming convention. We also

vices. In examining the lattice structure it is even easy to find three methodsgetDegree(Atom) , getBondCount-

surmise thatCs, inserts a bond between existing atoms, (Atom) —and getBondOrderSum(Atom) , whose distinct

while Cyo may lead to an inconsistency by binding together esponsibilities are not clear from their names.

atoms which are in other molecules. Another example is From examining multiple concepts we discover addi-

the cluster namedonds, which reveals that the notions of tional problems, such as an unclear semantic distinction

“atom degree” and “bond” are highly related. between the tw@etBondCount operations. We also no-
We can also observe that both g bond andadd atom tice hints of asymmetries and interface inconsistencies in

clusters use the twanknownconcepts (the concepts with the smaller concepts.

nopublic methods or fields), which are even clustered to-

gether. An educated guess (which is confirmed if the code5. Stage Il: Implementation Analysis

is examined) is thainknown contains utilities related to re-

sizing the two collections. We now begin to delve into implementation details. At
Note that not every bit of information in the abstraction this stage, our study is carried owtthout inspecting the

lattice is significant. For example, it is not clear why clus- source code. Instead, we elaborate the class lattice by exam-

tersbase andatoms are distinct. ining method signatures and adding the moibtic fields

Step 7: Match services against expectationdt is now which were omitted in the previous stage. By studying the

time to examine in detail the services supplied by the class,fields that each method uses, and the methods that use each

field, we hope to understand how the class state is realizedstructure of the lattice, and in particular non-empty second-
and how this state can be viewed and modified by the clasdayer concepts (or first-layer concepts with multiple fields),
methods. We can also utilize tleenbedded call grapha highlightsstrong ties between fieldk our lattice, the only
particular representation of thmethods call graphwhich such concepts ar€,s andC;7 in the second layer, which
can be computed from the compiled representation. reveal thatatoms andatomCount are closely connected,
There are 7 steps in this stage, some of which can beand so arebonds andbondCount . This strengthens our
thought of as check-list items of code inspection. Again, conviction that the count fields are used to track the number
and as customary in methodologies, the precedence relatiof array elements.
between steps is not very strict. While some operations may be more efficient with this
Step 1: Identify unused fieldsIn the early stages of devel- dual-field implementation than with a standavector |,
opment, unusegrivate fields are common as most meth- this complicates the class and introduces new risks.
ods are still stubs; such fields tend to disappear as the clasblamely, an important class invariant is that the num-
nears completion. In mature classes, maintenance can reber of non-empty entries iatoms (bonds) must always
sult in dead codeanddead fields If such fields exist, then equalatomCount (bondCount). We make a note to vali-
they will appear in the top concept, and the lattice would date this invariant when we examine the access patterns of
have a top string. IMolecule , the only unused field is individual methods.
pointers , but since it ispublic , we must check whether Step 5: Examine entire-state methodSome methods, of-
it is used by other clients before it can be removed. Nearby,ten introduced in upper concepts, are intended to operate on
we notice theflags field which is only used by the con- the entire state of the class instance. Their duties often in-
structor. clude construction, cloning, serializing, and printing. In this
Step 2: Discover fields’ role Fields are examined by their step we identify these methods, and check whether each of
introducing concept. Each of the 9 trivial componefits- them uses all the relevant fields. Exceptions may indicate
Cy and Cy5 represents a field with accessor methods. As that a field is redundant and might be removed, or that there
the lattice shows, these fields are independent, exhibitingis an error in the implementation of the method.
a record-like behavior. The role of many of them can be We already learned from the outline lattice
inferred by examining the signatures of the methods which of Molecule (Figure 5) that thetitle and flags

accompany it. fields are not initialized or cloned due to a bug. The
We now examine component (Outlined in Fig- location ofshallowCopy in the bottom concept indicates

ure 4) and examine the five fields that it introduces: an obvious error in its implementation, as no fields are

atoms:Atom[] , atomCount: int , bonds:Bond[] |, used. In fact, its signature indicates that it is actually a

bondCount: int , andgrowArraySize: int . The roles shallow-clone operation. Examining concefts andCsy

of the first four fields are hinted by their names: each reveals an error imlone since (unlike the constructors) it

collection is apparently maintained using an array and only handles the fields dealing with atoms and bonds.

