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Abstract

Application Programming Interfaces (APIs) play a crucial role in modern software de-
velopment, acting as abstract building blocks that allow engineers to focus on what makes
their programs unique without having to constantly Òreinvent the wheelÓ. While API au-
thors convey how a method should be used via documentation, the text is delocalized from
the source code that invokes that method, so its consumption requires additional effort from
users of the API.

This dissertation presents the notion of “directives”, important clauses in the documenta-
tion of some methods that demand action or attention from their callers. It then demonstrates
via a lab study that developers who are writing or examining code invoking these methods
may fail to notice these clauses in the documentation text, or even to read the text at all.
This lack of awareness precludes subjects from resolving bugs in our study and may cause
serious faults in real world scenarios. This problem is particularly severe in polymorphic
situations.

The thesis of this dissertation is that by overlaying visual cues on particular function
calls in the source code, we can make developers aware of the presence of directives in the
documentation of the call targets. Further, by listing them explicitly when this text is read,
we can increase the prospects of the directives actually being consumed. These interventions
would not significantly distract users.

To validate this thesis, we created eMoose, a plug-in for the Eclipse IDE that realizes
these techniques. We loaded it with a set of directives that were found in a systematic survey
of the Java standard library. In our lab study, the tool increased awareness of the directives
without significantly distracting its users.

This work provides three primary contributions to software engineering. First, it reveals
a weakness in the usability of API documentation that can lead to severe errors in the use of
these APIs. Second, it demonstrates that decorating links is an effective and non-distracting
way of making users aware of delocalized information. Third, it demonstrates that a sim-
ilar problem of knowledge delocalization may occur in software design as a result of the
representational choices made by designers.
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Chapter 1

Introduction

1.1 Background

Software development is an intensive form of knowledge work [46]. While performing design, devel-
opment, and maintenance work, individual developers and teams continuously form or acquire and sub-
sequently consume knowledge of their activities and knowledge of the resulting artifacts. Both types
include objective knowledge - facts about the actions and artifacts, such as the order of editing actions
and the names of the resulting code entities. Both types also include subjective knowledge - perceptions,
opinions and feelings about these actions and artifacts, such as the underlying intentions, goals, and risks
behind implementation strategies.

Since there is typically a temporal gap between the inception or encounter with knowledge and its
first or final use, memory plays a critical role. Unfortunately, while the information is initially stored in
the developer’s organic memory [5], it is subject to degradation and potential loss. In addition, organic
memory cannot directly be shared with others. Instead, software developers make use of persistent
mediums such as whiteboards, papers, and computers to capture knowledge and subsequently access it
or communicate it to their future selves or peers. For example, the relics of design sessions are typically
documents, diagrams, and computerized models [16], while those of coding activity are typically the
code itself, internal and external documentation, and peripheral records in collaboration-support tools.

In theory, persistent artifacts can capture all important knowledge, preserve it indefinitely, and even-
tually be used to recall that knowledge. In practice, however, this potential may not be fulfilled due to
several classes of breakdowns: The knowledge may not be captured fully in the first place, it may become
outdated over time, it may be difficult to interpret, or it may simply not come into awareness in situations
where it can be useful. Such breakdowns can result in memory failures that can carry serious penalties
for the developer or the organization.

This research is therefore concerned with the questions of how and what knowledge is captured and
preserved, how it is subsequently recalled and consumed, and how we can assist software developers in
doing all this in order to reduce memory breakdowns.

Naturally, the above questions are very general, and can represent an immense range of issues that
depend on the specific development phase and style, as well as the kinds of knowledge involved. Accord-
ingly, this dissertation is primarily concerned with exploring and addressing two specific scenarios: the
use of diagrams in software design, and the use of method documentation in coding activities. In the first
scenario, we focus on preservation and interpretation, while in the second we are focused on awareness
of preserved knowledge. The knowledge obtained about these scenarios may be generalizable to other
phases and activities.
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This dissertation makes three major contributions to software engineering: First, it presents new find-
ings on the use of notations and representations in software design. In doing so, it highlights a potential
problem where designers focused on an entity in one diagram are not aware of knowledge and decisions
previously associated with the same entity in other diagrams. Second, it presents empirical evidence
that a similar problem exists in programming, where developers fail to become aware of important docu-
mented details about the methods they invoke. Third, it proposes a novel approach to this problem based
on the presentation of cues on the calls, and presents empirical evidence for its potential effectiveness.

The rest of this introduction is organized as follows: I begin by briefly describing my study of rep-
resentations and notations in collaborative design in Sec. 1.2. A major implication of this study involves
the delocalization of knowledge, which I generalize into a “neighbor knowledge awareness” problem
and apply to function documentation in code in Sec. 1.3. My approach to this problem is described
in section 1.4. Finally, I present the thesis statement in Sec. 1.5, and the dissertation organization in
Sec. 1.6.

1.2 Representations and notation in collaborative design

A good starting point for investigating the questions of knowledge capture and consumption is to address
them in the domain of collaborative software design. Design is an early phase in virtually every software
project and has tremendous impact on subsequent activities. It is also a highly visual activity that can
produce informal or formal diagrams. By studying design, we can learn more about how engineers
may capture and represent knowledge as soon as it is generated, and how they subsequently consume it.
Design is often also collaborative, with multiple stakeholders presenting ideas, discussing, negotiating,
etc. This gives us an opportunity to learn how knowledge is exchanged, preserved, and used by multiple
individuals.

Prior studies [16] and casual observations demonstrated that designers generate a lot of diagrams.
Many of these diagrams appear to be based on existing formalisms but with differences that are typically
attributed to the early or handwritten nature of these diagrams. Accordingly, attempts to support such
work focused on helping designers sketch [72, 14] and then complete and formalize these diagrams [23]
or on bringing formal modeling functionality to entire teams [21, 89, 64]. However, little is known
about these representation choices: How do designers pick a representation? How do they diverge from
it? What functions does this divergence serve, what roles does it play in the preservation and use of
knowledge, and what are its implications and side effects?

To answer these questions, I conducted a series of observational studies at the OOPSLA DesignFest
event, where randomly-assigned teams of experienced designers spend several hours designing solutions
to given problems. While such settings are clearly different from industrial scenarios, they allow us
to observe the emergent choices that designers make when isolated from organizational practices and
conventions.

1.2.1 Findings

The first major contribution of this dissertation is the set of findings from these studies and their impli-
cations, which will be discussed in subsequent chapters.

I observed that though designers borrow idioms and notations from formalisms like UML, they tend
to combine them in unexpected ways and with varying semantics, create new notations on the fly, and
change the level of structure or abstraction of existing diagrams. They also frequently work out designs
by concurrently evolving multiple artifacts that can be at different physical locations.
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While this freedom facilitates the creative process and allows its adaptation to the evolution of the the
design, it negatively affects interpretability. Some improvised representations are inherently ambiguous,
and many cannot be understood without additional contextual details from the time of their creation.
These details may include the sequence of drawing actions, locations of diagrams, use of spoken nota-
tions, and perhaps most interestingly, passive references to artifacts such as those established by gestures
and gaze.

I therefore argue that designers can be supported by offloading the need to preserve contextual de-
tails for future interpretation and transferring it to automated tools. Though such a solution for design
is not attempted in the scope of this work, it inspired work on a similar solution for computer-based
development activities, which is described as a secondary contribution of this dissertation.

Simulator must communicate 
failure to controller

Simulator is configurable 
to run various scenarios

Simulator runs concurrently, 
asynchronously, and independently 

with the controller

Simulator has well defined API 
that is accessible to the controller

Controller has pluggable 
implementation that allows 

simulator API to be referenced

Simulator

Obtain node status

Controller

Manage Traffic Direction

AssumptionsDomain Entities

Figure 1.1: An example of delocalization between entities and associated assumptions

My observations also uncovered a more pressing problem that inspired most of this dissertation: Due
to the concurrent use of multiple representations, information that is associated with an entity and which
might be needed in the context of multiple artifacts is only captured in one location and may not be
recalled when these other locations are examined. For example, the diagrams in Fig. 1.1 were created by
a design team that was brainstorming an informal model of the domain while listing assumptions on a
separate sheet. Certain entities, such as the simulator and controller, appear in the diagram and are also
mentioned in the assumptions. A reader encountering these entities in the domain diagram may not be
aware of the assumptions about them, especially if the papers are moved. Note that though these issues
are particularly problematic for future readers, I observed designers missing decisions and assumptions
made earlier during the same session.

1.3 The neighbor knowledge awareness problem

1.3.1 The neighbor knowledge awareness problem in design diagrams

The above problem inspired the core of this dissertation. It represents a class of problems in consuming
data that had been effectively captured and preserved, which we term neighbor knowledge awareness
problems.

This dissertation argues that design diagrams as described above can be treated as an abstract net-
work, as illustrated in Fig. 1.2. The nodes of this network represent items in the diagrams and can be
grouped by the diagrams what contains each of them. Nodes are either instances of entities, such as the
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Figure 1.2: An example of network for the design diagram of Fig. 1.1

term Simulator in each of the diagrams, or knowledge elements such specific as assumptions or deci-
sions. The network also consists of three types of relations: the identity between instances of the same
entity in different artifacts, the physically-rendered connections between entities in the same artifact (e.g.,
arrows and lines), and the conceptual connections that are formed by the association of knowledge item
to an entity.

Using this network, I state the neighbor knowledge awareness problem in design artifacts as follows:
Given the network implied by the set of artifacts in a design project, how can we help a user examining
an entity in one artifact become aware of the knowledge associated with that entity in other diagrams?
For example, how does a visitor to the Simulator node in the domain entities canvas become aware
of the existence of a simulator node in the assumption canvas, and through it become familiar with the
assumption about having a well defined API?

1.3.2 The general neighbor knowledge awareness problem

The above problem can be generalized to general collections of documents and their corresponding
networks, so that we can ask: How do we increase the prospects that a visitor to a node that represents
an entity in one document become aware of the availability of relevant knowledge associated with that
entity in another document?

We will use the term artifacts to represent an independent visual container for information and ele-
ments. Examples of artifacts include documents, canvases, source files, bug reports, emails, etc. We say
that a rendered connection exists within an artifact if two elements are visually connected by a line or
some other structured connection. We say that a conceptual connection exists within an artifact if there
is a nonvisual but obvious connection between elements, such as that between the subject and object of
a natural-language sentence.

We will use the term entities to refer to atomic concepts that permeate the software development
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process and are manifested in many stages. In the earlier example, the simulator is an entity that appears
early as a domain object and will likely also be represented in the source code, testing plan, and other
locations. In this work we are only concerned with entities that have an independent physical represen-
tation, such as an appearance in the diagram or code as a visually distinct entity. Each such appearance
is termed an entity instance and is bound to a specific artifact (a complete diagram or file). We say that
there is an identity relation between instances of the same entity, even if the exact form (e.g. entity name
vs. class name) is slightly different.

We use the term knowledge elements to represent atomic information that can be associated with an
entity, such as a decision or assumption. In the scope of this work, we only consider knowledge elements
that are physically captured (rendered) within an artifact.

Let us define our sets: Let A be a set of rendered artifacts. Let I be the set of entity instances in A,
and K be the set of knowledge elements in A. The relation of containment in a specific artifact divides
the sets I and K into equivalence classes, so that any two items in the same class are considered localized
and any two in different classes are considered delocalized.

Let us now define the network: Let G = {V,E} be an undirected graph. Let the set of vertices V
consist of the set of instance vertices VI and the set of knowledge vertices VK , whose members corre-
spond to all elements of I and K. Let the set of edges E consist of three sets: E = EI ∪ EP ∪ EC . Let
there be an identity edge EI for every two instances of the same entity. Let there be a rendered edge EP

for every two vertices that represent elements within the same artifact that have a line, arrow, or similar
visual connection between them. Let there be a knowledge edge EK for every vertex representing a
knowledge item that has a conceptual or rendered connection to an instance.

We also define a knowledge awareness probability pKA(vi, vk) as the probability that someone ex-
amining the entity represented by vi becomes aware of knowledge item represented by vk. Note that the
two nodes do not need to be related or even in the same artifact.

Figure 1.3: Sample subgraph for the general neighbor knowledge awareness problem

We now turn to formally define the general neighbor awareness problems. Fig. 1.3 presents a sample
graph for illustration. Let a1, a2 ∈ A be two distinct artifacts. Let vi1 ∈ VI represent an entity instance
in a1, and vi2 ∈ VI represent an instance of the same entity in a2. Let vk1 ∈ VK represent a knowledge
item in a1, and let ek1 ∈ EK represent a knowledge edge between vk1 and vi1. Let pL = pKA(vi1, vk1)
be the localized probability and pNL = pKA(vi2, vk1) be the nonlocalized probability. How do we
increase pNL?

One premise behind this problem and potential solutions is that the nonlocalized probability is lower
than the localized. In other words, we assume that examining an entity instance that is associated with a
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knowledge element in the same artifact is more likely to result in awareness of this knowledge than when
examining another instance of that entity in another artifact. Recall that our definition of knowledge
elements is restricted to those relating to the entity rather than a specific instance. The validity of this
premise and its implications will have to be evaluated in the context of specific instances of the problem.

In addition, we do not want to “solve this problem” for every knowledge element that is associated
with some instance of an entity, as that can overwhelm users. Rather, we want to increase exposure to in-
formation that is more relevant within the current context, while not affecting or even decreasing exposure
to less relevant information. Let us assume that there exists a knowledge relevance function relK(vi, vk)
that determines the relevance of a knowledge item to a specific instance of the entity. A more accurate
goal for the knowledge awareness problem is that the proportion of increase of pKA(vi2, vk1) be related
to relK(vi2, vk1).

1.3.3 The neighbor knowledge awareness problem in code

Figure 1.4: Sample graph for the neighbor knowledge awareness problem in source code

This dissertation is primarily concerned with the manifestations of the neighbor knowledge aware-
ness problem in programming. Specifically, it addresses the problem of awareness of directives in in-
voked functions and especially in those defined in Application Programming Interfaces (APIS). In these
settings, as illustrated in Fig. 1.4, we treat every source file as an artifact and every method identity as
an entity. Every definition of the method is then considered an instance of its entity, and so is every call
to that method. Certain clauses from the method’s documentation or metadata are considered to be our
knowledge items and have a conceptual connection to the instance represented by the definition.

For example, consider a JAVA developer using the standard SWING toolkit for creating user inter-
faces, and specifically the JLayeredPane container, which manages and renders its children in different
layers. Suppose that the developer is writing a function, and has references to the pane and an image
within it but seeks to move the image to a different layer. As is often the case, the developer uses the
auto-complete functionality for the pane until a likely match is found [80]. In this case, he is likely to
come across putLayer, which seems like a good match, and adds the call. He may not examine the
source code of that method or read its documentation, depicted in Fig. 1.5, and thus not become aware
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Figure 1.5: Javadocs for the JLayeredPane.putLayer method in JAVA SWING

that the assignment does not cause a refresh and that a call to setLayer is needed instead. As a result,
the user interface may not perform as expected, which presents a difficult debugging challenge.

Situations where the documentation of seemingly straightforward functions present some unexpected
information are not rare. I have encountered many such situations in my own experience, and have
received testimony of such problems from other developers. In a survey of several APIS (Chap. 4), I
have identified many such potential pitfalls. Many examples will be presented in this dissertation.

In well-documented APIS, there is a detailed specification for every function that allows readers to
learn everything about it. Our focus, however, is on clauses we term directives that only appear in the
documentation of some methods. Directives can be explicit “do” or “don’t” instructions to which the
caller must comply. Alternatively, they may convey information that clients may choose to act on, such
as indicating that the function has unexpected side effects or performance issues, that it is not robust
against certain situations, or that it is intended for use in specific scenarios.

Figure 1.6: Javadocs for the Connection.setClientId method in JAVA JMS

As illustrated by the highlighted line in Fig. 1.6, which presents the documentation of the setclientId
method from the JAVA Messaging Service (JMS), such details can be “lost” deep within the detailed
elaborate narrative that characterizes the documentation of many API functions.

Figure 1.7: Code excerpt for creating a queue in JAVA JMS

As illustrated by the earlier example from SWING, however, even if the directives are clearly visible
in the documentation, there are no guarantees that this documentation would be read at the time of
creating the call or at any subsequent reading of the invoking code. Such situations can be aggravated
by the significant fan-out of many methods, which simply presents developers with too many operations
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Figure 1.8: Javadocs for the QueueConnectionFactory.createQueueConnection method
in JAVA JMS

to explore under everyday time constraints. For example, the code excerpt of Fig. 1.7 contains four calls
involved in creating and initializing a queue in JMS. As shown by one of the studies in this dissertation,
developers are more likely to explore calls like the complicated-looking call to setup a connection on the
third line than the seemingly-trivial factory method in the second line. As a result, they may miss an
important directive in the latter (Fig. 1.8) instructing them to use start to actually deliver messages.

These problems are even more likely in polymorphic situations where an overriding version of a
method conveys directives that are not present in the overridden version. If a developer receives a ref-
erence to the supertype, he may not be aware of the existence of a possible dynamic subtype, of the
overridding method, or of the different documentation. The JavaDoc hover offered by the IDE to inves-
tigate the documentation of invocation target will only present that of the overridden version from the
static type. Though such situations often constitute a deprecated conformance violation [59], they are
not uncommon.

We can therefore define the main problem that is specifically addressed by this dissertation as follows:
The neighbor knowledge awareness problem for source code: In source code where “directives” may
be associated or embedded in the documentation of a function, how do we increase the prospects that a
visitor to a function that invokes it becomes aware of the directive?

The second major contribution of this dissertation (following our findings about design), is in demon-
strating the severity and potential prevalence of this problem. I will present results from a lab study show-
ing that developers do face difficulties in becoming aware of important directives in invocation targets.
In other words, I will show that the probability of delocalized awareness, as described for the general
problem, is far from 1 in the case of source code.

These findings highlight a serious communication breakdown between functionality providers and its
consumers. One significant consequences for providers is that they must realize that merely documenting
usage rules does not sufficiently increase the likelihood that their functions would be used correctly.
I argue that it is necessary to come up with additional ways of increasing awareness to mitigate this
breakdown. One possible solution, described next, is the third major contribution of this dissertation.

1.4 Approaches to the neighbor knowledge awareness problem in code

While the authors of a method’s documentation can structure the text to make directives more salient,
such efforts have no impact if the developers who invoke this method do not read its documentation.

The third major contribution of this dissertation is in presenting a solution to the neighbor knowledge
awareness problem in source code. My approach “pushes” the directives into the context of calling code.
It does so by presenting cues on calls in the source code to make developers aware that the targets of these
calls have associated directives. This approach may be generalizable to other instances of the neighbor
awareness problem.
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Figure 1.9: Code excerpt for creating a queue in JAVA JMS, with eMoose decorations

I implemented this approach for JAVA developers using the Eclipse IDE as the primary feature of
our eMoose tool. My implementation decorates the call with a surrounding box and adds an icon on that
line, as illustrated in Fig. 1.9 for the code fragment of Fig. 1.7. This should draw the user’s attention to
the call and offer some indication of the availability of knowledge, while drawing attention away from
other calls which do not contain directives.

Figure 1.10: Javadocs for the Connection.setClientId method in JAVA JMS with eMoose additions

When the developer chooses to explore a decorated method, there is still a risk that the directives
would be lost within the verbose text. To this end, my tool augments the JavaDoc hover in Eclipse with
a lower pane that explicitly lists directives, as can be seen in Fig. 1.10. In the case of polymorphic code,
the lower pane presents not only the directives corresponding to the documentation of the overridden
version, presented in the upper pane, but also those associated with overriding versions in potential
dynamic types.

My approach carries three major risks. First, there is no guarantee that the decorations would indeed
attract readers to examine the documentation of the corresponding methods. Second, if the decorations
are too effective, then developers may spend too much effort investigating documentations even if the
knowledge they convey is not related to the developers’ current goals. This might render the use of the
tool impractical and may eventually desensitize its users to the decorations. Third, the approach depends
on the ability and willingness of API authors or users to tag directives in the documentation in an efficient
and consistent manner.

A significant portion of this dissertation will attempt to address these concerns. It will present results
from a lab study showing a significant impact for eMoose on certain types of tasks without an overbearing
distraction due to the prevalence of decorations. A detailed analysis of records from the study reveals

9



much about the factors behind this effect. In addition, I present and analyze results from a lab study
aimed at observing how different individuals identify directives in the same APIS.

It is important to emphasize the difference between this approach and the extensive work on auto-
mated conformance checkers [8,7,57]. There are many ongoing attempts to make design by contract [65]
practical via formalisms for specifying usage contracts for functions and APIS, and static (or dynamic)
tools for automatically checking conformance. While such tools can be extremely useful, they depend
on the creation of formal specifications by function authors. The required investment may be too high,
and some programmers may not have to skill for such accurate specifications. In addition, specifications
cannot address the problem of making clients aware of certain details that do not constitue a usage vi-
olation, such as performance issues. Therefore, there is a need for an alternative mechanism for those
directives that are not going to be captured formally. I believe that it is more likely that authors would be
willing to tag existing text in natural-text documentation rather than create formal specifications, even if
the benefit is limited to an increase in client awareness rather than automated conformance checking.

1.5 Thesis Statements

The primary focus of this dissertation is on the neighbor knowledge awareness problem for source code,
which we repeat here as a reminder:

The neighbor knowledge awareness problem for source code: In source code where “directives”
may be associated or embedded in the documentation of a function, how do we increase the prospects
that a visitor to a function that invokes it becomes aware of the directive?

The statement of the thesis is thus:

Thesis Statement: When developers are examining code in the IDE, then by decorating calls to tar-
gets that have associated directives and making these salient when the target documentation is inspected,
we can increase the likelihood that developers become aware of this information and avoid or mitigate
errors and omissions without being significantly distracted.

1.6 Dissertation Organization

This dissertation is organized as follows:

Chapters 2 and 3 describe our two studies of collaborative software design. These studies helped
identify the neighbor knowledge awareness problem for diagrams.

The dissertation is primarily concerned with the knowledge awareness problem for source code. To
motivate the need for directive awareness, Chap. 4 presents a taxonomy of directive types, along with
detailed examples of potential problems from our survey of APIS.

The eMoose tool, which implements our approach for “pushing directives”, is described in Chap. 5.

Chap. 6 presents our comparative lab study of directive awareness in source code, which shows that
developers face difficulties in becoming aware of important directives, and that eMoose may increase
this awareness.

To begin exploring whether collections of directives tagged by an API author or user could be useful
to other users, Chap. 7 describes a small study which investigates how different individuals identify
directives in the same API.

Finally, Chap. 8 describes our conclusions and avenues for further research.

10



Chapter 2

Studying the Environment in
Collaborative Software Design

My doctoral research began with an exploration of collaborative software design work that takes place in
physically collocated settings. The original goal was to identify opportunities for supporting such work
with electronic tools, and in particular, for facilitating design in physically-distributed settings.

To this end, I conducted two studies of designers participating in design exercises at an academic
conference. In the initial study, presented in this chapter based on [25], I gathered photographs and
focused on characteristics of the physical work environment and activities, such as the use of drawing
surfaces. In a subsequent study, presented in the next chapter and based on [28], I captured video records
and focused on the notations and representations used in design.

While the focus of this dissertation has eventually shifted away from design towards the knowledge
awareness problem in code, these studies have lead me to identify that problem and to recognize the
importance of tracing temporal information links. Specifically, my findings in the first study emphasized
the central role that canvases (the sheets on which designs are drawn) play in the design process. I saw
evidence of the impact of their physical location on the team’s work, and of the important of gaze in
determining the point of focus. However, I also saw possible instances of the knowledge awareness
problems.

The following two chapters present the two studies and the results identified at the time and also
discuss findings relevant to my work on the knowledge awareness problem.

2.1 Background and related work

The design and architecture of a complex software system has significant implications for its function-
ality, cost, and reliability; a significant portion is therefore typically done upfront. While individual
developers perform many design activities, the design of common modules, larger systems, and compo-
nents is typically a highly collaborative process which involves many stakeholders. Design may be the
most collaborative part of the development process [40].

Design tasks generally make heavy use of external representations to support problem-solving and
collaboration and to capture the current state of the design [86]. This also applies to the domain of soft-
ware design, in which diagrams go through a lifecycle from transient artifacts used to understand and
come up with a design to archived documents serving communication and documentation purposes [16].
However, the choice of representation depends on many factors, including intended use, individual or col-
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laborative design, organizational background, development paradigm, and the design problem specifics.

2.1.1 Representing completed designs

As with other design domains, well-defined and accepted representations and notations, rendered aes-
thetically and with precision, are important for clearly and unambiguously expressing finalized software
designs [16, 23, 89]. In the object-oriented paradigm, the Unified Modeling Language [68] has gained
widespread academic and industrial acceptance as a standard representation for completed designs that
serve documentation or implementation planning purposes.

UML consists of 13 diagram types, which cover many of the structural, dynamic, and functional as-
pects of a system. These notably include class diagrams (CDs), sequence diagrams (SDs), and use-case
diagrams (UCDs). UML offers precise notations for accurate specifications as well as extension mech-
anisms. This comprehensiveness enables compliant UML models to be used as early implementation
artifacts, as blueprints for implementation, or as basis for automatic code generation [22]. A common
criticism of UML is that it lacks fixed semantics and conventions [85, 12], potentially leading to defects
due to misinterpretations. Other critics, focused on creative modeling, argue that UML is too strict and
suggested that investment in creating complete models is not cost-effective [3, 67, 37].

2.1.2 Representing early designs

While much attention has focused on the representations used for documenting completed designs, little
is known about how the representations are used in earlier design phases to come up with initial de-
signs and if the same notations are applicable. One obvious difference about these phases is that design
teams tend to sketch, often using physical mediums such as whiteboards. Sketching allows designers to
effectively focus on the problem [3] and encourages experimentation with the design [14, 71, 58].

Most of our knowledge on early diagrams in industrial settings comes from Cherubini’s study of
diagram use at Microsoft [16]. He found that while many diagrams created in design collaborations
were transient, some were immediately captured for subsequent use or were captured after being recre-
ated in later collaborations. As their importance became clear, they iteratively became more organized
and aesthetically pleasing and were often captured electronically. The representations used in these dia-
grams were a mix of informal visual conventions based primarily on box-and-arrow notation with only
limited adoption of standards such as UML. However, the studied population used a variety of devel-
opment paradigms and may not have been proficient in OOD or UML, and the factors leading to the
representational choices were not studied.

The few observations that do focus on collaborative OOD work are primarily reported by researchers
involved in constructing sketch-based design tools [23, 22, 14, 88, 89] and take place in specialized set-
tings. In these observations, the end product is typically a design documented in syntactically cor-
rect UML, often in electronic form. Initially, freehand sketches are used to represent the problem do-
main, while limited UML diagrams, incomplete in content and syntax, are used for early designs of the
solution [67]. Damm et al. [23, 22] further argued that these diagrams are then incrementally evolved
into complete and compliant UML models with noncompliant elements removed. Overall, these studies
give the impression that divergence from UML is accidental or unwanted.

Departures from UML or other standard notations might appear counterproductive when the goal
is to produce an implementation-ready model or documentation. However, since representation choices
have significant impact on design, constraining the early stages may have unexpected effects. Clearly,
there are different potential uses and outcomes for diagrams created in design collaborations, and both
organizational practices and prior knowledge of the intended use of a diagram likely have an impact on
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the representational choices. Since the goal is to understand the needs of early design, I chose to conduct
this study in settings which afford relative freedom from such potentially confounding constraints.

2.1.3 Design support tools

Most of the existing tool support for collaborative OOD is similar to that provided for individual de-
signers, consisting mainly of functionality for creating complete models in UML. One approach aimed
at distributed teams is to offer distributed groupware versions of the familiar single-user desktop CASE
tools [11, 64]. In collocated collaborations, however, designers need large drawing surfaces [30], which
were traditionally only available in the form of whiteboards or paper. As large display technologies be-
came available, attempts were made to provide OOD specific support over electronic whiteboards [38,
14,22]. These tools focused on the automated conversion of sketched shapes and handwriting, which are
the natural mode of interaction with a whiteboard, into notational primitives and even UML models.

Of particular interest is Damm et al.’s Knight tool [22] which, based upon the observations described
above, offers a guided mode that facilitates the evolution of these artifacts, through several levels of
restriction, to complete UML models representing implementation-ready designs. Whenever artifacts
violate UML specifications due to nonstandard notation or incompleteness, their tool forces the offending
notations to be changed or removed. Other tools allow a layer of uninterpreted “freehand” sketches to
coexist with a layer of structured UML.

The interactive nature of electronic whiteboards raises the question of how to best support collab-
orative design, and what, if any, support should be provided for rough, intermediate forms. Note that
although these technologies received much attention, their availability is extremely limited, and most
practitioners have no supporting tools when involved in collocated design collaborations. While some
research focuses on supporting distributed design, such settings are plagued by many additional problems
and are outside the scope of the current work.

2.2 Study overview

2.2.1 Background

Physically-distributed software development is practiced in many organizations due to globalization, out-
sourcing, increased telecommuting, and the open-source movement. While most research and tools are
typically focused on coding activity, [74,43,24] or on asynchronous collaboration (e.g., via Wikis [2,4]),
there is significant need to allow a physical distribution of synchronous (real-time) design collaborations.

I argue that high-level software design typically necessitates some synchronous collaboration be-
tween multiple individuals. Even in large projects with rigorous use of documentation, mailing lists
and other asynchronous forms of communication, there is usually a small group of individuals which
conducts real-time collaboration throughout the lifetime of the project.

At present, these collaborations almost always take the form of a face-to-face software design meet-
ing (SWDM), whose outputs are typically informal diagrams, notes, and verbal agreements. A physical
distribution of such meetings involves challenges not present in business meetings or in asynchronous
collaboration. Whereas in business meetings there is typically one speaker and even more typically a
single point of visual focus (such as a presentation), visual activities in design can be concurrently car-
ried out concurrently by multiple developers at different locations in space. Awareness and common
grounding then become an important issue, as visual context is not always shared [51].

Design meetings are a forum where many critical decisions are made in real time. Many of these
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decisions are informal mutual understandings, which participants later incorporate into their respective
components or propagate to their teams. To ensure the preservation of these decisions, it is necessary
to capture them in an unambiguous and persistent form. While decision preservation is a significant
challenge for collocated meetings, it may be even greater in distributed meetings where each participant
may have a significantly different perception of the experience.

2.2.2 Goals

Distributed collaborative design is not common. I therefore chose to perform an observational study of
collocated design in an attempt to identify features that may be challenging to translate to distributed
settings. With these findings, I hoped to find novel ways to support distributed design meetings. In this
first study, my goal was to understand the “physical” facets of design collaborations and in particular the
use of paper and physical space. To do so, I made use of photographic evidence gathered from several
teams during the 2004 OOPSLA DesignFest event in Vancouver.

While my findings identified potential caveats in the transition to distributed settings, they also re-
vealed many deficiencies and caveats in the current practices of colocated teams. These caveats may be
indicative of potential knowledge preservation problems, and they caused me to subsequently shift the
focus of my second study.

2.2.3 Settings

The DesignFest event

My studies of collaborative OOD took place at the the annual DesignFest events of the ACM conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA).

In this popular conference event, experienced designers select one of several given design problems
and are randomly assigned to one of several teams that will work on that problem. They are given a short
document describing the problem, constraints on the solution, and important use cases and scenarios.
Depending on the session, teams then spend 3 to 6 hours coming up with an appropriate design to solve
that problem. The stated goal of this event is to “learn more about design by doing it and to sharpen
design skills by working on a real problem with others in the field” [29].

One noteable characteristic of the DesignFest event is the relative freedom given to the teams. While
teams are not expected to produce working systems, they are encouraged, both in the given documenta-
tion and verbally during the session, to prepare materials for presentation to others at the social event at
the end of the conference and for a possible web archive. However, they are not given explicit require-
ments for the representations and quality of these materials. Similarly, the given documentation merely
suggests a simple process outline, stepping from introductions to planning, discussion, sketching, and
resolution of disagreements. It also encourages teams to elect a moderator and a recorder, but I have
rarely seen these roles used in practice.

Note also that drawing activites at DesignFest take place primarily over physical mediums, which
offer greater freedom than electronic tools [9]. The organizers provide all participating teams with at least
one flipchart and several posterboards as well as notepads, sticky-notes, tacks, and pens. Powerstrips and
wireless internet were available, but the few participants who used laptops did so mostly for unrelated
activities. Only a few used CASE tools available on their laptop to try and digitize their teams’ sketches.
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Reasons for selecting these settings

I chose to use the DesignFest settings for three reasons: First, participants do not have a history of
working together and are collaborating outside an organizational context that prescribes design methods,
notations, and processes. I believe this simplifies the interpretation of my results and enables general-
ization about common practices. Had I observed teams in an organizational context with a work history,
it would be hard to disentangle behavior that is merely prescribed by organizational practices or shared
team habits from natural behaviors that directly support the immediate task of collaborative design.

Second, since my focus is on the OO paradigm and the use of UML in particular, I wanted to
minimize the risk that limited familiarity with these techniques would factor into the choice of repre-
sentations. The OOPSLA conference attracts experienced designers well-versed in these techniques,
which adds validity to the findings. Third, since design problems in DesignFest are based on real-world
projects, I can observe multiple teams working on the same problem and reproduce the nonproprietary
designs. Although I could probably find other settings that are better in any one of these considerations,
DesignFest seems to score adequately on all three, and, in my opinion, deserves the attention of more
researchers.

2.2.4 Methods, and subjects

My initial study aimed to understand the “physical” facets of design collaborations, and in particular the
use of paper and physical space. It made use of photographic evidence gathered from two teams during
the 2004 DesignFest event in Vancouver. The first team in the study was doing a “half-day” session,
while the other was doing a “full-day” session on a different conference day. As I did not have access to
a video camera, I tried to capture as many snapshots as possible to allow the process to be reconstructed.
In particular, I focused on gatherings of subjects, trying to preserve a record of who was involved, in
what locations, and what artifacts they were touching or gesturing at. Frequently I also took close-up
photographs of the whiteboards and of the diagrams and sticky notes used by the subjects, both when
posted in the public spaces and while they were still working on them. I later examined all these photos
on a timeline in a digital photo organization software.

The half-day group consisted of four developers and two educators, while the full-day group con-
sisted of five developers. The developers all had at least 4 years of experience as software engineers or
architects in the industry; the educators had served as teaching faculty members for more than ten years.
In accordance with the DesignFest rules, each group appointed a “moderator” and a “recorder”. Only the
half-day group made use of the moderator role, and neither group used its recorder.

Both teams were working on the “case management problem”. The system is a general object-
oriented framework for use in developing case-management applications for industries like insurance,
finance and healthcare.

Both sessions were held in a large hotel banquet hall, and attendees were seated around large circular
tables. Each team was provided with a single flipchart and a few posterboards for hanging materials;
hotel notepads were provided to each attendee. The moderator of the half-day session also brought
stacks of stickynotes for the use of his group. As we shall see, physical settings and resources had a
significant impact on how teams performed their task

Even though both teams worked on the same problem, each team used different processes, interac-
tion styles, tools, and notations. At the guidance of its moderator, members of the half-day group first
individually brainstormed entity ideas on sticky notes, proceeded to arrange them on the poster board,
and then worked as a team on creating class diagrams. The full-day group, on the other hand, brain-
stormed use-cases as a team. It divided them into two groups, separating to work on them, and then
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regathered to discuss their results. With the session drawing to an end, they split again to create complete
and finalized versions of their initial diagrams.

2.3 Results - use of canvases

Software design activities involve and produce numerous and complex visual artifacts [16], which can
range from simple textual entities to longer documents and to complex diagrams. We refer to the surfaces
on which visual artifacts are rendered as “canvases”, after the metaphor used in many UI toolkits. In De-
signFest events, designers work primarily with pen-and-paper, so canvases range from large flipchart
sheets to standard notebook paper and even sticky notes.

2.3.1 Canvas containment

Physical canvases offer flexibility that was not possible in computer-based graphic work on early com-
puters [13, p. 195]. Even today, most computer-based modeling tools use a single simple canvas as a
metaphor for the drawing canvas.

One advantage of physical canvases is that they can easily be moved about and placed inside other
canvases, creating a containment hierarchy. For example, a sticky note can be placed on a sheet of paper
(Fig. 2.1(a)), which can be posted on a posterboard (Fig.2.1(b)). As we shall see, designers interact
heavily with this hierarchy of canvases, suggesting that this is an important feature for computer-based
design support software.

An important property of this containment hierarchy is that it is fluid, as canvases are moved around
over time. The same canvas can not only contain different “children” at different times, but may also itself
be contained by different “parents” at different times. This may present challenges to the preservation of
knowledge and the interpretation as artifacts, as canvases may end up far from the context in which they
were originally generated.

2.3.2 Canvas types

While most canvases serve merely as containers for actual content and for other canvases, it appears that
certain types of canvases have special symbolic meanings or properties that hint at their expected use. For
example, sticky notes are small and prompt people to fill them with concise and limited text, typically
limited to a word or two. Their color helps distinguish them from notepads and reminds users of the
adhesive material which hints that they should be attached to other canvases. Similarly, large flipchart
sheets “invite” complex diagram or embedded smaller canvases; because of their size, we recognize that
they are intended for hanging on a board. The rough surface of a posterboard indicates that it should not
be drawn upon, and that sticky notes should not be attached to it. Rather, it suggests the use of pins to
attach other materials, such as paper sheets from the flipchart.

Note that even though the type of a canvas suggests how it should be used, it might occasionally be
used differently. For example, Fig. 2.2(a) shows a member of the half-day team using a small stickynote
for a complex diagram. Fig. 2.2(b), on the other hand, shows a member of the full-day team using
notepaper for brainstorming in the way that one would use a sticky: note how only a small portion
of each sheet is used. Such misuse can result from a sudden change in plans or simply because a more
appropriate canvas is unavailable. The full-day team, for example, did not have stickynotes or any smaller
notepads.
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(a) Sticky notes attached to a flipchart sheet

(b) Flipchart sheets attached to a posterboard

Figure 2.1: Photos showing canvases containing other canvases

17



(a) Using sticky notes as notepad sheets (b) Using notepad sheets as sticky notes

Figure 2.2: Inappropriate use of specific canvas types

An inappropriate canvas type selection can be confusing and wasteful and may demand a recreation
of the canvas. This could be a benefit to design-support software in which types could be changed.

We note though, that in some cases the misuse of a canvas type could be intentional, perhaps owing to
individual style or to a limitation of the expected content type. For example, while a sticky note typically
contains a single idea in text form, one may express it as a diagram.

2.3.3 Dealing with canvas size limits

A major drawback of physical canvases is that their dimensions are fixed, limiting the amount, style, and
layout of contents that they can accommodate. This forces designers to plan ahead, requires effort to be
spent on organization, and reduces the flexibility of the canvas use.

When space in a particular canvas was imminently running out, some designers tried to force exces-
sive amounts of contents into the available area. For example, Figs. 2.3(a)-2.3(c) show how additional
sticky-notes had been forced into a limited space by hanging them outside the canvas boundaries or by
letting them invade into other logical regions. Figs. 2.4(a) and 2.4(b) show complex diagrams squeezed
into the available space, rendering them confusing and unreadable. I suspect that this behavior signifi-
cantly affects the choice of content that designers make, and that they may omit details in such situations.

2.3.4 Rescaling

Designers often appeared to choose the kind of canvas to use based on the expected size of the contents
and the intended audience. For example, small notepads were convenient for individual notes but diffi-
cult to share with others, whereas larger sheets are easier to share but are bulky and space consuming.
As a result, when a previously personal artifact had to be shared or collaborated on, it was often first
reproduced on a larger scale.