an associated counter field which tracks the number of Step 6: Study asymmetries As we saw in clas®nt3D,

occupied slots. asymmetries in the class lattice can be very telling, and may
The role ofgrowArraySize is slightly more difficult to indicate incomplete interfaces, inappropriate use of inher-

reveal since it is used only in conjunction with other meth- itance, and other problems. Many asymmetries are visi-

ods. Based on its name and on the fact that all the domi-ble in component.. For example, a comparison 6f;;

nating concepts deal with addition and removal, we guessand C;3 suggests that the interface missegesFirst-

thatMolecule dynamically grows the arrays of bonds and Bond method; comparison af', andC,4 reveals another

atoms, and that this field specifies the chunk size. The factasymmetry, since there issatAtomCount method, but no

that the same field is shared for the two independent collec-setBondCount

tions may be erroneous. Step 7: Check method access patterrisow is the time to

Step 3: Assess the quality of field name¥/hen the role of meticulously check, based on the information we collected

each field is more or less understood, we should check thabn field names and roles, that each method uses precisely

it is named properly (e.gmappingFromXtoY is preferable the fields that it should. By using the appropriate read-

to hashTableOfY because purpose is preferable to imple- access and write-access contexts we can also check that

mentation). For instancé/s, which maintains “listeners”, methods make the expected kind of access.

operates on a vector field nameemObjects , and inserts Many flaws inMolecule ~ can thus be found. The sets of
objects of typeChemObjectListener . The name of this atoms and bonds can be completely replaced (uséng
field should probably be changeddieemObjectListen- Atoms andsetBonds) without updating the count. Simi-
ers . larly, setAtomCount is exposed to the user {fi;, allow-

Step 4: Investigate fields interdependencyThe layer- ing the invariant to be broken. We also see that the removal

of atoms from the molecule does not cause incident edgesa context lattice of the accesses relation between methods
to be remove. and fields. Support to this claim was provided by a theoreti-

A last step, which we shall not elaborate here, involves cal rationale and a case study demonstrating its application.
examining normpublic methods. To do so, we must re- A preliminary user study [11] suggests that programmers
calculate the lattice using a context which includes all such can quickly learn and apply the technique.

methods. The systematic methodology we presented supports the
main claim by showing a variety of ways in which non-
6 The Embedded Call Graph trivial discoveries can be made (in a semi-structured pro-

cess) using this lattice: first by a mere inspection of the in-
terface, then by delving into implementation details, and fi-
nally by a lattice-directed examination of the source. Need-
less to say, more practical experience is required before the
methodology can be sealed and released. Other contribu-

A concept lattice partitions the methods of the class into
groups, but does not portray the interaction between them
A methods call graplis a powerful tool for understanding

the interrelations between methods, and for making the dls-tions include thembedded call graphf Section 6, and an

tinction between core, auxiliary and wrapper methods. Fur- extension of our methodology to the selection of a code in-
ther, as argued in the work of Lanza and Ducasse on class ay

blueprints [22], the shape of this graph can give immediate Sp?/?/tlon order [10t]l. lori | h directi
clues on the semantical organization of the class. € are currently exploring several research directions

To assist in the analysis of classes using our methodol-that build upon the foundations laid in this work. One such

direction is the application of our technique to the design
S%Gr\grilpggfz:rqte:jhﬁyts)ﬁg:zr?]g:éli%riﬁfciﬁ)éggﬁvsr: theOf classes in CASE tools. We believe that the process of
class concept lattice, such that the node of each method i%addlng features to a class, typically carried out by adding

embedded in a block of the concept which introduces it. eatures to a list in &ML class hierarchy diagram, can be
Figure 7 depicts th&CG of Pnt3D ; the ECG of a larger more effective with a lattice-based interactive editor. Meth-

; ods could be associated with fields, forming concepts, and
I h lecul hi f " : ' : . '
glzzjvﬁgfe [?gl]o ecule s much larger, and can be found then additional methods with a related functionality could
' be added directly into the appropriate concept. One advan-

r— tage of this approach is that it will reduce the number of
‘/'\\lm . cases where several methods are added for the same pur-
\ . e | pose. Another research direction focuses on the creation of
% | a suite of class metrics based upon concept lattices and their
— | 1 a— relationship with the cohesion of the class.
[Goardoen Gatdon) | [GaevD) CeebO | [Coo) Gev)] [G | In addition to theoretical work, we are currently working
on the development of interactive software tools and IDE
accessories that realize our technique, and in particular a
Figure 7. Embedded call graph of Pnt3D plug-in for theeclipse[12] framework. Work on integration

into documentation tools (e.g. [18]) is also carried out.
The ECG can also be thought of as a semantic-driven

heuristic for Iaying_out the cla_s_s c_all grgph. The rat_io_n_ale References
is that edge crossings are minimized since, by definition,
methods can only invoke methods that appear in the same
concept or in dominated ones. Stated differently, recursive [
and mutually-recursive calls, i.e., cycles in the call graph,
are always limited to a single concept. Another important

1] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus.
Debugging temporal specifications with concept analysis.
In Proceedings of the ACM SIGPLAN'03 Conference on
Programming Language Design and Implementati§an

property of theECGis that if the lattice is horizontally de- Diego, CA, June 9-11 2003. ACM Press.

composable, then the edges of different component never [2] G. Antoniol, G. Casazza, M. D. Penta, and E. Merlo. A
cross. TheeCGis also useful for understanding the interre- method to reorganize legacy systems via concept analy-
lationship between methods in the same concept or cluster. sis. InProceedings of the'™® International Workshop on

Program Comprehensigpages 281-291, Toronto, Canada,
May 2001. IEEE Computer Society Press.
[3] L. A. Belady and M. M. Lehman. Laws of program evolu-
tion dynamics.IBM Syst. J.15(3):225-252, 1976.
This research is the first to appCA to the analysis of [4] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
individual OO classes. Our main claim is that the internal concept assignment problem in program understanding. In
structure of a class can be revealed and reasoned about using Proceedings of the 5iInternational Conference on Soft-

7. Conclusions and Future Research

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]
(18]
(19]
(20]

(21]

[22]

ware Engineeringpages 482-498. IEEE Computer Society
Press, 1993.

G. Birkhoff. Lattice Theory Colloqulum Publications.
American Mathematical Society, Providence, RI, USK 2
edition, 1967.

G. Booch.Object Solutions. Managing The Object-Oriented
Project Addison-Wesley, 1996.

Chemistry Development Kit (CDK) homepage. Reverse en-
gineered with permission.

http://cdk.sourceforge.net .

S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented designEEE Trans. Softw. Eng20(6):476—
493, 1994.

U. Dekel. Applications of concept lattices to code inspection
and review. InProceedings of the Israeli Workshop on Pro-
gramming Languages and Development EnvironméRid
Haifa Research Lab, July 200http://www.haifa.
il.ibm.com/info/ple

U. Dekel. Revealing Java class structure with concept
lattices. Master’s thesis, Department of Computer Sci-
ence, Technion — Israel Institute of Techology, Haifa, Israel,
February 2003.

U. Dekel and Y. Gil. A user study on the use of concept
lattices to detect errors in Java classes. Technical Report
CS-2003-05, Department of Computer Science, Technion —
Israel Institute of Techology, Haifa, Israel, June 2003.
Eclipse project homepage. http://www.eclipse.

org .