While this reproduction is tedious and could have been eliminated with an electronic drawing medium,
the rescaling process has an important side effect: Recreating the artifact into a larger form is often not
simply a matter of duplicating the original but rather is often an opportunity to rethink, improve, and
polish.
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(a)

(b) (c)

Figure 2.3: Photos showing how designers force too many sticky-notes into a limited container

(a) (b)

Figure 2.4: Forcing excessive contents into limited canvas space
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(a) The rescaling of a diagram is an opportunity to clean it up (b) Rescaling is often a group activity

Figure 2.5: Rescaling a diagram

For example, Fig. 2.5(a) shows a designer copying a complex object diagram from a cluttered note
into a large sheet of paper. In doing so, he is elaborating each entity, listing its properties and drawing
it in straight lines instead of freehand curves. Meanwhile, others are examining both drawings, offering
suggestions and approving each element as it is copied (Fig. 2.5(b)).

2.3.5 Partitioning and merging canvases

A canvas representing a single entity is often partitioned in order to allow properties and other informa-
tion to be organized into categories. For example, Fig. 2.3(c) shows the partition of a canvas representing
the event abstraction of the case management system; no sub-canvas was intended to stand on its own.
CRC cards [6] are another example of this behavior. Occasionally, a certain partition is only relevant in
the context of another, as in Fig. 2.6(a), which shows an area cordoned off for notes.

Sometimes, a partitioned canvas contains independent but somewhat related artifacts. Such a par-
tition can serve to contrast design alternatives, as in Fig. 2.6(b). In other cases, however, it seems that
this partitioning is an alternative to artifact organizations that are difficult when to achieve with multiple
physical canvases. For example, in the lower sheet of Fig. 2.4(a), the two diagrams are only weakly
related (by involving the case abstraction). While it make sense to separate them into two canvases, it
would be difficult to maintain the close connection between them. An electronic tool, on the other hand,
could achieve this with linking.

Note, though, that unrelated artifacts might occasionally be placed on the same canvas to avoid
wasting resources and space and to reduce clutter.

In some cases, designers may want to merge multiple canvases into one. For example, participants in
the half-day session were limited to small fixed-sized sheets upon which sticky-notes could be laid out.
When they ran out of space on the first sheet (Fig. 2.7(a)), they numbered it and started using a blank
sheet (Fig. 2.7(b)). When it ran out as well, they used a third sheet, and eventually placed the three of
them in sequence on a posterboard (Fig. 2.7(c)), creating a single entity. Merging canvases with physical
paper is tricky, but electronic tools could compensate.
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(a) Keeping short notes

(b) Contrasting design alternatives

Figure 2.6: Examples of canvas partitioning
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(a) Part 1 (b) Part 2

(c) Merged

Figure 2.7: Examples of canvas merging

22



2.3.6 External documents

Although content was usually rendered on a previously blank canvas, there were cases when an existing
pre-printed document was further annotated or drawn upon. For example, most participants made initial
annotations on the requirements document provided by the organizers. In some cases they even drew
small diagrams next to specific requirements rather than draw them on separate sheets of papers where
they would be more difficult to access associatively.

2.3.7 Modifications and deletions

Figure 2.8: Cleanup

Physical canvases differ in how their contents can be changed or erased. Unlike dry-erase boards,
contents on paper are the most difficult to change.. As we can see in the upper diagram of Fig. 2.8,
contents sketched in ink can only be removed in an untidy way that does not fully recover the lost space.
As more and more items are erased, the document becomes too cluttered. Eventually, it becomes unfit
for preservation or presentation and must be redrawn, although this is an opportunity for rethinking.

Another problem with physical mediums is that changes to one element often require manual changes
to other elements. For example, if a specific element is “surgically” removed, all overlapping or con-
necting objects, such as fragments of connectors and text, will also have to be redrawn or removed. This
further encourages a redraw. I suspect that the apprehension of the visual impact and the expense of
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the potential redraw may sometimes discourage developers from making modifications, leading them to
leave imperfections in the design.

Versioning and rollbacks

One of the interesting phenomena I encountered is that canvases are typically used and updated in discrete
bursts of activity rather than continuously. An individual working on a diagram often does so in cycles,
alternating between thinking or consulting other material and drawing or making modifications to the
canvas. These cycles are much longer when several people are working together, partially because of the
additional time required for discussion. Larger teams often abandoned canvases for a while, working on
another before coming back.

For example, Figures 2.9(a) to 2.9(d) show a progression of changes to an artifact. Fig. 2.9(b) shows
how the original rectangle is expanded into a diagram in a continuous work interrupted by frequent
discussions and modifications. In the transition to Fig. 2.9(c), a change in ink color indicates that the
new artifact at the bottom has been added as a separate burst. Finally, we see in Fig. 2.9(d) that a comment
in blue has been added to the existing list of comments in black. The implication from this mode of work
is that periods of quiescence with respect to a particular canvas or artifact may implicitly represent a
version.

2.3.8 Rapid access

Even though the abundance of artifacts created during SWDMs prevents more than a few from being in
focus at any given time, a certain portion could still be physically positioned for rapid access. For exam-
ple, every DesignFest team was furnished with two or three poster boards, each capable of displaying up
to three sheets of paper from the flipchart. Once a specific sheet was located on the board, its contents
could be read effortlessly. To locate a particular canvas or artifact, however, people employ a variety of
techniques.

The most efficient way to locate an item appears to be based on memorizing and recalling its spatial
location. This location could be relative to the environment (e.g., “next to the window”), or relative
to other artifacts (e.g., “on the sheet right below the class diagram”). The problem is that memory is
unreliable, and that the canvas or the reference point could be moved.

If many artifacts are graphical rather than textual in nature, their shapes can be identified in a rapid
sweep over the entire workspace. A quick glance is often enough to locate a UML sequence diagram or
a “spider shaped diagram”. The potential of this method appears to decrease as the number of artifacts
increase and the visual differences between them decrease. This is particularly a problem if there are
multiple versions of the same canvas.

Note that some teams titled their canvases. Titles may be an effective way to spot a canvas but they
require some reading effort and must be distinct.

Unfortunately, the space available for rapid access in the manner described above is limited by the
available physical space and the effective access speed. Important canvases, such as to-do lists, will not
be removed. Others, however, may be removed in a least-recently-used manner to make space for others.
In the physical world, it is difficult to organize and find space for the removed sheets. Many teams,
for example, placed these sheets on the floor (Fig., 2.10(a)), where they were more difficult to access
later (Fig. 2.10(b)). As we can see in Fig. 2.10(c), participants individually faced similar problems when
maintaining large numbers of canvases.
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(a) Initial diagram in blue (b) Changes in red

(c) New elements in black (d) New comment in blue

Figure 2.9: A canvas is updated in bursts, implicitly creating versions
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(a) (b) (c)

Figure 2.10: Canvases moved to secondary storage

2.4 Results - Team Structure and focus

My results so far have focused on canvases and their manipulation. We now turn to the collaborative
facet of SWDMs. We begin by exploring the designers’ division into subteams and then describe how
they maintain their focus on nearby and remote artifacts and how they draw the focus of others. We then
discuss the problem of locating the current focus of the group after diverging from it.

Division into teams

In the course of the DesignFest sessions, team members repeatedly split into subteams, regathered, and
split into different subteams; occasionally they even worked individually. Much of this behavior was
ad-hoc: Rather than having clearly defined roles and memberships throughout the session, subteams
simply coalesced around specific tasks and artifacts and later dissipated without ceremony. As a result,
every designer may have a different and partial understanding of the design, and may lack awareness
of design decisions made by individuals outside the subgroup. This affects after-the-fact grounding, as
certain concepts may be fully familiar to some individuals and utterly unfamiliar to others.

Since most of the participants did not know each other beforehand, it is interesting to investigate
which factors determined the structure of teams. While social or cultural familiarity as well as interest
or skill obviously played some role, the physical layout of the meeting area had a surprisingly significant
effect. The random seating order around the round table shaped the first division into subteams, perhaps
because of the convenience as well as the newly-gained familiarity between neighbors.

Furthermore, when gaps existed in the physical layout, contiguous chains of individuals tended to
become teams. For example, the initial seating order of the full-day group was random. Seated from left
to right were: L, P , B, J , and D. To avoid obstructing the flipchart and posterboard, L and P shifted left,
leaving a gap. Although L occasionally moved across this gap to see the board (Fig. 2.11(a)), this gap
dictated the later separation of P and L into a separate team (Fig. 2.11(b)). As the session progressed,
however, both formed teams with other participants.

Spatial location also played an important part in the organization of the half-day group. Since the
positions of its poster-boards and flipchart formed a wide angle, it was difficult to work on one board
while maintaining awareness of the other (e.g., Fig. 2.12(a)). As a result, ad-hoc interaction was often
limited to people working on the same area of the same board. Surprisingly, even though people moved
about, they tended to work more with posterboards which were physically closer to their original seats.

26



(a)

(b)

Figure 2.11: Team formation in the full-day group
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(a) Ad-hoc teams formed in front of specific canvases (b) Clumps of interactions attracted additional par-
ticipants

Figure 2.12: Team formation in the half-day group

Ad-hoc interactions sometimes occurred when a person who was not part of any team was drawn to the
activity of another team and joined it. For example, Fig. 2.12(b) shows one participant returning from a
coffee break and joining a team that was discussing an artifact.

It is also important to note that team members tended to maintain a peripheral awareness of the ac-
tivities of other teams. Awareness is important, because when teams were physically separated, they
exchanged less information with one another and their composition changed less frequently. For exam-
ple, due to lack of space one team in the full-day group used a second table hidden by a posterboard. To
compensate for the loss of awareness, members of each team occasionally ventured into the space of the
other to check on its progress, affecting the performance of both teams.

A significant problem regarding awareness arises when several people are working from one physical
location, such as a conference room, in a distributed meeting. It might be difficult for those in other
locations to keep track of all the parallel activity going on in that location from a single viewpoint. One
approach would be to use automated means to monitor, digitize, and provide after-the-fact record of the
activity [45].

2.4.1 Maintaining individual focus on artifacts

As discussed in the previous section, designers constantly shift between working with the entire team,
working with a smaller subteam, and working individually. While they were working with others, I
often observed their focus shifting away from their team for short periods of time. A person might, for
example, review some notes or change some diagram, as can be seen in Fig. 2.12(a) where he turns
around to examine an old artifact. Yet even when his attention is not on his team, he maintains awareness
of its activities and is able to locate its current focus.

The complexity of the task and the distractions of group work cause individuals to intermittently
lose their focus on an artifact. To maintain it, an individual who studies a nearby canvas will often use
physical means, such as placing a finger or a pen at immediate proximity or in actual contact with the
canvas surface (Figs. 2.13(a) and 2.13(b)). In fact, I observed designers moving towards a distant canvas
in order to maintain physical contact, even if they could see it clearly from afar.

The problem is further aggravated when trying to concurrently maintain focus on two nearby items.
Such a scenario is in fact very common. For example, figs. 2.8, 2.14(a), and 2.14(b) respectively show a
designer creating a new diagram based on another diagram, a requirements document, and personal notes.
Figs. 2.5(a), 2.3(a), and 2.9(a) show designers trying to maintain focus on small and large canvases at the
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(a) (b)

Figure 2.13: Maintaining personal focus on one item

(a) (b)

Figure 2.14: Maintaining personal focus on multiple items
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same time.

2.4.2 Drawing the focus of others to an artifact

(a) (b)

(c) (d)

Figure 2.15: Gesturing to another person about an item at close proximity

When designers are working at close proximity to the canvas and to each other, they often use similar
means to point at specific objects (Fig. 2.15(a), 2.15(b)). Since they often think in metaphors [39], they
might use special gestures to indicate certain behaviors such as components that “talk” or “search for
each other” (Fig. 2.15(c)). Occasionally, designers “violate” each other’s “personal space” by pointing
to an artifact within that space (e.g., Fig. 2.15(d))

A related problem is of pointing in documents for which multiple copies or base documents exist.
For example, Fig. 2.12(b) shows several people trying to locate the same spot in their respective copies
of the requirements document.
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2.4.3 Inferring peer focus

Even while breaking themselves from the focus of the team, designers continue to maintain peripheral
awareness of its activities and are able to rapidly rejoin its focus. Consider, for example, the person
standing with his back to the group in Fig. 2.12(a). When he turns around, he will quickly find the
artifact everyone is looking at, even if nobody is specifically pointing at it.

(a)

(b)

Figure 2.16: Inferring focus from gaze

Consider Figs. 2.16(a), 2.16(b), and note how it is possible to follow or intersect the gaze of others
to determine the artifacts they are looking at. In fact, it seems that we can do this almost instantaneously
in our daily lives, and even identify those who are looking at other objects and ignore them. The ability
to follow the gaze of others has been shown to improve performance in different tasks (e.g., [77]).
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2.5 Results - Notations

Although this study focused on the physical environment and the use of canvases, I found the nota-
tional choices made by subjects to be noteworthy. Subjects seemed to initially use free-form notations
with ad-hoc semantics to capture ideas while brainstorming. Some of the generated artifacts were text-
based or were based on the organization of other sheets of paper. Subjects also used certain notations
from UML, such as boxes for classes, but the resulting diagrams were far from compliance with the
standard. Relatively-compliant UML notation was only used at a much later stage in the design, after
the teams have fleshed out most of the design and were creating materials for documentation and presen-
tation. This interesting behavior inspired my decision to focus the second study on the notational choices
used by designers. I was not able to use the materials from this first study for this purpose because there
were not enough quality close-up photographs of the artifacts, and as there was no video or sound track
to help understand how they evolved.

2.6 Discussion and tool implications - Use of canvases

We now turn to analyzing the results described above and focusing on limitations of the physical envi-
ronment and the implications for electronic tools. I will address how tools can support collocated and
distributed design, and will pay special attention to the problem of preserving design knowledge.

2.6.1 Support for hierarchy of canvases

My observations in this study highlight the central role that canvases play in the design process. While
design can be carried out well on a single whiteboard, it appears that access to physical canvases of
differing sizes and types enriches the design process and offers developers additional flexibility.

Designers in my study frequently made use of the ability to place canvases inside one another and
to move them from location to location. This was particularly useful in early brainstorming stages,
as one could capture a variety of ideas or entities on separate canvases without having to worry at all
about classifying them or organizing them. We have also seen that some canvases are more than mere
containers for information - they have types and they convey a role.

Even today, the ability to utilize a variety of nested containers is not present in most design sup-
port tools or even in most mainstream drawing tools. Formal modeling tools typically follow UML
conventions of one diagram per sheet and offer a standard drawing canvas on which only the correspond-
ing UML primitives could typically be placed. Collaborative design support tools are somewhat more
flexible in what can be placed on the canvas but tend to stick to the whiteboard metaphor of providing a
single general drawing surface on which primitives and freeform drawings are placed.

I argue that tools that intend to support free-form software design and seek to offer maximal flexibility
must move away from a simple whiteboard metaphor and into a canvas-based metaphor. In doing so,
they must go beyond the capabilities of drawing tools, which use a single canvas, and beyond most
diagramming tools, which support groupings of primitives on a single canvas. Rather, canvases can be
placed inside the main canvas, and each should potentially be capable of supporting the inclusion of
any content or any other canvas. While some tools (e.g., [48]) support a single level of embedding, my
findings suggest that recursive embedding should be permitted.

The location of each canvas in the design space and in relation to other canvases and the hierarchy
should be easy and natural to manipulate. If an electronic whiteboard or other touch-sensitive medium
is used, manipulation via touch and perhaps using real-world analogues should be supported [48]. We

32



note that supporting a hierarchy of canvases in synchronous collaborations is far from trivial, as there are
challenges even with supporting standard grouping operations [44] when multiple users may operate on
the same entities.

We also note that a recent tool called Calico [61] takes an important step in the direction outlined
above. It introduces the notion of “scraps”, which are essentially groups of elements on the primary
drawing surface that have been “lifted” off that surface and can now be manipulated as an independent
unit. Unlike standard groups, however, each scrap functions as a drawing surface that can accept new
content. Scraps can also be placed or grouped on top of other scraps, an important step towards our
proposed containment hierarchy.

2.6.2 Knowledge preservation and canvas hierarchy changes

While the ability to modify the containment hierarchy over time offers a great degree of flexibility, it also
presents a serious challenge to the interpretation of the resulting artifacts. Over the course of the design
process, each canvas can appear in multiple locations and with different “parents” and “children”. I argue
that intermediate locations may convey important design knowledge that would be lost if one relied only
on the state in the final diagram.

For example, if a sticky note belonged at some point to a group that was assigned a specific property
or semantics, that property may still be valid even after the note has been moved. Similarly, other
information such as time of creation and the identity of the original author may also be lost. More
generally, I argue that the location of a canvas in proximity to other canvases affects its interpretation and
the interpretation of its contents.

Tools for supporting design should therefore not only preserve the final state of the artifacts and the
canvas hierarchy but also a complete history of past states. Such a complete history is important for
design since any past decision may be revisited at some point in the future, so earlier states may be
occasionally traced when seeking answers to specific questions. In addition, as we later describe, such a
history may be necessary to index conversations and activities.

2.6.3 Organizing canvases

All observed teams generated a large number of artifacts on a large number of canvases, including nu-
merous large top-level canvases. Work on these canvases was not sequential and independent: canvases
on which most of the immediate work has concluded continued to play an important role. Some were
subsequently modified and updated, and many canvases influenced work on other canvases.

Nevertheless, the limitations of the physical design space and likely also of human ability forced
designers to use a small working set of canvases which were easily accessible and place everything else
in secondary storage. Teams struggled to maintain a working set of visible artifacts within the limited
working space and invested significant effort in finding and retrieving diagrams after they were removed
from that set. Teams also tried to increase the physical locality of related information, placing related
information adjacently or embedding canvases within one another. The costs associated with physical
mediums prevented them from doing so in all applicable situations, especially for short references, and
they often needed to switch attention between different areas of the workspace.

The main advantage of the physical environment is that various cues, including direction, light, and
elements in the room helped designers be grounded in their surroundings and have reference points for
quickly recalling the locations of items.

Large electronic sketching surfaces offer the potential for alleviating these problems by creating
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a virtual drawing space that is much greater and more flexible than any physical canvas [30]. With
appropriate interaction techniques, they can help teams rapidly identify artifacts in this space and bring
them into physical proximity within the limited physical viewport. Multiscale interfaces [36] can help
overcome the inherent resolution limitations of these displays. However, in an electronic tool that has a
limited physical viewport, such as an electronic whiteboard, there are limits to the number of canvases
that can be concurrently viewed. In more immersive environments, reference points may be lacking.

The approach to material organization and recall in electronic tools must therefore be different. In
environments where keyboards are used, one alternative is to use of hot-keys or “virtual spaces” to access
specific elements in the working set and to use a simple search mechanism to search the secondary
storage.

Another option is to rely on the location of elements within a larger virtual canvas and on their
apparent shapes, such as showing an overview or map of the design area. An interesting variation of
this approach, which combines an outline view with the use of virtual spaces, is taken by Calico [61].
The tool organizes canvases on a grid, supporting both an outline view of the entire workspace and very
convenient switching between adjacent canvases in the grid. One can imagine how this could be extended
to support multiple viewports so that one canvas can be referenced while working on another.

In larger projects that involve many design sessions, the total number of canvases may be too great
to track with simple means. I believe that techniques borrowed from the organization of digital images,
such as as thumbnails and tags, may be useful for organizing the diagrams and facilitating recollections.
As the design process lengthens, access based on timelines becomes particularly valuable.

Although my focus here has been on supporting organization with electronic tools, the greatest im-
plication of my findings is that since canvases are passively read while discussions take place or other
artifacts are being edited or created, it may be necessary to preserve that information over time.

2.6.4 Canvase sizes, splitting, and merging

We have seen that physical canvases, especially ones based on pen-and-paper, have two significant draw-
backs: They tend to be rigid in their sizes, and they cannot be modified without residual clutter that
eventually requires a redraw.

Electronic tools are very adept at automating these tasks but may have several caveats. First, auto-
mated changes that affect the layout of nearby objects may disrupt specific intentions of the designers.
Second, the mundane tasks involved in cleaning and recreating diagrams are often an opportunity to
rethink and improve the design, and these would be eliminated with manual redraws. Third, while au-
tomatic tools can facilitate the process of splitting and merging canvases or changing their containment
hierarchy, these activities often result in the loss of important contextual information.