B. Fischer. Specification-based browsing of software com-
ponentlibraries. IProceedings of the B EEE Conference

on Automated Software Engineerjngages 74-83, Hon-
olulu, Hawaii, USA, 1998. IEEE Computer Society Press.

B. Ganter and R. Wille.Concept Analysis: Mathematical
Foundations Springer, 1999.

T. Gilb and D. Graham. Software Inspectian Addison-
Wesley, 1993.

R. Godin and H. Mili. Building and maintaining analysis-
level class hierarchies using galois lattices.Phoceedings

of the &" Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applicatiopages 394—
410, Washington, DC, USA, Sept. 26 - Oct. 1 1993.

B. Henderson-Sellers.Object Oriented Metrics Object-
Oriented Series. Prentice-Hall, 1996.

IBM Java documentation enhancer. http://www.
alphaworks.ibm.com/tech/docenhancer .
JChemPaint project homepagettp:/jchempaint.
sourceforge.net
JMol project
sourceforge.net
T. Kuipers and L. Moonen. Types and concept analysis
for legacy systems. IRroceedings of the'8International
Workshop on Program Comprehensidrimerick, Ireland,
June 2000. IEEE Computer Society Press.

M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of the #6Annual Conference

on Object-Oriented Programming Systems, Languages, and
Applications pages 300-311, Tampa Bay, Florida, Oct. 14—
18 2001.

homepage. http://jmol.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

C. Lindig. Concept-based component retrieval Warking
Notes of the IJCAI-95 Workshop: Formal Approaches to the
Reuse of Plans, Proofs, and Programsges 21-25, Mon-
treal, Aug. 1995.

C. Lindig and G. Snelting. Assessing modular structure of
legacy code based on mathematical concept analystohn
ceedings of the ®International Conference on Software
Engineeringpages 349—-359. IEEE Computer Society Press,
1997.

B. Meyer. EIFFEL: The LanguageObject-Oriented Series.
Prentice-Hall, 1992.

B. Meyer. Reusable Software: The Base Object-Oriented
Component Libraries Prentice-Hall Object-Oriented.
Prentice-Hall, 1994.

M. Mezini. Maintaining the consistency of class libraries
during their evolution. InProceedings of the f2Annual
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applicationgpages 1-21, Atlanta, Georgia,
Oct. 5-9 1997.
Seneca project
sourceforge.net
Y. Shen and Y. Park. Concept-based retrieval of classes us-
ing access behavior of methods.Rroc. of the Int. Conf. on
Inf. Reuse and Integratiompages 109-114, 1999.

M. Siff and T. Reps. Identifying modules via concept anal-
ysis. InProceedings of the IEEE International Conference
on Software Maintenan¢@ages 170-179, Bari, Italy, Oct.
1997. IEEE Computer Society Press.

G. Snelting. Reengineering of configurations based on math-
ematical concept analysiSACM Trans. on Soft. Eng. &
Methq 5(2):146-189, 1996.

G. Snelting and F. Tip. Understanding class hierarchies
using concept analysis.ACM Trans. Prog. Lang. Syst.
22(3):540-582, 2000.

C. Steinbeck, D. Gezelter, B. A. Smith, E. Luttmann, and
E. L. Willighagen. The Chemistry Development Kit (CDK):

A Java library for structural chemo- and bioinformatics.
Journal of Chemical Information and Computer Sciences
2003.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for vi-
sual understanding of hierarchical system structutE&E
Trans. on Sys., Man, and Cyberne}it4:109-125, 1981.

A. van Deursen and T. Kuipers. ldentifying objects using
cluster and concept analysis. Rroceedings of the 21
International Conference on Software Engineeripgqges
246-255. IEEE Computer Society Press, 1999.

R. Wille. Restructuring lattice theory: An approach based
on hierarchies of concepts. In I. Rival, edit@rdered Sets
pages 445-470. Reidel, 1982.

homepage. http://seneca.