2.6.5 Private and public space

A common behavior among subjects in my study was to initially create artifacts in the private space.
These artifacts were later discussed with others and then recreated on the main canvas at a larger scale,
or the other way around.

Electronic tools can help designers avoid the mundane work of recreating an artifact in the shared
space. Certain design support tools (e.g., [89]) support private spaces and public space, and allow easy
migration.

Since many materials in the shared design artifacts have their roots in the private space, support for
preserving earlier states must reach all the way into this private work.
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2.6.6 Canvas types

Support for specific canvas types can easily be added to the model of canvas containment hierarchy.
By restricting certain attributes of a canvas to specific values, such as size or color, it is possible to
create prototypes or primitives. In fact, the meeting moderator could guide participants towards a certain
modeling style by setting up a palette of recommended canvas primitives. The moderator could then
indicate a shift in the design phase by changing this palette.

2.7 Discussion - Drawing activities and focus

We now turn to discussing how individuals and teams draw and how they maintain their focus.

2.7.1 Drawing activities and versions

I frequently observed that visual content was rendered in bursts with long periods of quintessence. While
this may typically result from the incremental nature of the design, I believe that another major factor is
the perceived cost of reversing transient changes. Designers frequently needed to capture brainstormed
ideas or illustrate examples and proposals in visual ways. However, the costs of creating such illustrations
over the existing diagram and then erasing them is very high. Instead, participants frequently spent much
time considering or debating changes before actually making them.

As part of this behavior, participants often “wrote in the air” with their pens to avoid committing early
to “permanent” changes. This behavior was particularly common in the context of short interactions
such as answering a particular inquiry. All such gestures are lost with physical surfaces, along with the
knowledge that they carry. This is particularly problematic if the intended drawings conveyed design
options that were considered but rejected as they carry significant rationale about the options that were
eventually chosen [60].

One major advantage of electronic tools is the ability to easily roll back unwanted recent changes,
which may encourage designers to actually draw or write. The second advantage is that all rolled back
changes can be preserved for future reference. The checkpoints for such reversals can be explicit, but
can also be implicitly based on periods of inactivity. However, suitable mechanisms would be needed
to distinguish temporary illustrations that need to be erased from the unrelated concurrent activities of
other individuals and subteams.

Since we now turn to discussing focus, it is important to mention that it may be possible to help
individual developers and subteams remain oriented on recent changes by making these changes more
salient. For example, we could paint using a luminescent virtual ink color which “dries up” into the
regular ink color as time passes. This will also help others see where the most recent activity took place
if they wish to join it or to avoid interfering with ongoing work.

2.7.2 Individual focus

Designers in my study attempted to maintain orientation and focus on artifacts via direct touch. While
this was most common while reading long texts on preprinted sheets, it also occasionally occurred when
reading specific elements that were attached to public canvases. In a transition to electronic tools, it is
important to continue supporting this behavior without triggering unexpected interactions with touch-
sensitive devices.
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2.7.3 Attracting peer focus to an artifact

In collaborative work, designers frequently had to draw the attention of their peers to specific artifacts
and items within them. They typically first drew the attention of specific peers vocally, and then they
helped them focus on a specific area by gesturing or gazing. Other peers were later drawn to the activity
and followed the gaze to find the point of focus.

(a) (b)

(c)

Figure 2.17: Pointing at a remote artifact

Note that identifying the target of a gesture or gaze in physical settings may be difficult when the can-
vas is particularly large or small (Fig. 2.17(a)), when it is far away (Fig. 2.17(b)) or when it is obstructed
by others (Fig. 2.17(c)).

While distance and size limitations can be overcome in electronic tools, the ability to gesture or infer
gaze is often not available. To compensate, the tool must first offer a way to start a new collaboration
session with a peer around a specific artifact, as was done for code in Jazz [43, 15]. Second, for existing
collaborations there must be a way to draw the peer’s attention to an artifact without causing complete
disorientation. Third, other participants must be aware of the focus and be able to quickly join it.

One possible way to provide awareness of focus regions is by highlighting viewports in the shared
space. I believe, however, that simply drawing a box to represent the viewport, as done by some shared
editors is distracting, especially when structured diagrams are viewed. Instead, I suggest that when one
user is examining an area that is currently being viewed by another, a “spot light” would be projected
to represent the peer’s viewport. The area would therefore be significantly illuminated, with a stronger
intensity towards the center and gradually decreasing intensity towards the edges. The main advantage of

36



this approach is that illumination is additive. Therefore, if many viewports are overlapping, that region
will be illuminated at high intensity, helping other users identify and join it faster. In addition, it is easy
to identify slight shifts and gaps in awareness.

Note that in some cases the gestures used to attract attention or refer to other artifacts carried special
meanings. For example, a gesture was used to indicate that there is a dependency or flow between two
artifacts. Some analogues may be necessary in an electronic environment.

Finally, turning to knowledge preservation, note that since exposure to existing materials may affect
the interpretation of conversations of artifacts, it is important to try and preserve a record of the focus of
all individuals over time.

2.8 Threats to validity

2.8.1 Impact of settings

Observational studies of software development in the literature take place in the lab, in academic settings,
or in industrial ones. Research in artificial settings enables the collection of data which could be difficult
to gather otherwise. Of course, these advantages involve a tradeoff, as artificial settings raise the question
of whether the results could be generalized. Clearly, additional research in industrial settings is required
to establish that the observations I made here hold more generally. All settings are unique in certain
respects, and replication in multiple organizations may be necessary. Nevertheless, let us briefly mention
the primary ways in which DesignFest differs from industrial settings and estimate their potential impact
on generalization.

First, design takes place in isolation from other, overlapping, development phases; there is no prior
requirement gathering, though in some sessions the DesignFest organizers played the role of clients and
spent time with each team. More importantly, the produced designs are not subsequently implemented.
However, DesignFest problems are based on real-world specifications, and most participants appeared
passionate and serious in their work. It is thus likely that the proposed designs, or at least the initial
high-level sketches, would be similar to those created by industrial teams early in the design phase.

This brings us to the second problem of the extreme time pressure compared to industrial settings.
While more research is necessary, I believe that my data reliably captures how representations are se-
lected when teams first face the problem, an issue for which limited prior knowledge exists. The impact
of the time limits is likely to be primarily on how details are fleshed out, documented, and reviewed;
these issues have been studied more extensively by others.

Third, DesignFest participants receive no material compensation for participation and are not held
accountable for their work; the motivation is primarily to learn and interact with respected peers. In that
sense, it resembles open-source settings, where nonmaterial compensation is key to contribution. This
similarity also applies to the diverse background of the participants, as industrial teams typically have
shared prior experiences and practices. However, I explicitly tried to minimize such organizational bias.

Beyond the threats to validity imposed by the settings, one main limitation of this study is that it
relies on a small sample of two groups. It may therefore be difficult to generalize to design in general,
and there are no guarantees that similar phenomena would be seen in additional observations. For this
reason, the follow up study samples a larger number of groups.

A second, related limitation is that I was the only individual to examine and analyze the data. There is
therefore a risk that important details were missed or that the focus is misplaced. Naturally, the analysis
and conclusions are also subjective. Nevertheless, the importance of this study is in highlighting certain
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issues that may affect design and the use of the resulting artifacts, and therefore in helping focus the data
collection and analysis of the follow up study. In particular, it led me to focus on the artifact contents
and on the preservation of knowledge.
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Chapter 3

Studying the Notations and
Representations in Collaborative Software
Design

The previous chapter described my first study, which was conducted at OOPSLA 2004. It relied solely
on photographic evidence and my recollection of the events, and focused primarily on the physical draw-
ing environment. My initial intention was to aid design by developing tools to support the physical
drawing activities. However, when I contrasted the photographic evidence with my recollections of the
session, I began to suspect that there is a much more fundamental need to support the drawn contents
themselves, both at the time of the session and in the long run following their creation. This requires an
understanding of the notational choices made by designers.

3.1 Study overview

3.1.1 Background

As previously discussed, software design is a highly visual activity where diagrams are used for brain-
storming, grounding, and communicating ideas and decisions [16]. Various notations have been proposed
for expressing designs in the object-oriented paradigm, and one of them, the Unified Modeling Language
(UML) [68], has become a widely recognized standard. Many software packages and CASE tools en-
able designers to create UML models for documentation and implementation purposes. Recent efforts
make UML modeling functionality available to teams using electronic whiteboards. Such tools are ei-
ther multiuser extensions of CASE tools (e.g., [38]), or tools that help transform freehand drawings
that include UML constructs into full UML diagrams (e.g., [14, 22]). Some also offer support for the
systematic capture of decisions and rationale [11].

However, casual observation and the results of my first study suggests that OOD teams do not fully
utilize these standards. Instead, they tend to follow an erratic process in which they generate a plethora of
diagrams and fragments. These visual artifacts are not only less aesthetic and complete than those created
electronically, but most importantly, also frequently diverge in their notation from UML, in some cases
substantially.

While this behavior can be dismissed as an attempt to cut corners or of a need for agile design nota-
tions [3], it highlights important issues for the object-oriented paradigm that has received little attention.
First, while we have powerful notations, formalisms, and tools for expressing finalized designs, we know
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surprisingly little about the processes and representations by which teams create these designs in the
first place and whether the same tools are applicable in these early stages. Second, while we know that
designers often sketch in alternate notations, the origins, semantics, and roles of these notations remain
unclear. Third, we know little about the impact of sketches created in these notations, the connections be-
tween them, and whether or not they can be straightforwardly used for documentation or implementation
or transformed into compliance with standard formalisms.

These issues have many significant implications. For example, it is not clear that UML, which is
primarily a specification and documentation standard, can also effectively be used as a design notation
in early phases and in collaborative settings. Should efforts be invested in modifying UML or in coming
up with a different notation? Can UML-based design tools be augmented to effectively support early
collaborative design?

Despite the abundance of literature on sketching and collaboration in general, only a few works [23,
22, 14, 88, 89] address the unique settings of collaborative OOD, and these primarily focus on the even-
tual automatic transformation of sketches into complete and aesthetic implementation- and archival-
quality UML models. They appear to treat the creation of these finalized models as the primary motiva-
tion behind drawing activities and tend to consider the early sketches as premature or peripheral artifacts
that will evolve in due time; digressions from from UML are treated as accidental and are deprecated.

While support for transforming and completing these models into a standard notation is likely valu-
able for use in later development stages [16], I suspect that this approach does not “tell the entire story”
about OOD representations, nor does it support all the unique needs of design teams. Rather, there may
be important underlying reasons behind the representational choices teams make which have significant
impact on how teams work in the object-oriented paradigm and on how practices and tools can support
them.

3.1.2 Goals

In this second study of collaborative design, I seek answers to several questions:

1. What kinds of representations are constructed by design teams as the design evolves, and how do
they diverge from UML?

2. Why are such nonstandard representations constructed and what purpose do they serve?

3. How are these representations used throughout the design process?

4. Can a better understanding of these representations suggest new practices and forms of tool sup-
port?

To answer these questions, I conducted a second observational study at the OOPSLA DesignFest
event. This study used video recordings and focused on representation and diagram use.

My intention in this study was not to comprehensively catalogue or explain all the improvised no-
tations used in collaborative OOD or to offer quantitative information about representational choices,
although these are interesting avenues for subsequent work. Instead, the presentation here is focused on
typical cases in which alternate notations are used, since these have little to do with the completeness of
the model and are perhaps the most revealing about representational needs and choices. In addition, I
focus on several related issues that have significant implications for supporting collaborative OOD but
that have received limited attention: How heterogeneous information is represented, the characteristics
of designs that spread over multiple diagrams, and how teams cope with this delocalization.
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3.1.3 Methods

Collected data

The observations presented in this chapter are primarily based on extensive data collection in the OOP-
SLA 2005 session of DesignFest and always refer to it unless otherwise noted. A follow-up study was
carried out at OOPSLA 2006 for validation purposes, but its results were not analyzed at the same depth
and will only be discussed anecdotally. In this 2005 session, I made video recordings of the design
sessions of several teams.

I chose video in order to capture as much context as possible, including a trace of all interactions,
annotations, and references to artifacts. Because teams tend to post and refer to materials all around
them [25], I used widescreen camcorders to capture more of the design area, one of them filming in
high-definition. To enable us to evaluate the value and limitations of more available means of preserving
design knowledge, I also made a separate audio recording and frequently took still photographs. These
additional mediums also served as a redundancy for the material in the videos.

Due to the sensitive nature of video recordings, significant measures were taken to ensure partici-
pant consent. Prior to the conference, the DesignFest organizers sent pre-registered participants an email
describing the study and asking for preliminary consent to different recording mediums. The large num-
ber of preregistered participants allowed the organizers to form initial groups based on consent without
denying anyone their choice of design problem. Since the DesignFest event is also open to walk-in
participants, potentially affecting group composition, I also verbally introduced the study to each of the
consenting groups and obtained written consent. Note that all names in this chapter have been changed.

Design task and groups

The real-life design problems available that year were a medical information system for a pediatric the-
raphy clinic, a system for a web-based image management and photo printing business, and a generic
simulator for third-party controllers in industrial production lines. The first two problems are representa-
tive of typical information and eCommerce systems, while the last is an example of a more exploratory
project in a different domain.

Since many consenting teams were working at the same time, my selection of observed teams at-
tempted to obtain a blend of problems. I sampled only groups that had at least four participants at the
beginning of the session and that were located in areas with limited acoustic interference from other
teams. Depending on the session, teams worked between 3 and 6 hours excluding breaks, and I tried to
film the entire session of each team. In one case, I switched from team D to team E to capture more
drawing activity. Overall, I obtained over 20 hours of video footage from seven teams, summarized in
Table 3.1. I also obtained still photographs of the work of other teams.

Group Problem Session Length Recorded
A Simulator Sun PM 3 hours All
B Image Shop Sun AM 3 hours All
C Image Shop Sun PM 3 hours All
D Medical System Sun Full 6 hours First 2 hours
E Medical System Sun Full 3 hours Last hour
F Medical System Wed Full 5 hours All
G Medical System Wed Full 5 hours All

Table 3.1: Groups for which video footage was recorded
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Data analysis

Before proceeding to analyze the data, all video footage was digitally transferred to a video editing
software, allowing us to effectively browse hours of footage to trace the evolution of artifacts. The tapes
were then fully transcribed as LATEX documents, allowing us to create versions limited to dialogue and
versions with descriptions of additional activities.

My analysis of each team’s work typically proceeded as follows. First, I studied photographs of the
finished diagrams from the end of the session and tried to understand them without additional informa-
tion, as potential consumers of these materials would have to. Next, I examined all the photographs taken
throughout the session and used temporal cues to obtain a better understanding of the artifacts and their
evolution. Only then I read through the transcripts and eventually watched the entire tape. Throughout
this process, I made notes of relevant observations. Eventually I pooled and studied the observations
from all teams, identified the examples which I present in this chapter, and returned to the materials to
study them in depth.

3.2 Results: Alternate notations in individual artifacts

The presentation of the results begins with the representations used in the collaborative creation of indi-
vidual artifacts.

3.2.1 Use of UML and divergences

As could be expected from the venue, UML was utilized by all observed teams. Specifically, all teams
drew class diagrams, and several drew sequence diagrams, use-case diagrams, and even one package
diagram. Perhaps due to the limitations imposed by the settings, the nine other diagram types were
hardly used. In conformance with casual observations and prior works, I frequently observed departures
from UML and proceeded to investigate them.

Previous researchers [23] suggested that divergences from UML are mostly accidental and that di-
agrams eventually comply with the standard. When I observed teams explicitly reproducing artifacts
for presentation at the conference’s final event, they indeed tried to create aesthetic and complete UML
models. However, most of these attempts took place towards the end of the session, after the brunt of
the creative activity was done, and then had a relaxed and visually distinct interaction style. Teams often
split up, and subgroups worked on recreating diagrams on new canvases instead of modifying existing
ones.

In the creative phases, however, I often observed situations where the departures from UML appeared
to be intentional rather than accidental. Specifically, I saw artifacts which convey information that could
have been expressed in a straightforward manner via UML, but were created in completely different
notations or which violated significant principles of the standard. These cases are particularly interesting
since they yield significant clues about the behavior and needs of design teams.

To help the reader distinguish the detailed objective descriptions of activities and artifacts from my
subjective interpretation and analyses, the former are presented as italicized text. Also, the textual de-
scriptions frequently refer to photographs of the artifacts.
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3.2.2 Adapting to evolution

Certain UML diagram types convey multiple layers of information. Class diagrams, in particular, not
only list the classes of the system (or its entities in the case of domain-modeling [3]), but also specify
the members of each class, and the object-oriented (e.g., inheritance) and data cardinality (e.g., one-to-
many) connections between classes. The notations of UML allow designers to add this information in
any order while still maintaining the syntactic correctness of the diagram.

Nevertheless, I observed a number of cases where diagrams ended up with all these layers of informa-
tion but expressed in an entirely different form. Teams tended to select diagram types opportunistically
in order to address the issue at hand, and captured knowledge as it emerged from the problem-solving
process even if it did not fit the current selection. In some cases, they began constructing a diagram of
one type only to have it morph into another. On other occasions, the diagrams turned into a collection of
fragments related only by their relevance to a particular design issue. I present three such examples in
detail in order to convey the process by which these changes occur.

Example 1 - Structural domain model

The first example comes from team A, which was working on the problem of constructing simulators for
third-party controllers of production lines.

The team began its session by discussing assumptions, and then turned to exploring use-cases. Jack,
standing by the flipchart, titled the blank canvas Stories. Then, somebody suggested that they first
cover high-level domain entities, and others agreed. The team started brainstorming ideas, which Jack
scattered on the titled canvas.

Already, we have a discrepancy that may confuse future stakeholders: based on the title one may
expect to see the names of use cases, but the diagram actually contains the names of entities. This is not
a significant problem for team members who spent most of their time on entities and may not even recall
the original title.

Very soon, it turned out that the proposed entities could be related and questions were posed and
discussed. Are Node and Waypoint merely synonyms? Are Source and Destination unique entities,
and is there more than one of each? Appearing to make the decisions himself, Jack used parentheses to
make Waypoint an alias of Node, and he then replicated Source and Destination under Node, with
a small right-angled arrow to indicate the connection (Fig. 3.1).

Improvising the arrow notation allowed Jack to capture the connection without disrupting his at-
tempts to also capture the barrage of brainstormed ideas. However, the figure became inconsistent with
class diagram notation and its semantics unclear. Jack did not clarify the semantics of the connection,
and when another participant proposed a specialization relation, he did not hear it or simply ignored it.
Nevertheless, he appears to have memorized this notation for subsequent idiomatic use.

Note, though, that even in the early stage of Fig. 3.1 the diagram contains a risky redundancy,
as source and destination appear twice, once independently and once under Node. A user skim-
ming the diagram is more likely to notice the independent source and destination, and may not
realize the fact that these entities are connected to Node because the information is slightly delocalized.

As the team continued to brainstorm, a notion was suggested for the inventory of items at a particular
location. At first, it was captured via the Count property of Node and listed with the same right-angle
arrow. A replica of Count with the arrow was then added under Path.

Further discussion of the notion of inventory lead to the realization that Source, Destination,
and Waypoints are all special kinds of Node. The representation was changed, with Waypoint listed
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Figure 3.1: First step in domain model diagram of team A

Figure 3.2: Second step in domain model diagram of team A
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above Node, and Node listed under the independent Source and Destination entities (Fig. 3.2). It
took a while until the redundancy of these entities under the original Node was fixed.

The diagram in Fig. 3.2, is now quite confusing. Source and destination appear twice, and the
connection of each to Node appears twice. However, since the semantics of the arrow are not clear,
it is possible that the vertical direction of the arrow carries semantics. In this case, the fact that Node
appeared once under and once above the source or destination is misleading.

Figure 3.3: Adding methods to the domain model diagram of team A

Later on, after a Release entity was proposed for the Source and written down (Fig. 3.3), someone
suggested writing the behaviors in a different color, allowing more methods to be added at various
locations around the entities.

The resulting diagram, depicted in Fig. 3.4, conveys the same details as would a class diagram used
for domain modeling [3]: candidate classes, properties, methods, and inheritance. However, from the
point of view of “proper” UML modeling, its notations are ambiguous without the context of specific
discussions and elements. For example, inheritance, which in class-diagrams appears as a direct line from
a subclass to a superclass above it, appears here as an arrow from a superclass to the name of a subclass
below it. The problem is not only with the direction but also with the replication of the superclass name.
In addition, the exact same notation is used to represent a property of a class and is also similar to the
notation for a method.

These problems may preclude this diagram from serving as a documentation artifact, at least without
contextual information. For example, how would someone viewing this artifact infer that Count is a
property of Node and not a superclass?

Nevertheless, this diagram appeared to facilitate brainstorming as a preliminary step to coming up
with a solution. By writing all brainstormed nouns around the board, the team was able to avoid an
early commitment to distinguishing classes, fields, and methods, which require different notations in
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Figure 3.4: Final domain model diagram of team A

class-diagrams. Furthermore, keeping the related entities for each candidate class in close proximity,
sometimes at the cost of replication, allowed the preservation of the diagram as primarily a catalog of
entities rather than as an attempt to fully structure the domain.

Example 2 - structural solution model

In the second example, team E, which was working on the medical information system, arrived indirectly
at a class diagram while retaining some inconsistent notations.

The team was trying to envision the usage model of its system and started drawing a sequence
diagram that started with a user making a request. Since users interact with the system and provide it with
additional information via web forms, there was soon a need to represent these forms. Craig, standing
by the posterboard, placed a page that contained a rudimentary architecture diagram immediately to the
left of the sequence diagram and partitioned it. In the remaining area, he started drawing rectangles for
UI forms, writing the names of important actions inside them (Fig. 3.5). More interaction was specified
in the sequence diagram, and additional web-forms were added.

By increasing the spatial proximity between the sequence diagram and the UI diagram of Fig. 3.5, the
team was able to follow and manipulate the representations of two facets of the system at the same time.
No evidence, however, remains to alert future stakeholders of the connection between the two diagrams.
In addition, any decision or information associated with an entity in one diagram may not be visible to
someone examining the corresponding entity in the other diagram.

As forms for treatment plan and treatment step were added, a one-to-many relationship
was realized and captured (Fig. 3.6), followed by more cardinality connections (Fig. 3.7). These changes
essentially turned the form collection into an entity-relation diagram. Then, the team realized that
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Figure 3.5: First step in the solution model diagram by team E

Figure 3.6: Solution model diagram by team E becomes an entity-relation diagram
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Figure 3.7: More relations are added to the solution model diagram by team E

Figure 3.8: Final form of the solution model diagram by team E
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a Session is a special kind of Appointment, and added a parallel inheritance arrow to represent
it, turning the drawing into a class diagram. In addition, a line representing control- and data-flow
was added from the Session to the generated Treatment report, thus diverging from class-diagram
notation (Fig. 3.8).

Although the final version of this diagram resembles a compliant class diagram, it contains additional
layers of information such as the contents of some web-forms. In addition, certain entities represent entry
points into the sequence diagram, but this contextual information is not captured in writing and is lost.
By combining all this information into one diagram, the team was able to treat multiple facets of each
entity without replication.

Example 3 - behavioral domain model

Alternate representations evolve not only for structure but also for behavior and function.

Figure 3.9: Early form of the functional domain model by team A

Team A finished the domain model of the first example and began to explore the interaction between
the controller and the simulator with a simple scenario. On a new canvas, they created a small map
of the simulated production line, consisting of one source and one destination connected by a single
conveyor belt. To describe the behavior, Al wrote down a business rule, requiring a widget to arrive at
the destination before the next one leaves the source (top of Fig. 3.9).

Now, Al wanted to describe the behavior of the controller and specified it in two textual steps (middle
of Fig. 3.9). Jack approached the board and added a sequence diagram to represent the interactions
between both sides of the system (bottom of Fig. 3.9). When they realized that the controller‘s behavior
is continuous, Al added a third step, send next one, and created a flowchart arrow from it back to the
first step. Someone then mentioned the need for an exit-condition, and Al turned the steps into pseudo-
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Figure 3.10: Final form of the functional domain model by team A

code by wrapping them within a while loop with curly braces (middle of Fig. 3.10). Later, the sequence
diagram was modified to represent this change, and an external testing agent was added. (bottom of
Fig. 3.10).

We see that differences in individual perspective can lead to representation choices that differ in
their ability to cope with the evolution of the design. Al was focused on the controller and described
its behavior in isolation, whereas Jack preferred a view of the entire system. Jack’s choice to use a
sequence diagram later helped cope with the introduction of an additional entity, the tester, into the
system. However, such diagrams typically represent only a single execution path and could not be
naturally extended to meet the evolving need to model iterative and conditional behavior.

The textual representation chosen by Al, on the other hand, was more malleable and was comple-
mented by borrowing idioms from familiar representations. The series of steps seemed sufficient for
sequential code, but iterative behavior demanded the representation of control flow, and the arrow nota-
tion of flow-charts was promptly borrowed. Flow-charts, however, bloat under complex control flows,
and the more concise syntactic elements of a programming language were quickly used.

In this case, identifying the connections between the diagrams is relatively straightforward since they
are collocated on the same canvas. It is relatively easy for a person to look at all three at the same time. If
the diagrams were created in an electronic framework that uses distinct canvases or on multiple physical
canvases, there would be nothing to indicate to a casual observer that more information is present in
another diagram or that all diagrams should be examined together.
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3.2.3 Diverging from UML to work with custom levels of structure

Everyday experience tells us that the hand-drawn diagrams created early in the design process typically
appear less aesthetic and organized than their finalized versions, especially electronic ones. In some cases
the difference is purely aesthetic and the diagram can be rearranged and re-rendered without actually
changing the structure [14]. Other sources [22] suggest that earlier models are simply less complete and
omit content and connections outside the current focus; the missing details are incrementally added later.
While I witnessed many examples of less aesthetic diagrams and of less complete ones, I also observed
early diagrams which appeared visually different because of a choice to use a different level of structure.

Starting with unstructured representations

Notational standards such as UML typically define several diagram types, each with its own primitives.
Software tools that support them often require a user to specify the diagram type in advance and only
allow the use of the appropriate primitives. However, as we have seen in the previous examples, an
early commitment to a diagram type is not always practical. In fact, teams may initially work at such
a simplistic level that no diagram type is appropriate, since it would incur significant costs and may
constrain them with irrelevant structural details.

The most typical example of this behavior occurred as teams began working on a new canvas and
started brainstorming a homogenous set of entities. For example, if team A was forced to use a class
diagram when constructing the domain model of Fig. 3.8, the cost of surrounding each new entity in a
box might have been marginal. The real cost would have come from constraining the ability to modify
and experiment as certain entities turned out not to be classes but rather properties or methods.

It appears that when teams expected their design to evolve, they tended to prefer simpler representa-
tions that imposed less constraints. Often, they chose to use text in the form of lists or scattered elements.
As the design evolved, relations and annotations were gradually added. In a few cases, the teams used
this opportunity to complete the diagram towards UML. For instance, team F took separate diagrams
conveying a list of actors and a list of activities, placed them adjacently, and connected them to form a
use-case diagram, as can be seen in Fig. 3.11.

In most cases, however, teams continued to diverge from UML. They represented the added informa-
tion by repeatedly using improvised notations, as in the case of team A, or borrowed idioms from other
notational standards, such as the inheritance arrows and relation cardinality annotations from UML class
diagrams. The repeated use constrained the representation and implicitly added some structure to the
diagram. This structure might eventually help in the interpretation of the diagram even if the notations
are unclear, as one could likely do with team A’s domain model from Fig. 3.8.

When reuse was limited, and in particular when certain notations had only a single instance, we
were often left with less structured and consistent representations that were more difficult to interpret.
For example, Fig. 3.12 depicts a diagram by team F, which was working on the medical system. The
diagram primarily lists entities, but it also conveys several unclear relations. The relations between role
and the several descriptive entities to its immediate right use the same notation and could thus perhaps
be interpreted as examples or instances of the same concept even before we consider the actual text of
these entities to verify this assumption. On the other hand, the relationship between patient record

and treatment plan is unique in this diagram and therefore cannot be interpreted with confidence
without contextual knowledge from the actual session.

Even if some notations are reused, however, the benefits can be offset if the emergent structure
becomes too complex. Consider Fig. 3.13, which conveys a diagram of objects from team G, who were
also working on the same problem. In this diagram, it appears that the team initially brainstormed entities
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Figure 3.11: A use case diagram composed by team F

Figure 3.12: Connector notations in an object diagram of team F
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Figure 3.13: Connector notations in an object diagram of team G
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and scattered them about the board. When they needed to relate the entities they used generic lines
and then decorated them with borrowed cardinality notations and with an improvised arrow notation.
Nevertheless, the complexity of the graphs makes it difficult to interpret the improvised notations or the
undecorated lines without additional contextual information.

Finally, note that while lists or scattered sets of entities on paper allowed teams to begin work with
limited structural restrictions, even more freedom was available to those who used sticky-notes. For
instance, one team in the a follow-up study I carried out in OOPSLA 2006 created entities on stickies,
placed them on a canvas, and eventually connected them to form the class diagram of Fig. 3.14. Many
teams, including team D in Fig. 3.15, added structure by creating hierarchies of bins on a large canvas
and placed atomic elements on sticky-notes. The use of sticky-notes in OOD deserves further focused
study and may benefit from specialized support in electronic whiteboards [48].

Figure 3.14: Creaing a class diagram with sticky-notes

Figure 3.15: Creating custom hierarchies with sticky notes
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Working with more structure

Based on casual observations, one may expect that freeform design sketches will always have equal or
less structure than models adhering to standard notations. After all, these notations are often designed to
accommodate several layers of complex information. While this may generally be true for UML class
diagrams and sequence diagrams, use-case diagrams revealed an opposite phenomenon, where seemingly
improvised non-conforming notations actually added structure rather than omitted it.

At its core, a use-case diagram (UCD) is a bipartite graph that matches a set of actors with a set of
use-cases,1 thus offering a straightforward way to represent this many-to-many relationship. However,
to identify the UCs associated with particular actors, or the actors associated with particular UCs, one
must trace all outgoing edges. This incurs significant cognitive effort since the UCDs for large or dense
relations tend to become cluttered [25].

While all but one team (A) in my study explicitly listed actors and UCs or activities, only three of
them (C, F, G) drew actual UCDs. All other teams, as well as team C after it had already created a
standard UCD, preferred to connect the actors and UCs using the more structured tabular, textual, and
numerical forms depicted in Fig. 3.16.

It appears that for the two information system problems, teams tended to partition the set of use cases
by an associated primary actor. This partition effectively created a one-to-many relationship that could
receive little benefit from the bipartite representation and yet could become difficult to follow. Teams
thus preferred to represent this partition in structured textual representations, which are more organized
and carry lower cognitive demands but cannot be used for many-to-many relationships.

Use-case diagrams are particularly susceptible to replacement by more structured representations be-
cause their inherent structure is so limited. In contrast, class- and sequence- diagrams are very structured,
and are sometimes replaced by alternate notations, mostly in the opposite direction, of less structure.

Nevertheless, even these diagrams types may occasionally be replaced by more structured represen-
tation. For example, flowcharts, pseudo-code and actual source code are more structured than sequence
diagrams because they inherently support complex conditions, control flow, and reuse behavior that is not
natural to sequences; this may explain their use in the earlier example of the behavioral model. Similarly,
class diagrams are limited in describing the contents of each individual class since they simply present
a list of members. We have occasionally seen teams devoting a separate diagram to the contents of a
specific class, giving them more freedom in specifying and manipulating its members. Some teams even
created bins within the representation of a class into which members were sorted, effectively creating
another level of abstraction within the class.

Finally, note that the representation of Fig. 3.16(d), while appearing the most aesthetic, also presents
the greatest challenge due to delocalization. A reader examining the left canvas without seeing the right
canvas may not be aware of the fact that the roles and activities are related. The arrows in the other
diagrams make this clearer but at the cost of reduced aesthetics and organization.

3.2.4 Summary – Collaboration on individual artifacts

The common thread of the observations presented so far is that the design process is structured by the
team’s unfolding understanding of their problem and solution rather than by the formalism they use for
the solution. This allows the team to capture the results of their problem-solving process in whatever
order that it happens to take and tackle issues in the order they choose, often using sketches as a short-
term memory. They strive to minimize cognitive load by structuring data and increasing the locality of

1Another layer of information connects use-cases to represent extensions and dependencies, but I rarely saw its use.
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(a) Team B (b) Team C

(c) Team G

(d) Team E

Figure 3.16: Alternative use case diagrams
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relevant information. Forcing them to focus on specific notations and diagram types would clash with
the way they work.

More importantly, to effectively address ad-hoc needs, teams seem willing to create artifacts with
certain inconsistencies and ambiguous notations at the cost of making them incomprehensible to out-
siders. Interpreting these representations would require familiarity with the context of their creation,
unlike UML or other documentation-oriented formalisms.

Also note that even when working with few canvases, designers frequently have to use multiple
diagrams and representations. If these representations are physically remote, a reader examining one
canvas may not be aware of information in the related diagrams on the other canvases.

3.3 Results: Representing heterogeneous information

In the previous section we focused primarily on individual diagrams that diverge from UML notation
or use alternate representations. Individual diagrams, however, tell only part of the story. As the teams’
understanding of the problem and solution evolves, their knowledge and designs consists of different
types of information. To fully understand how designers represent these designs, we must investigate
how they deal with this heterogeneity.

3.3.1 Using independent diagrams

Since software designs cover multiple facets like structure and behavior, two-dimensional notational
standards like UML typically consist of multiple diagram types [37]. The UML standard dictates that
each diagram will use the notation of exactly one diagram type and restricts the use of foreign annota-
tions. These restrictions are usually followed in formal design documents, and most CASE tools enforce
them by providing a separate drawing canvas for each diagram, and offering only the drawing primitives
of the chosen diagram type.

DesignFest teams, however, use physical mediums and are not forced to produce a formal design
document. They are therefore free to violate this restriction. Nevertheless, it appears that initially they
did try to adhere to the standard,

The ability to increase the spatial proximity between diagrams, which is relatively straightforward
with paper, appears to aid teams in coping with the heterogeneous nature of the design. For example, in
the earlier example of team E which was working on the medical system (Fig. 3.5), they had to consider
the parts of the user interface visible to the user as well as the activities behind the scenes. This lead
them to work concurrently on the sequence diagram and the UI diagram, which were placed on separate
but adjacent canvases.

When smaller diagrams were required and the use of separate large canvases for each diagram was
impractical, teams appeared to relax the restriction a little, allowing diagrams of different types to reside
on the same canvas. For example, we have seen team E using the area below the architectural diagram
to create the UI diagram in order to conserve space.

Teams may also intentionally bring multiple small diagrams together onto the same canvas in order
to increase locality. In the earlier example of team A’s behavioral model (Fig. 3.9), the exploration of a
scenario resulted in multiple artifacts. While each artifact serves a different role, it must be interpreted in
the context of the others and kept consistent with them, thus benefiting from increased locality. A similar
multiplicity, involving a sequence diagram and a more complex map of the production line, appeared
when the team later explored a more elaborate scenario.
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3.3.2 Combining diagrams

While teams generally tried to keep diagrams of different types separate, they occasionally violated UML
practices by combining information from different diagram types into a single artifact. This typically
involved combining behavioral and structural information.

Figure 3.17: Implementations steps included within in a class diagram

For example, team F devoted an entire canvas to the methods of a single business object (Fig. 3.17)
in a manner similar to a class diagram, but in addition to listing the method signatures, they also specified
implementation details which have no place in such diagrams according to the standard.

A similar phenomenon was observed in the 2006 validation study, when a team working on a tourna-
ment management software textually elaborated the steps of a use case and added class-diagram elements
to represent related entities (Fig. 3.18). In both cases, the added information is closely coupled to the
context of the primary diagram type.

In addition, I frequently observed teams augmenting UML class diagrams with indications of control-
and data- flows. For example, in the earlier example of the evolving class diagram by team E from
Fig. 3.8, the team created an output entity for a Treatment report and added a line from the Session
class to represent the flow of data used to create it. Similarly, the three outgoing edges from the
Treatment object in the data model created by team G from Fig. 3.13 appear to represent some form
of control or data flow.

One team in the 2005 study used class diagram notation to represent the system architecture and the
interactions within it, as depicted in Fig. 3.19.

Other teams introduced external systems and storage mediums into standard class diagram. For
example, Team A was creating a class diagram and discussing how the Simulator class could be
configured. They added a configuration file and a class for loading it, and then they used arrows to model
the flow of data from the file to the simulator via the loader class (Fig. 3.20(a)). This hybridization of
class structure and data flow is apparently not accidental, as it was repeated in a subsequent finalized
version of the diagram (Fig. 3.20(b)).

By combining diagrams or introducing foreign elements, teams increase the locality of information
while reducing the clutter, effort, and redundancy that stems from the use of independent diagrams.
While these are tangible benefits, this behavior appears to have a more fundamental motivation that is
rooted in how designers think about the system and its components. Early design discussions typically
revolved around objects rather than classes and referred to their structural and behavioral properties in
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Figure 3.18: A class diagram embedded among use-case steps

Figure 3.19: Architecture presented in class diagram form
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(a) Initial diagram (b) Later diagram

Figure 3.20: External elements in class diagrams by team A

ways that cannot easily be disentangled. While notations that dictate a separation of these facets offer
ways to accurately model the details of each facet without interference from the other, this has limited
benefit in these early stages, while the costs of forcing a disentanglement may be significant.

Impact on knowledge awareness

The problem with combined diagrams is that while convenient for modeling, they carry the requirement
of eventually being disentangled for presentation and preservation purposes. Once separated, several
problems may ensue: First, because each artifact is created in the context of the other, there may be
certain dependencies between them and each may individually be hard to interpret. Second, to save
effort, the designers may avoid the duplication of information, leaving gaps in one artifact that are readily
filled by the other; once separated, each artifact could be incomplete. Third, there is a difficulty keeping
the separate artifacts consistent as they continue to evolve. Future maintainers making changes to one
diagram may not be aware of the past connection and thus of the need to change the other.

I also argue that some teams may be apprehensive about combining diagrams in this way, but that the
above examples demonstrate that designs are naturally multifaceted. Thus, even if a team designs using
multiple separate canvases, the implicit connection between each diagram exists and must be preserved.

3.3.3 Introducing peripheral information into diagrams

The tendency to increase the locality of information in the diagram is also evident from the ad-hoc
integration of concrete examples, details, and instantiations into the diagram, rather than placement in
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external documents or use of annotation standards.

The UML standard, especially as implemented in CASE tools, accommodates peripheral informa-
tion only in specially marked “notes” that lie in proximity to- or in direct connection with- diagram
elements; these constitute a semantically- and visually- separate annotation layer. The last example
shows that in collaborative work, the boundaries are not as clear, at least visually: the configuration file
with its proposed format in Fig. 3.20(b) looks at first like an integral part of the diagram.

Figure 3.21: Examples added using subclass notation in class diagram by team B

Similarly, as team B was working on the image shop problem, they integrated examples of images,
metainfo types, and order states into the class diagram (Fig. 3.21), even though it appears that these were
not intended to eventually become classes.

Concrete examples, not always textual, were often added in an ad-hoc manner while discussing a
recent idea or addition. For instance, during the initial discussion about the configuration files, a member
of team A wrote a concrete example of its format on the top of the page (Fig. 3.20(a)).

Similarly, in response to questions about security, a member of team C drew a small incomplete class
diagram (Fig. 3.22). As more questions were raised about the data relations, he added a sample record
next to it.

While examples were typically placed on the same canvas as the entities they refer to, we saw lim-
ited spatial proximity or explicit connections between them within the canvas. For instance, the data
format appearing at the top of Fig. 3.20(a) is visibly remote from the configuration file at the bottom
of the figure. In fact, external observers might consider it unrelated to the diagram or relate it to the
methods of the controller as both use a distinct color. It appears that explicit proximity or connection, as
practiced by UML, was not necessary since the example was given in a specific context. When creating
documentation-oriented artifacts, teams appeared to explicitly capture these associations, as is evident
by the relocation of the format into the configuration file (Fig. 3.20(b)).
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Figure 3.22: Sample record added to class diagram by team C

Note that important context-sensitive design information is not always fully captured in writing. It
may sometimes be captured as more of a placeholder or reminder of other information and be difficult
to interpret without the contextual information. For example, only meeting participants will recognize
that the annotations on the methods of the simulator in Fig. 3.20(a) convey that some methods are private
while others correspond to a certain scenario. Similarly, the meaning of the crosses or the arrows on
the edges in the earlier example of Fig. 3.13 is unclear but likely denote some concept discussed in the
session.

I believe that the inclusion of examples within a diagram is often done to ensure awareness. Designers
may suspect that if the example is kept separate, there would be nothing to lead someone examining the
design diagram to suspect that an example or additional information is available.

Finally, note that as we have seen in the previous study, many notions and ideas in the course of
discussion are not expressed with permanent visual markings but rather created with hand movements
or even sketched in the air or with a capped pen over the board. All evidence of these gestures is lost in
the final diagram, even though they potentially convey important annotations and examples. Designers
often appeared to use this mode of communication to avoid cluttering the paper, so it is possible that
interaction would have been different over a dry-erase whiteboard or an electronic medium. Nevertheless,
this behavior demonstrates that pertinent design information may not be explicitly captured in an artifact
but rather expressed in its context.

3.4 Results: Dependencies between diagrams

The results presented so far show that even when teams are given freedom in their choice of representa-
tion, their designs are still dispersed over multiple diagrams. In this section we focus on the dependencies
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between these diagrams, how they change over time, and how teams cope with them.

3.4.1 Diagram evolution across canvases

In examining the representations of individual artifacts, we saw diagrams evolve and change their type
or focus in response to ad-hoc design needs. As the diagram becomes more visually dense, however, it
can no longer evolve “in place”. Especially when using physical mediums, larger segments cannot be
manipulated with ease. Meanwhile, striking out contents is detrimental to the diagram’s aesthetics and
may overload short-term memory if material is recreated. Thus, and as we have seen in the first study, a
single design or final diagram can sometimes evolve over several versions, each on a different canvas.

The model of continuous evolution towards complete UML described in the literature [23,88,14] im-
plies a monotonically increasing shift towards completeness in content and notation. When the evolution
is not in-place, this model implies that each new version should convey at least the same information as
its predecessor (except for intentional revisions), thus rendering all previous versions redundant. How-
ever, reproducing the contents requires a significant menial effort, which designers are likely to try and
minimize. An issue of significant concern, therefore, is whether they would perform this menial task and
copy all details or spread the design over multiple incomplete versions, potentially leading to a situation
where the final version might not stand on its own.

Example: Evolution of data model

Let us consider one such situation, occurring as team E continued working on the class diagram for its
medical information system (Fig. 3.8). As a result of the process by which the diagram evolved, it had
become quite cluttered, with key entities, such as Patient, still represented as forms rather than as
classes.

Craig described the diagram as “a mess” and suggested that they clean it up; someone suggested
summarizing and Craig agreed, saying they should also capture the relations. They proceeded to create a
new diagram with a clearer and more spacious layout. It began as an entity-relation diagram but became
a class diagram as inheritance was added once again. In creating the new diagram, the team fell into
a pattern, depicted in Fig. 3.23: Craig would turn his body or walk towards the original diagram and
identify an important entity or relation. A discussion would ensue, followed by rendering a version on
the new diagram, after which the pattern repeated itself.

The final version of the diagram, depicted on the left canvas of Fig. 3.24, conforms with prior re-
search which suggests that artifacts are often recreated with equivalent content to improve aesthetics or
to migrate into an electronic tool [22,16], or with less content to highlight specific details [23]. However,
the first study suggested that the mundane activity of recreating artifacts serves not only aesthetic pur-
poses, but also offers a chance to inspect, reconsider, and improve past decisions, resulting in different
content. What, then, is the relation between the old and new diagrams in the work of team E, and to what
degree are aesthetics the primary difference between them?

As cleanup progressed with elements transferred to the new diagram, certain decisions were revisited
or expanded. For example, at the end of a long discussion, the one-to-many relation of Responsibility
between Therapist and Session from the original diagram became a many-to-many relation between
Therapist and Treatment plan in the new one and received several associated properties. After-
wards, the team created a relation between Plan and Appointment to indicate that a plan can consist
of both appointments and sessions rather than solely of the more specific sessions. Later, the flow arrow
from Session to Treatment report was replaced by a one-to-one relation. A discussion on a re-
porting infrastructure ensued, and though never finished, a general Query class was added to represent
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Figure 3.23: Team E recreating the data model
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Figure 3.24: Revised data model by team E

this functionality.

This example offers anecdotal evidence that designers may conserve effort by avoiding the replica-
tion of some pertinent information, such as the fields of the Treatment plan class, to the new diagram.
Grasping the complete design thus requires aggregating information from both versions, which is made
difficult by the differences between them. It is also just one of the many situations I encountered in which
substantial and often conflicting differences exist between the earlier version of the artifact and the re-
vised one. The difference may not be noticed without careful comparison of both diagrams. Determining
the final decision would require knowledge of which diagram was newer, and determining the rationale
behind them involves recalling the discussions at the time of the transition. A greater problem, perhaps,
is that a reader examining one version may not be aware of the existence of other versions.

Evolving through multiple revisions

Many diagrams evolved through more than two revisions. In general, relatively early after teams began
working on a new version, they seemed to determine the magnitude of differences from the previous ver-
sion. When it appeared that only minimal changes would be necessary, they tended to split into smaller
groups and produce an aesthetic and complete finalized version. Otherwise, the team remained cohesive,
and less attention was paid to completeness and aesthetics, perhaps in anticipation of yet another revi-
sion. Nevertheless, the early determination was not always accurate, resulting in significant decisions
being made at the subgroup or individual level.
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3.4.2 Noncontiguous artifact evolution

The previous example demonstrated a localized and contiguous evolution from one version of the artifact
of focus to another version of the same artifact. Earlier, we have seen interweaving of work on multiple
diagrams which evolve together, as when team E was creating the data model of Fig. 3.5 while working
on the sequence diagram, or when team A was working on the behavioral model using multiple repre-
sentations (Fig. 3.9). In these situations, there was still a locality in time and space and no additional
artifacts were used or changed in the interim.

Such locality, however, is not always the case since, as we have seen, ad-hoc needs often divert
discussions in different directions. Timelines constructed for the observed sessions show that teams
tended to work for a while on one primary artifact and then shifted their attention to another. An artifact
may be abandoned at some point, only to be recalled at a later point and be discussed, referenced, copied,
or continued, on the same canvas or on a different one.

Team A was working on the class diagram of Fig. 3.20(a), which was still located on the flipchart.
In the course of one long discussion, the team’s assumptions came up, and the focus changed to a list of
assumptions posted earlier on a different posterboard. After adding assumptions, they came back to the
class diagram for another ten minutes, after which they flipped the chart to an earlier unrelated diagram,
and worked on it for a while, occasionally also working on the assumptions list. After returning to the
class diagram, they began making the changes in green (controller methods, data format, and markings
near simulator methods). They posted the page and turned to working on scenarios for an hour. Only
towards the end of the session did they begin creating the revised version of Fig. 3.20(b).

This example shows that individual diagrams do not evolve in a vacuum. Instead, each change takes
place in the context of the current state of the design at that time, which could be captured in artifacts
that share no obvious connections. For example, certain design decisions were made in the context of
the original assumptions list, while others were made in the context of the new ones. The artifacts do
not capture these temporal dependencies, potentially presenting a significant challenge for the eventual
interpretation of the meeting products.

3.4.3 Dependencies on multiple diagrams

The network of dependencies between artifacts is further complicated by the flow of design information
from multiple sources, typically earlier diagrams, into a single “sink”, often the current artifact of focus.

Having finished discussing reports, the E team turned to the relations between the entities repre-
senting actors in the system. They referred to a small diagram, created very early in the session, which
described inheritance relations among User entities, including ones that did not appear in the original
diagram of Fig. 3.8. These entities and relations were then copied into a separate page, and data cardi-
nality connections were added. As can be seen in Fig. 3.24, this diagram was then placed adjacently to
the right of the main diagram and a connection was made, effectively integrating the new part into the
main diagram.

The additions to the class diagram are compliant with UML, but much of the design rationale behind
them lies in the context of the differences from the original hierarchy and their integration into the larger
diagram.

Another example of how multiple artifacts are used, integrated, and discussed, occurs towards the
end of the E team’s session:

With time running out, the team decided to capture the high-level architecture of their system, which
they initially abandoned very early in the session. In constructing this new diagram, they had prolonged
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(a) (b)

(c) (d)

Figure 3.25: Team E building an architectural model
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discussions and referred to several artifacts, shown in Fig. 3.25, including: (a) a simple model of client
and server responsibilities, (b) the sequence diagram, (c) the architectural sketch on the same canvas as
the discarded original model, and (d) the problem-specification document with its notes. The resulting
diagram adds little beyond the original sketch, but many architectural decisions were made verbally in
the context of the referenced artifacts but simply not written down as time ran out.

The above examples show that even though individuals maintain much design knowledge in their
heads and could implicitly apply it to the current diagram, they instead explicitly reference it in existing
materials. A likely explanation for this phenomenon is the need to ground the knowledge and offer
context to the upcoming discussion while ensuring that that it is shared by all participants. In addition,
since I frequently saw individuals examining artifacts before speaking, it is possible that peer pressure
leads designers to “check their sources” before contributing.

3.4.4 Coping with multiple artifacts

The dependencies between design artifacts are a known challenge to all designers but may be particularly
problematic for collaborative teams working with physical mediums. The need to make artifacts visible
to everyone requires the use of large shared drawing spaces and results in the creation of large scale
artifacts. The team’s workspace is usually limited, allowing them to keep only a limited working subset
visible at all times [25]. Even the artifacts in this workspace are typically spread around the design
environment, preventing designers from seeing all of them at once.

For these reasons, when teams needed to continuously focus on multiple artifacts, they tried to in-
crease the physical locality. If the diagrams were not on the same canvas, then they were moved around
and placed next to each other. For instance, I observed team E place the UI and sequence diagrams
next to one another, as elements in the former were entry points into the latter. Similarly, I observed
team F place lists of actors and activities next to one another and compose them into a use-case diagram
(Fig. 3.11).

When the need to focus on multiple artifacts was transient, diagrams were often held in proximity
without being physically attached. This was especially common when recreating a new version of a
diagram from an earlier model or a personal note (Fig. 3.26), after which the original was often removed
from the working set. There was limited need to affix the diagrams because the old version could always
be brought back if necessary (e.g., Fig. 3.25(c)). There are situations, however, where diagrams were
held in proximity in the course of conveying ideas. For example, when team F worked on a scenario
involving user actions, a designer would often hold up a sketch of a web form and a sequence diagram,
demonstrate a user action on some widget, and then continue to follow the sequence of actions in the
sequence diagram until the output was produced back on the form. In these situations, no permanent
evidence was left of the connection between the artifacts.

As we have seen, the content of one artifact can affect the discussion or content of another, even if
they do not share mutual entities. While individuals may possess the relevant knowledge in their minds,
they appear to reexamine the artifacts before speaking and later refer to them explicitly. Unfortunately,
the effort and time involved in moving and arranging artifacts around the workspace prohibited the
establishment of physical proximity in many of these cases and forced teams to repeatedly switch their
attention between different parts of the design area. This was particularly evident for shorter references
to materials posted around the work area and especially when individuals, rather than the entire team,
were considering the materials or referring to their personal notes or the given documentation. The only
physical manifestation of these public references were gestures and pointing, while the only clue of
private references was typically a glance or a change in head position.
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(a) Team C

(b) Team F

Figure 3.26: Holding diagrams to increase locality
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3.5 Discussion

3.5.1 Overview and contributions

My observations suggest that in choosing representations, teams make deliberate and intentional choices
to diverge from standard notations or borrow idioms from other notations. While often benefiting from
lower physical and cognitive efforts, teams make these choices primarily in response to the immediate
needs arising from their evolving understanding of the problem and solution. Improvised freehand no-
tations are not only easier or faster to use but also offer a degree of freedom in selecting structure and
interpretation that may better fit and evolve with the design than a fixed notation. Similarly, informa-
tion is dispersed and laid out in ways that not only increase the locality of related entities but that also
facilitate a more natural representation of complex heterogeneous information.

While these representational choices allow teams to focus on creativity, the resulting artifacts and
the relations between them may be less intuitive, exact, and complete. Teams try to compensate for this
by using additional but transient communication mediums, such as voice and gestures, and by relying
on memory and contextual cues. Other stakeholders, however, will face significant difficulties in sub-
sequently interpreting and using the resulting diagrams as documentation or implementation artifacts.
In fact, knowledge of contextual and historical information of the experiences shared by the meeting’s
participants may be necessary even for diagrams that teams have explicitly prepared for presentation.

The importance of these findings is in improving our understanding of collaborative design meetings
and in guiding the development of new tools. One contribution of my work is in demonstrating the
priority given to creative activities and that some of the noncompliant artifacts, often treated as peripheral
by existing tools and approaches, actually play a major role in problem-solving and in communicating
about the design. Second, I show several typical ways in which collaborative design unfolds and ad-
hoc needs lead away from standard notations. A third contribution is in highlighting the importance
of contextual and historical information in the work of design teams and in its manifestation into the
products, thus prompting efforts to preserve it. Such efforts may be more effective than attempts to
support or perfect any notational standard since teams require a flexibility that may not be possible with
a fixed representation.

3.5.2 Use of UML as an idiom

Although the presentation here is focused on divergences from UML, it is important to note that the
representations of most artifacts are still based on that formalism and often comply with it. This is par-
ticularly evident in finalized versions created for presentation: UML is apparently considered appropriate
for documenting and communicating designs.

Testimony to its communicative qualities is offered by the fact that some of its notations become
idioms that are applied almost automatically, even outside the expected context. For example, the inher-
itance notation of class diagrams is so well recognized that we have frequently seen it used to indicate
generalization and specialization relations among other entities, such as actors in use-case diagrams. The
use of inheritance to convey examples in the class diagram of Fig. 3.21 is another possible example of
this phenomenon. These idioms even make their way into architectural diagrams. For example, in a
freeform architecture diagram created by another team working on the image shop problem (Fig. 3.19),
we can see the UML notations for inheritance and aggregation used in a diagram that primarily conveys
components and the interaction between them.

In fact, after examining the plethora of diagrams in three years of DesignFest events, I raise the
possibility that the use of UML in the earlier and more creative stages of collaborative OOD, before
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final diagrams are created, is not a real use of the standard or of a consistent subset. Rather, it appears
to be a use of freeform notations that borrows and utilizes several well-recognized UML constructs as
idioms. This interpretation may offer some explanation for the use of only a handful of UML diagram
types and of a very limited subset of their available primitives, even though many of the participants were
very experienced UML modelers.

When not using the idiomatic constructs, representations tended to devolve into the box-and-arrow
diagrams observed in non-OO settings [16]. This presented only a limited difficulty during the meeting
because interpretation was implied by the context of the conversation. However, it presented a problem
for external readers who lack syntactic or contextual cues to interpret them.

It is important to clarify that I do not consider my findings about UML to be indicative of specific
weaknesses of the UML standard compared to other potential notations. My observations are not merely
the result of studying a particularly problematic formalism. While they highlight inadequacies of UML
in supporting collaborative design, UML is primarily a specification- and documentation- oriented nota-
tional standard.

The important implication of my observations is that it is not clear that any current or future fixed
standard with these goals would be flexible enough. The same factors and ad-hoc needs will likely lead
designers to improvise around its restrictions as well. Thus, instead of trying to improve collabora-
tive OOD by attempting to find a perfect formalism, perhaps an investment in tools that are independent
of specific notations may be more rewarding.

3.5.3 Divergence from UML

Observed divergences

The collected photographic evidence from my observations at DesignFest, of which only some examples
were shown here, contains numerous examples of representations used in collaborative OOD. Many
of these representations significantly diverge from UML, and some consist of multiple diagrams with
dependencies between them. However, my goal was not to merely confirm the casual observations
and everyday knowledge of their existence, nor was it to try to catalogue them or to elicit quantitative
information, which would have little use in these restricted and unique small settings. Rather, in initiating
this study, I set out to understand the representations used in collaborative OOD, the reasons for their
creation, and their implications for tools. In the preceding result sections, I presented representative
examples of behaviors that, I believe, shed much light on these questions.

When I set out to explore the representations, I expected artifacts to primarily be examples of incom-
plete diagrams with accidental freehand notations that could eventually be evolved into complete UML
models, as described in the literature [23]. I also expected each diagram to be relatively independent,
which would facilitate the transition to UML. Perhaps because of the less restrictive settings of my study,
the actual data revealed surprising results: While I did see many incomplete diagrams, the representations
ended up being too varied to fall under any simple classification and often spanned multiple diagrams.
Most importantly, they appeared deliberate rather than accidental.

I have seen many instances in which the divergent representation could not simply be dismissed as
early forms of UML or as independent and unrelated freehand annotations. Instead, there appear to be
situations in which teams create artifacts that convey the same data as proper UML diagrams but make
use of improvised notations to quickly solve immediate problems or capture insights before they are lost.
One path for the evolution of such representations occurred when teams began with a less structured
representation and then introduced additional notations and structure. A second path is when they chose
a representation that could offer more structure or cover more facets of the design than a standard UML
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diagram.

In addition, rather than create the portfolio of visually independent diagrams freqently seen in design
documents and CASE tool models, teams deliberately created a large, interdependent and seemingly
disorganized array of artifacts. Some of these combined multiple diagrams, types, and annotations,
while others depended on or overlapped with other artifacts. In addition, there is a complex network
of dependencies, connections, and locality between the artifacts, many of them transient and context-
sensitive and in some cases subtle. Some of these connections are spatial, involving the location of the
artifacts at specific times, while others are temporal or contextual, involving their state or use at given
times.

Ad-hoc choice of representation

Existing explanations for the divergence between design sketches and standards such as UML tend to
follow two themes. First, early artifacts are mostly incomplete, and can evolve into conformance with
the formalism with sufficient effort and guidance [22, 38]. Second, there are criticisms of the standard
itself, such as its power of expression, elegance, level of restriction, or approach to organizing data. Thus,
designers might “rebel” against it or at least adopt additional notations.

Based on repeated close studies of the videotaped evidence, I propose an explanation for the choice of
representation, and the divergence in notation in particular, that is more fundamental and less dependent
on the specifics of formalism and settings. Namely, I suggest that while teams are aware of the need to
convey their design for future use, and will explicitly work towards that goal in later and visually distinct
phases of the design, that is not their primary motivation and concern.

Rather, in the creative phases of the design, both the design process and the representations used to
capture it are structured as an ad-hoc response to the team’s unfolding understanding of their problem
and solution. The ad-hoc approach allows teams to capture the results of their problem-solving process
in whatever order that it happens to take, and tackle issues in the order they choose, often using sketches
as a short-term memory.

In respect to representation, ad-hoc choice serves several purposes. One obvious benefit is in al-
lowing teams to minimize the costs in distraction and physical effort that arise from visual activity and
in particular from adhering to a complex notational standard. Like previous researchers, I saw teams
filtering out unrelated content [22] and skipping aesthetic polishing [14, 71]. I also saw them avoiding
the menial chore of copying all content when creating a new version of a diagram, effectively spreading
the design across several versions. In addition, I have frequently seen participants using gestures and
"air-pens" rather than actually drawing in order to avoid the associated costs of writing and subsequently
erasing materials. This was also evident when teams used small and portable canvases or sticky notes
that could be temporarily attached to larger sheets and moved about [25].

A second related benefit is that it enables them to localize different types of information related to
an issue, thus reducing physical clutter and memory load. Teams tended to increase the physical locality
of relevant materials: they shuffled canvases around or placed related diagrams on the same canvas and
even integrated different materials into the same diagram. However, this increase in locality is not only
physical; it also extends to a reliance on individual and group memory, on the immediate context, and on
alternate communication mediums like speech or gesturing. This locality acts as a substitute for the need
for specific and well-defined references and notations.

A third, less obvious but more fundamental purpose of ad-hoc choice is that information could be
represented at levels of completeness, abstraction, structure, and organization that are best adapted to the
team’s current and anticipated needs. In some cases, the available representations could not match the
level of structure at which the teams wanted to work. In other cases, by avoiding an early commitment to
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a particular representation, teams were able to allow their representation to evolve in ways not possible
with a fixed representation.

Limitations of sketch recognition

As described in Sec. 2.1.3, most existing efforts for supporting collaborative OOD focus on using elec-
tronic whiteboards as shared drawing spaces, typically using sketch recognition to identify primitives
of the notation. These primarily focus on specific UML diagram types, though a recent tablet-based
tool [38] supports customizable and domain-specific notations.

Although there is limited information on these tools’ success in the field, my observations present
two potential difficulties to real-world deployment. First, designers employ a range of improvised and
generalized notations that may be difficult to distinguish and associate with the specific notations of
a fixed standard with adequate confidence. Second, designers rely on contextual information and on
alternate communication mediums such as gestures, which are not available to sketch recognizers, to
complement and help interpret the improvised notations.

Thus, while such tools may be very useful when preparing the final UML diagrams for documenta-
tion, I argue that they may be significantly less useful in the earlier creative stages.

Impact on interpretation

As I have repeatedly seen throughout this chapter, the priority given to creative design and the atten-
dance to ad-hoc needs comes at a cost: teams create an unedited collection of artifacts with certain
dependencies, inconsistencies and ambiguous notations, that may be less comprehensible and useful to
outsiders, thus lowering their potential as documentation or implementation artifacts. This poses a prob-
lem because sketches as well as archival-quality artifacts from design meetings are subsequently used
by developers, who need to understand decisions made in the design meeting [16]. They also frequently
need to understand the rationale behind these decisions [50], which is often not documented explic-
itly [55]. Furthermore, problems in interpreting UML diagrams have been implicated in some software
defects [53].

Even some of the explicitly-recreated and finalized diagrams that I have seen will present a challenge
to external observers due to ad-hoc annotations, foreign elements, and the differences between versions.
For instance, a hypothetical external observer will be challenged to understand the annotations on the
methods of Fig. 3.20(b) or where the status codes fit. Understanding the complete solution of team E,
such as its data model of Fig. 3.24, will require him to locate the earlier versions, such as Fig. 3.8,
identify the differences, and elicit some details from the original. Interpreting all these representations
would require familiarity with the context of their creation.

3.5.4 Order of evolution

Throughout all observed sessions, it was evident that designs and artifacts do not evolve on a single
continuous path of monotonically-increasing completeness. in response to ad-hoc needs, the designs and
artifacts evolve on multiple paths that are interwoven and sometimes merged. Every artifact or idea may
be abandoned, only to be recalled at a later point and be discussed, referenced, copied, or continued on
the same canvas or on a different one. Each artifact or entity may be at a different level of maturity and
completeness.

The interwoven and noncontiguous order of work presents several challenges. During the session, it
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challenges the team members’ memory, individually and as a group, and they spend much effort attempt-
ing to recall and recap past discussions and decisions. Physically, it also increases clutter and confusion
as the team struggles to maintain a limited working set of diagrams, requiring them to search, move,
and flip diagrams. It also depreciates the value of spatial cues which are essential to locating mate-
rial [25]. The impact also persists after the session has ended since the loss of temporal order can present
challenges to interpreting the final diagrams.

For instance, because team A made changes to its posted list of assumptions while working on the
diagram of Fig. 3.20(a), a reader examining earlier artifacts might mistakenly assume that all listed
assumptions were made at the same time at the beginning of the session and thus interpret those artifacts
in this mistaken context.

Note that identifying the connections and interweavings between artifacts is also challenging. Access
to artifacts can vary in length and impact, from longer references that involve copying, making changes,
or even a return of focus and a continuation of discussion drawing, to short references, acknowledged
only in glance and speech. Individual designers leverage the extreme collocation to maintain awareness
of what others are doing and what they are focused on. As could be expected, we have seen coordination
problems arise when teams split into subgroups [25].

The nonlinear path of the design evolution also exacerbates the problem of understanding the results,
as it is difficult to interpret the resulting artifacts without understanding how and why they evolved from
the originals. While the design rationale is rooted in the context of both versions of the artifact, it may
only be captured in the discussion itself, and the difference between the artifacts may be the only hint
that such a discussion ever took place. In addition, subtle references to artifacts and temporal clues that
may have important impact are not captured.

3.5.5 Need for preserving context

Perhaps the most important contribution of my findings is in highlighting the critical role that contextual
cues, memory, and alternate communication mediums play in the design process. This information, im-
portant during the session, is particularly crucial for a subsequent understanding of the designs and their
rationale. At present, casual observation suggests that most teams do little to preserve this information,
and at best preserve only the final diagrams after the meeting has ended. However, it is not always pos-
sible to foresee in advance what decisions will be revisited in the future and therefore what artifacts will
be important. In some cases this will only be recognized after several reproductions [16].

For these reasons, I believe that such investment may often be preferable to attempts to create a final
and aesthetic version of the artifacts during the meeting. Therefore, the “take home message” for all
designers is to try and preserve as much of this information as possible. The question, of course, is how
to best capture this information.

In my effort to understand design diagrams, I make use of various information sources that were
available. In terms of visual information, perhaps the most useful resource, and also the one easiest to
obtain, is the collection of photos taken during the session. These captured intermediate states of the
diagrams and their spatial location in relation to other artifacts. They helped me understand the evolution
of each diagram and of the design as a whole, as I could compare diagrams over time. In some cases, they
revealed important material that was later erased. With the ubiquity of digital cameras, most designers
should be able to take these photos even in spontaneous meetings.

Unfortunately, unless photos are taken frequently, important details may be lost, including concurrent
work on multiple diagrams, short references, or examples that are quickly erased. In addition, photos
cannot capture gestures, “drawing in the air”, and the glances that establish reference. This information
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is particularly important if a voice recording or transcript of the meeting is captured, since many verbal
references rely on a specific visual context, such as what the designer has just looked at.

In my study, only the video stream captured enough of this evidence, due to its continuous nature.
At present, video may be the most comprehensive means of capturing contextual details from collocated
collaboration and may therefore be the safest approach for teams seeking to minimize the risk of losing
critical information. However, although its effectiveness for requirements engineering has recently been
demonstrated [18], the use of video in software design remains controversial.

One obvious concern is the feasibility of recording all collaborative situations. However, since the
goal of the video is primarily to capture gestures and timing information and offer context to verbal
interaction, even low-fidelity streams are sufficient. With decreasing storage costs and the availability
of webcams and video-capable digital cameras, I believe that this footage can be captured inexpensively
even in spontaneous meetings.

A more fundamental concern regarding video is the challenge of locating information within such
an unstructured stream. In my experience, the random access and rapid skimming capabilities afforded
by digital video are extremely helpful in pinpointing relevant sections efficiently without watching the
entire stream. Video can thus be considered as a form of “insurance” in case specific information may
be sought in the future.

In the future, advances in video analysis, or perhaps correlated data from instrumented electronic
whiteboards, may provide structure to this stream and offer new possibilities such as the creation of use-
ful summaries or aggregations of context. For example, one could imagine a tool that could help supply
useful context for a confusing notation by visually summarizing the set of actions that occurred immedi-
ately prior to creation of the notation, or by highlighting anything edited in close temporal proximity to
the use of the notation. Based on my results, it seems that finding a rich set of techniques for capturing
and displaying contextual information is a potentially very rich research area.

I realize that some teams will not be able to use technological means to capture contextual informa-
tion. To these designers I can only suggest that they remain constantly aware of the future interpretability
and traceability of their work, and try and preserve information in the diagrams whenever possible. This
does not have to mean an explicit and costly documentation effort; it could be as simple as annotating
some artifacts in the short pauses before switching to another area.

The last two chapters were concerned with software design, In both of these chapters, I argued that
there is a need to preserve a lot of knowledge, but that is only one side of the equation. There is a need to
enable designers to retrieve it in appropriate context. For instance, past decisions about an entity could
be relevant the next time that this entity is reference. We now make the abrupt switch to the world of
programming and code, on which the rest of this dissertation focuses. In this world, knowledge preser-
vation is quite common, in the form of member documentation. However, as we shall see, recall still
presents a significant challenge. The next chapter presents directives, elements of knowledge captured
by the original developers who can significantly affect users of the resulting artifacts.
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Chapter 4

Directives

Our discussion so far dealt with software design in the physical world, where a variety of connections
exist between artifacts, and various forms of knowledge can be associated with entities. The focus of
the rest of this dissertation, however, is on the more restrictive domain of software source code, and
specifically on the connection between documentation clauses and methods.

This chapter elaborates and illustrates the notion of directives, clauses in method documentation that
convey important yet often unexpected instructions to callers. Section. 4.1 introduces this concept and
suggests criteria for distinguishing these directives from other clauses in software documentation. Sec-
tion 4.2 discusses related research on documentation and comments, and relates the concept of directives
to these works. The rest of this chapter is devoted to presenting a taxonomy of the types of directives
that I have encountered when I systematically surveyed the documentation of the JAVA standard library.
The goal of this presentation is to investigate the breadth of issues of which method callers need to be
aware, and further motivate our investigation of directive awareness. To this end, the narrative presents
many examples.

4.1 What are directives?

4.1.1 The principle of least-surprise

In his now-famous presentation, “How to design a good API and why it matters” [10], Joshua Bloch,
who designed many of JAVA’s core APIS, listed various design maxims. One of these is:

Obey the principle of least astonishment - every method should do the least surprising thing
it could, given its name. If a method doesn’t do what users think it will, bugs will result.

As we shall see in this chapter, even in the standard JAVA library there are many methods that do not
follow this principle.

While the principle of least astonishmen is a well-recognized concept, it is a very subjective one.
Since every user may have different expectations given a name, what is considered a surprise? While
the concept of directives described in this dissertation is broader in its scope, its roots are tied to this
principle and to the notion of surprise. As a result, there will not be a simple predicate that can be used
to determine whether a certain clause that appears in a method’s documentation is a directive. However,
I will present here general criteria for identifying potential directives, and in Chapter 7 will present some
empirical data on whether individuals can reliably and consistently distinguish directives from other
forms of documentation.
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Prevalence of specifications

Almost every clause that appears in a JavaDoc is likely to be useful in at least some context to some
particular audience. After all, if we assume that a clause is not erroneous, then it should at least be useful
to a developer who: 1) knows nothing about the method and the API, 2) needs to know everything about
the method for some systematic evaluation or review, 3) may not be particularly skilled or experienced.

However, most developers do not match this description. First, few people use an API without know-
ing anything about it or its domain. Second, a method’s documentation is read because its name already
seemed relevant to what the developer was seeking. Thus, the developer may have some knowledge of
the domain and certain expectations. Third, most developers have some skill and prior experience in
programming, and can use that experience when dealing with unfamiliar APIS. Finally, and perhaps
most important, in most development and maintenance tasks, there is no need to know everything about
the method, just what is necessary to use it correctly in the current context.

Here, however, lies the problem: Sun’s guidelines for writing API documentation require that
the JavaDoc for each method include a complete and detailed specification [1, 82]. Such specifica-
tions are by nature meant for an audience that is performing a systematic review, rather than a pragmatic
developer aiming to learn the necessary minimum. The complete specifications thus obfuscate the im-
portant details. In my survey of APIS, I observed that these principles are followed religiously in major
and highly visible APIS, and the effort is relaxed in more limited APIS and in less central areas of the
major APIS. Paradoxically, these limited specifications be better-suited for the needs of most developers.

Nevertheless, since specifications are so detailed, I argue that the vast majority of clauses in the
documentation of major APIS are “specification clauses” and thus less relevant for most developers in
most scenarios.

4.1.2 Surprising clauses

At the other extreme from specifications lie clauses that are completely unexpected even to skilled de-
velopers who are relatively well versed in the API.

The most obvious form of such clauses are shortcomings of the method that are surprising because
potential clients may be optimistic in their expectations of the completeness and correctness of the API.
In small domain-specific or proprietary API, a method might only handle a subset of all legal inputs,
often the ones that represent the most frequent or important scenarios. Alternatively, it may only be
partially implemented, and not produce the expected output.

In the worst case, such behaviors are not documented and are found at runtime. More commonly,
these limitations are documented, but not necessarily in the header. For example, it is not rare to see
to-do comments left in the implementation of methods in proprietary APIS. In other cases, limitations
and pitfalls may appear as comments within in the source code, close to where the problem occurs. The
problem with such clauses is that the they affect callers but are not visible to them unless they acquire
and investigate the source code. Limitations appear less common in major APIS, perhaps because of the
added scrutiny and history of revisions. In addition, APIS developed with test-driven methodology are
typically fully-implemented in order to satisfy all the tests.

Even in major APIS, however, certain documented behaviors may surprise even seasoned developers
who are familiar with the API. For example, the central String class in JAVA offers a replace method
that takes two character sequences and replaces in the string on which it is invoked every occurrence of
the first with the text of the second. The same class also offers a similarly-named replaceAll method
with a similar signature. Based on the names and the similarity to common UI idioms, a developer
might expect that replace does a single replacement while replaceAll does multiple replacements.
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A developer who is not familiar with either and seeks to do replacements may choose to use the latter as
it seems like the closest match to his goals.

Scrutiny of the documentation of this method in all JAVA versions up to and including 1.5, de-
picted in Fig. 4.1 shows that the method actually works with regular expressions, a worrying sign
for very experienced developers. The documentation in version 1.6, which is depicted in Fig. 4.2,
adds an important detail: “backslashes and dollar signs in the replacement string may cause the re-
sults to be different than if it were being treated as a literal replacement string”. As a result, the
call myString.replaceAll("USD","$") may produce unexpected results.

Figure 4.1: Documentation of method String.replaceAll() in JAVA 5

Figure 4.2: Documentation of method String.replaceAll() in JAVA 6

Similarly, a central interface in Eclipse is ITextViewer, which declares functionality common to
most textual editors and viewers. One of its methods, getVisibleRegion, is expected to return the
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range of text lines that are currently visible in the viewer. Scrutiny of its documentation (Fig. 4.3),
however, reveals that viewers implementing a certain extension of this interface may actually change the
fraction of the input document that is shown. A side effect from what is expected to be a straightforward
getter method is quite surprising. In fact, I found this problem after receiving a bug report that using
the eMoose tool broke code folding in the JAVA editor. Indeed, the implementation of this method
in ProjectionViewer, a base of the JAVA editor, has a nasty side effect. As can be seen in Fig. 4.4,
the code simply disables folding to obtain a better idea of the visible range, never enabling it again.

Figure 4.3: Documentation of method ITextViewer.getVisibleRegion()

Figure 4.4: Source code of Eclipse method ProjectionViewer.getVisibleRegion()

Based on my systematic inspection of several large libraries, clauses in documentation fall some-
where on a continuum between mundane specifications and extremely surprising details. As I’ve previ-
ously argued, the vast majority of clauses, to which we shall refer as “specifications”, lie very close to
the first extreme. Cases in the other extreme, as illustrated above, are thankfully not very common in
major APIS. Such APIS are designed with sufficient attention and evolve continuously, so that major
pitfalls like the one in replaceAll are eventually documented. Of course, documenting these pitfalls
might not be sufficient to help developers avoid them. Because developers do not expect the method to
surprise them, they may not read its documentation in the first place, a notion that is supported by the lab
study presented in Chapter. 6.

There is, however, a significant set of clauses which may surprise or confirm the suspicions of rea-
sonably skilled developers who are not very familiar with the method or the particular API. I argue that
this audience is the most likely to suffer the consequences of knowledge awareness problems and thus
most likely to benefit from eMoose. Since skilled developers often use new APIS as means to an end,
they may do the bare minimum to achieve their goals. They may not invest in learning the fundamental
concepts of the API, and will likely rely on code samples which they will try to modify to fit their needs.
Reliance on these samples is risky as they were likely written by someone well-familiar with the API.
When taken out of context and changed by someone not as familiar, certain clauses may be violated.
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Such clauses are a minority - they do not occur in every method, and they may be surrounded by many
specification clauses. However, they may be frequent enough to significantly affect seasoned developers
in everyday work. These are our directives.

4.1.3 Properties of directives

As explained above, there is no clear predicate for segregating the continuum of documentation clauses
into specifications and directives. Instead, I define subjective properties that directives should have. The
aggregation of the degrees to which a particular clause has each of these properties may help place it
on this continuum. In practice, our eMoose tool allows users to rate a directive on a scale between 0
and 5. API authors and users attempting to identify directives in API documentation for the benefit
of other users can use this rating mechanism to mimic the placement of clauses in the continuum. The
presentation of directive awareness cues takes into account these ratings so that clauses below a specified
threshold are not presented.

4.1.4 Property 1 - Directives require or imply client action

Perhaps the most important property of a directive clause is that it demands an action from the caller or
suggests such an action. The demand can be explicit or implicit. Applying this property allows us to
“eliminate” many clauses which are descriptive or explanatory in nature and are therefore less relevant
to clients.

We will use the term imperative directives for clauses that demand an action from the caller. For
instance, they may instruct the client to avoid making the call in certain situations, or to make another
call prior to this one. Imperative directives may be easier to identify. We will use the term informative
directives for clauses that merely suggest a course of action. For example, warning a potential caller that
a particular call may have a performance penalty or an unexpected side effect may lead the caller to avoid
the call or take preventive measures.

Let us illustrate the application of this property on several examples. Consider the documentation
of String.replaceAll() from JAVA 6 (Fig. 4.2). The first two paragraphs merely explain what the
method does, and what it is equivalent to. However, the paragraph starting with “note that” indicates to
the caller that unexpected results would occur for certain inputs. The caller may want to examine the
prospective input and avoid this call, perhaps using the suggested call to Matcher.quoteReplacement.
Since this clause explicitly requires callers to avoid particular inputs that are not obvious from the
method’s signature, we consider it to be a directive.

Imperative directives that demand an action typically specify it explicitly. Those that demand the
avoidance of an action that will result in an error, however, often merely specify the condition and
the error. That the caller must take action to avoid this result is implied. To illustrate, consider the
documentation of Connection.setClientId from JMS, which we reproduce in Fig. 4.5. Let us now
examine every clause and determine whether it could potentially be a directive.

The first paragraph merely describes the purpose of the method and is thus not a directive. The second
paragraph (P1) mentions a “preferred way” to do something. Describing an alternative to the call may
suggest an action (a different call) for the client, so this may be a directive. The third paragraph contains
multiple clauses. P3 mentions how a client can set the identifier, and is therefore a potential directive.
P3 is also a potential directive as it describes when not to use this call. P4 states that an exception will be
thrown if an administratively-configured identifier has been set, and can be interpreted as an instruction
to avoid doing so. The client is instructed in P5 to avoid making prior calls on this object, and this is
clearly a directive. However, the description in P6 merely describes the error that will occur. The fourth
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Figure 4.5: Javadocs of setClientId with enumerated clauses

paragraph (P7 and P8) merely describes the purpose of the identifier, and does not convey instructions
to clients. The next paragraph (P10), however, describes an error condition that implies a scenario that
the client must avoid. Finally, the later clauses merely describe and elaborate what we already know.

Informational directives are particularly likely to only implicitly suggest a caller reaction. For ex-
ample, consider the documentation of ITextViewer.getVisibleRegion() from Fig. 4.3. The first
paragraph merely describes the behavior of the method. The second paragraph, however, describes a
potential side effect. This description does not explicitly require user action. However, side effects
implicitly suggest that a caller wishing to avoid them should avoid invoking this method.

The above examples illustrate that careful attention and a subjective decision is required to determine
if a clause implies an action.

4.1.5 Property 2 - Directives should not be trivial, expected, or common

A second property of directives is that they should convey meaningful information that the potential
caller would not expect to find and would not explicitly seek.

While the conveyed information may not necessarily be a complete surprise to a skilled developer
who is familiar with the API, it should definitely not be obvious from the method signature, the con-
taining class, the API, or the domain. The examples of replaceAll and getVisibleRegion showed
behaviors that were far from obvious. In setClientId, however, some of the clauses may be obvious
to someone familiar with the API or its concepts. For instance, to someone who is familiar with the
concept of administrative configuration, the ability to use it to set the identifier may be obvious.

A related issue is that the information should not be a “pattern” that repeats itself in most methods.
Such prevalence reduces the “surprise value”, but also allows interested callers to easily search for this
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information. For instance, most methods present a list of the exceptions that they may throw, even though
some of the error conditions are obvious. Interested callers who wish to program defensively can easily
seek and identify this list. Similarly, many methods specify whether incoming parameters can be null, so
interested callers can easily seek this information. On the other hand, the fact that a replacement string
cannot contain specific symbols is surprising and thus worthy of a directive.

4.1.6 Property 3 - A directive should be relevant to most callers and scenarios

Methods can be called for different purposes and from different contexts, some more common than
others. Since we will “push” directives into the awareness of callers, the clauses that we choose to push
should apply to the majority of potential callers. If a clause is only relevant in very rare or unique cases,
most readers will ignore it and it will be a distraction rather than a surprise. For example, if administrative
configuration is extremely rare in JMS, then the directives having to do with it are a distraction (as shall
be demonstrated in a subsequent chapter). Nevertheless, the decision should balance the likelihood of
occurrence against the magnitude of the consequences. If the consequences of violating a clause are
extremely dire, then there may be a benefit to including it in the set of directives even if it applies only
in rare situations.

4.1.7 Property 4 - Significant consequences to lack of awareness

Since there is a cognitive cost to bringing a directive into the awareness of callers, the last property
requires that the consequences of a lack of awareness be severe. A violation that results in a fatal
runtime error or data corruption is particularly significant, whereas exceptions, side effects, and other
concerns may be less so. Note, however, that even informative directives that are ignored can lead to
serious problems, as was the case with the code folding bug in eMoose that resulted from the side effect
of getVisibleRegion.

4.2 Related work

Documentation artifacts play important roles in the development, maintenance, and use of software.
Many projects start with requirements documents that are later used to create design and architecture
documents. Many projects conclude with the creation of end-user documentation that avoids exposing
implementation details. The focus of this section, however, is on documentation artifacts created during
the implementation stage within source code files, and in particular function-level header documentation.
We survey related research and relate each work to the ideas presented in this dissertation.

4.2.1 Documentation and comments

It is widely believed that comments should help maintainers understand source code. However, the
prevalence, mechanisms, and motivations behind comment creation and use are not always transparent,
leading to significant attention from researchers.

Importance of comments

Woodfield, Dunsmore and Shen [87] conducted a 1981 study to learn whether comments were effective in
helping developers understand code. They provided 48 professional Fortran developers with 8 versions

83



of a program, created by varying modularization types and the presence of module-level comments.
After studying the program, subjects had to answer 20 questions about it. The results showed that
comments present in certain versions of the program had significant impact on the number of questions
answered correctly. These findings confirm the intuitive expectation that source code, by itself, may not
be sufficient for efficiently understanding existing programs.

Use of comments

Soloway et al. [75] sought to learn how maintainers understand code and use documentation to modify
procedural Fortran programs, and then apply this knowledge to designing more useful documentation
representations. To this end they conducted a study using a real system at JPL. Subjects were given a
code booklet, and a separate documentation booklet that presented an overview, a call hierarchy chart,
and a description of each module.

They argued that as maintainers read a line of code they develop expectations about subsequent lines,
and if these expectations are difficult to form or are eventually not met they begin to inquire and explore
other resources, including documentation. They also argued that calls to other functions interrupt this
process and often force maintainers to go and explore the delocalized materials. Some subjects seemed to
handle this delocalization problem by a systematic exploration of code and documentation together, but
the authors argue that this is impractical for larger programs. Other subjects, however, followed an as-
needed strategy, where they made ad-hoc decision whether to explore documentation or other locations,
While this was more efficient, it was also riskier and lead to less optimal results.

Based on their findings, they created a documentation design with a single booklet that combines
code and text. Each function receives two opposing pages, the first showing the code and the other the
documentation. An additional section in the text provides information relevant to specific calls from the
program text to other functions.

The problem of delocalization is well recognized and is an underlying motivation for our work. The
same problem is inherent in modern object-oriented languages, where function or class header docu-
mentation correspond to the module and function descriptions from the above study. The finding that
systematic exploration is effective but inefficient while the more efficient as-needed reading technique
is error prone motivates this dissertation’s aim to provide cues to help make these decisions. The pro-
posed approach of presenting code and documentation side by side but still independently is, in my view,
more practical than Knuth’s literate programming approach [49] which advocates a deeper interweaving
of the two. The proposed approach also resembles modern source code, where much documentation is
conveyed as visually distinct source code comments.

The idea of conveying additional call-specific information is intriguing since it presents an opportu-
nity to provide a caller with answers to questions that are specific to this context. However, it is only
practical in a small and closed system, where a human can prepare such comments in advance. Neverthe-
less, conveying delocalized information in proximity to the call is a form of knowledge pushing. In this
dissertation, all calls to a function are treated the same independently of context. However, providing
information that is specific to a context, based on past activity or automatic analysis, is an important
extension.

Keeping comments up-to-date with evolving code

Fluri, Wursch and Gall [33] investigated the extent to which new code is commented and whether com-
ments are kept up-to-date as the code changes. They used an Eclipse plugin called ChangeDistiller to
mine code evolution data for three open-source projects directly from the repository. They used this data
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to map comments to program entities in each version, as well as to track changes across versions.

Their first major finding was that new code was rarely commented, so that the increase in the number
of comments was marginal even as the actual codebase grew significantly. Second, in two of the three
tools, method header comments were more prevalent by orders of magnitude than other types of com-
ments. They were followed, after a great gap, by class header comments (perhaps because there are few
classes), and then by documentation on actual method calls. In a third project, documentation on method
calls was common, followed by method header comments.

These findings highlight the importance of header documentation, and suggest that it may be present
in many projects, ready to be exploited. While the third project is, in my view, a likely outlier, the fact
that its developers chose to document calls suggests that they see a need to provide information about the
remote targets of the call. The paper did not provide many examples, but it would have been interesting
to see if some of these calls described directives.

The study also found significant differences between projects in the level to which the comments
were updated following code changes, although when this happened it typically occurred within the
same commit. Interestingly, less than a half of JavaDoc changes occurred after changes to the method
declarations or the method bodies. When such changes did occur, it was typically due to a change in the
parameters or return types.

An upcoming paper by the same authors [34] reports on a follow up study in which eight different
open-source and closed-source projects are analyzed. Interestingly, in projects that included APIS, when
there was a significant change to API methods the documentation was not immediately fixed, but rather
rewritten later. This may create risky inconsistencies.

Impact of comment presence

Marin [62] devoted his M.Sc. research to investigating the factors that lead developers to add comments.
He studied the repositories of 9 open-source projects and found that comment rates varied widely be-
tween projects even for the same developer. One factor was that larger modifications were more likely
to be commented. A second and more critical finding was that developers modifying code that was al-
ready heavily commented were more likely to comment their own changes. A subsequent lab experiment
appeared to confirm this finding.

The implication of this finding is very significant, as it suggests that social or psychological factors
may affect the willingness of developers to invest in writing documentation. An important question is
whether a similar phenomenon would be seen if developers were asked to explicitly tag directives in the
codebase or API. That is, if most methods explicitly list directives, would a developer adding a new
method be more likely to do so?

Types of comments

A thorough study of comment types was was carried out by operating-system researchers Padioleau, Tan
et al. [69].

They initially collected a random sample of about 1000 comments from three operating systems
written in C. They estimated that about half the comments were not merely explanatory but rather offered
some important information that can potentially be “exploited”. They further broke down this group of
comments and argued that: 20% clarify the meaning of numeric constants. 16% emphasize relationships
such as data or control flow. 10% could be expressed by existing annotation languages, and could thus
be automatically checked. 5% percent deal with locks. They further broke this categories down into finer
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subcategories.

Next, they took samples of about 350 comments from several non-OS programs, such as MySql,
FireFox and Eclipse. They found that about half of the comments in these projects were exploitable, but
that the division was quite different. First, a much smaller portion of comments explained constants,
perhaps thanks to the use of language constructs for these, but also due to the lower need for bit-level
operations in non-OS code. The other C based programs had more comments on memory management
while the Eclipse comments were particularly about error management.

While the exact numbers are of little relevance to this dissertation, the fact that the prevalence of
comment types differs significantly between languages and domains is critical. We can expect certain
programs of APIS to contain more documentation and directives, while others will contain very few.
It is possible that the types of directives we will encounter will also vary significantly. For example,
in this study operating systems dealt a lot with locking, while other programs dealt more with memory
management.

4.2.2 Studies of task comments

While the focus of this dissertation is on documentation that provide guideliness or warnings about
using a method, the presence of task related comments can be indicative of limitations or significant
weaknesses in the mehod. Task comments are embedded comments that communicate the need for some
action or modification rather than explanations of the associated code.

Ying et al. [90] studied task comments in an eclipse-based internal IBM codebase. They found that
while the comments did not describe the source code, they conveyed many important details that may
helpunderstand the evolution of the program. For instance, some reminders weren’t requests to perform
a change, but rather to verify or review a change that took place, or to ask for clarifications about the
code. More generally, the authors argued that task comments serve an important role as an asynchronous
communications medium, under the premise that the intended reader would indeed read them. They also
argued that such comments are often more informal and context sensitive than typical documentation,
making them more difficult to read and parse automatically.

Storey et al. [79] carried out a later study focused on task comments. They aimed to identify and
understand the annotations created to support programming tasks and workflow practices, and the pro-
cesses for managing them and keeping them up to date. As a first step, they conducted a survey of 81
developers via an Eclipse community site. The results showed that even heavy Eclipse users do not make
use of its bookmarking capabilities, and instead embed comments with keywords and metadata on which
there is only partial agreement. Next, they extracted task annotations from 10 open source projects, and
identified a significant number of task comments, primarily to-dos. Only a very small portion of these
comments were automatically generated. As a third phase, they conducted extensive interviews with four
developers from three Eclipse projects. The projects varied from extensive use of bug-tracking systems
with minimal to-do comments to an extensive use of such comments for low-priority issues, marking
incomplete solutions, and requesting reviews. As a fourth phase they extracted comments from several
projects at regular intervals, and studied the lifetime of the comments. It turned out that most task an-
notations were short-lived, but a certain portion stayed on for a long time, some eventually turned into
official modification requests.

The researchers concluded that to-dos serve many intricate task-management purposes such as de-
noting shorter tasks, low-prioirity subtasks, problems, areas for reviews, etc. Their main benefit is the
low cost of production, the availability of context, and their informal and temporary nature. Like bug
reports, however, to-dos are too visible and permanently accessible, reducing their use in open source
projects. The researchers also raise an interesting issue, that some to-do comments lack sufficient context
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for future interpretation. This is very similar to our finding for design artifacts.

Task comments are not directives in the sense described in this dissertation because they are rarely
part of the public interface of the method. However, the presence of a reminder often means that the
method does not perform what one might expect from the signature, or that there may be some manifes-
tation that can affect callers. In addition, one of the interviewees in the study stated that: “We put all
these comments in our code and then we don’t look back at them. None of them actually remind us...”,
and this is clearly an indication of an awareness problem. Since task comments can affect maintainers
and developers working within the same codebase, the eMoose tool is designed to address them. When
such comments are present in a method, the tool will be able to provide corresponding decorations on
invoking code, in the hope of alerting callers. In addition, Ying et al’s findings that certain comments are
aimed at specific developers suggests that techniques to increase awareness of commented knowledge
may need to be fine tuned to the individual.

4.3 Introduction to the taxonomy of directives

We now turn to presenting a taxonomy of directives. This taxonomy was developed based on a detailed
survey of the JAVA standard library. In this survey, I examined every public method in most public
interfaces and classes. I read the documentation of each and identified potential directives, which I
proceeded to tag. The categories that are presented here are the major ones but are not exhaustive or
mutually exclusive. Some directives may fall in multiple categories, or even outside any of them. In
addition, only a few representative examples are presented for each type of directive. The goal is to make
the reader understand the breadth and importance of directives rather than to identify each and every one.
Subsequently, I repeated the detailed study with significant portions of the Eclipse API and confirmed
the presence of all categories. However, the examples here are limited primarily to the JDK.

4.4 Imperative directives - Restrictions

Imperative directives in a method’s documentation define rules for the use of this method. If these rules
are violated, an immediate error may occur during the execution of the method, or the state of the system
would be corrupted, leading to a subsequent failure that may be much harder to debug. The set of
imperative directives may include many clauses that are already recognized as part of the protocol for
using the object, such as explicit preconditions and locking requirements. Therefore, some imperative
directives can be stated using special formalisms which would allow automated conformance checking.
As we shall see, however, many imperative directives may not be straightforward to translate to a formal
specification and instead rely on subjective interpretation

The strongest and most straightforward type of an imperative directive is, perhaps, the invocation
restriction.

Object oriented languages typically have specific constructs for restricting access to a method, and
these restrictions are enforced at compile time. For example, while a method declared as public can be
invoked by anyone, methods declared as private can only be invoked from within the same class, and
methods declared as protected can be invoked from within the same class or its subtypes. In C++, the
friendship mechanism allows a class to explicitly specify other classes and specific methods within them
that are allowed to access its non-public methods. While JAVA does not support friendship, it introduces
a notion of packages, allowing calls to be restricted to items within the same package.

Our survey of APIS suggests that the existing syntactic mechanisms, including the package system,
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may not be sufficiently expressive to meet all the restrictions that developers have in mind. This forces
developers to declare certain methods as public, and use documentation to convey restrictions on use.
These restrictions are essentially directives, and as such carry the risk of never reaching the caller’s
awareness, with potentially severe consequences.

We have encountered different types of restrictions and reasons behind them. We shall now survey
them in depth because they illustrate how limitations of the programming language force developers to
rely on natural text.

4.4.1 Deprecated methods

As APIS and libraries evolve, certain classes and methods are no longer used. To ensure backwards-
compatibility they are kept in the interface, but new callers are encouraged to avoid them.

In JAVA, the @deprecated tag can be placed anywhere in the JavaDoc of the method to declare
that it is should not be used. The compiler can produce warnings when deprecated methods are invoked,
alerting callers to find a different solution. In addition, the Eclipse IDE helps callers identify calls to
deprecated methods by marking these calls with a strikethrough line. This is similar to the approach
taken by eMoose in highlighting calls.

Since the @deprecated tag is so well supported, we were surprised to see instances in the JDK
where text was used instead of this tag. For instance, the documentation of the Event class in AWT
GUI toolkit states that this class is obsolete and kept for backwards-compatibility. Its constructors state
the same, without using this tag. Similarly, the RepaintManager.currentManager() in SWING,
seen below, indicates that it should not be used as it is meant for backwards compatibility. Getting and
setting the default locale in the SWING UIDefaults class is also discouraged without an explicit use of
this tag.

4.4.2 Methods made public due to language issues

Quite a few restrictions result from the rules of the JAVA language and the limitations of its restriction
mechanisms.

Interaction between packages

The rationale behind the restricted-access modifiers in JAVA: protected, private, and package is
to allow the implementation of certain methods to be broken down into smaller operations without mak-
ing these implementation-specific methods part of the public API. Whereas private and protected

were “inherited” from C++ and allow these methods to be used from within the class, the rationale be-
hind adding the package modifier was to enable interaction between related classes and the creation of
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package-specific utility classes. Unfortunately, these modifiers do not address all restriction scenarios.

The root of this problem is that the package modifier essentially treats all classes in the same pack-
age as a single module, but closely coupled classes are often spread across multiple packages. For
instance, many components are organized as a hierarchy of subpackages with subcomponents placed in
corresponding subpackages. Additional conventions, such as the creation of internal subpackages
in Eclipse, further spread classes across multiple packages. The problem with package hierarchies is
that they get no special treatment by the language. A package and its subpackage are treated as if they
were completely independent and therefore have no access to each other’s package-protected elements.
In other words, a subcomponent cannot access the elements of its container and vice versa. In some
additional cases, classes in various components may need to interact across the boundaries of a package.
In all these cases, the developers must make the method public, leaving them no choice but to rely on
documentation text to restrict access.

For example, in the AWT UI toolkit, the central Container class has an addNotify method.
Its documentation, shown below, indicates that it is only provided for use by the toolkit implementation.
Indeed, a search of the JDK source code reveals that this method is invoked by classes in the awt.event
subpackage and by classes in Swing.

In the example below from SWING, the RowSorter.allRowsChanged() method is public only
to allow specific View classes to access it. The views can be in different packages, such as ones created
by users.

Methods made public due to interface implementation

We’ve seen a few cases where restricted methods are made public due to the implementation of an
interface. In C++, a class can inherit privately from another class, meaning that other classes are not
aware of the inheritance and do not expect it to support the inherited operations. In JAVA, subtyping is
always public, so that when a class implements a particular interface, it is publicly announcing itself as a
subtype of the interface and must publicly support all its methods. If the interface was implemented for
specific implementation purposes, such as supporting events, then its methods are exposed.

For example, the ScrollPaneAdjustable class in AWT implements the Adjustable interface,
but explicitly discourages users from calling this method.
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Similarly, the getCurrentFocusCycleRoot method in the AWT’s KeyboardFocusManager is
intended to use in implementations of this interface.

Another example, from SWING, involves the popular JComboBox widget class. This class imple-
ments several listener types and therefore has some public callback methods that are not meant for
general use. In my view this represents a design error for the class since listeners can be “privately”
implemented in internal classes.

Constructors and other methods for use by specific builders

Common ways to create and initialize objects include the use of constructors with multiple parameters, a
default constructor with subsequent calls to setters, or static factory methods [80]. When multiple means
of initializations are allowed, confusion can ensue.

We noticed many cases where classes declared constructors and similar creation methods for the strict
purpose of supporting initialization by specific tools. For example, objects that are deserialized, created
from XML via apache-digester, or loaded from a database via Hibernate must all have public
constructors, as these mechanisms and tools first create an empty object and then initialize its fields.

Below, we see how the DataFlavor class in the AWT library, states that its default constructor is
created for supporting the Externalizable interface.

An opposite example comes from GridBagConstraints in AWT, whose multi-parameter con-
structor is meant for use only by automatic source generation tools.
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Protected methods that should be private

So far we only looked at public methods, but there are cases where the documentation of a protected
method restricts its use by subtypes. Unlike C++, JAVA does not allow a subtype to restrict the access
level of an inherited method. Now imagine that there is an abstract class in a library, which defines
a certain protected method that is meant to be overridden by a concrete implementation within the
library. However, that library subclass can still be further subclassed by external clients. There is no way
to prevent further overriding by these clients, leaving no choice but to document. This is prevalent in
GUI toolkits, as illustrated below for the GridBagLayout.getMinSize in AWT.

4.4.3 Specific callers

Many classes have methods that are meant for use by specific callers, which may be in the same package
or elsewhere. Since there are no syntactic mechanisms to define these restrictions, API authors state the
permitted or forbidden callers in the API documentation; these restrictions are not enforced. We note
that a friendship mechanism of the type supported in C++ would only address a small portion of these
calls in which a specific class or method is allowed to make the access. In many cases, the legal callers
are an amorphous group that is defined using natural language or that may include classes that are not
yet defined. We divide the specific callers into internal and external callers.

Internal callers

We have encountered many methods that are meant for the use of the implementation or “the toolkit”,
although it is not always clear where the boundaries of these concepts are. We saw an example of such
restriction earlier with the addNotify method from Container. However, additional examples are
presented below.
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Other callers

In more interesting cases, the permitted caller is not necessarily part of the implementation, but is still
explicitly designated.

For example, the method getSource in the AWT’s Image class is meant for use by specific types
of methods and classes.

The defaultReadObject method in the standard ObjectInputStream is public, but meant
only for use by a specific method in classes that are being deserialized.

The setSelectedFrame in the JDesktopPane class in SWING is meant for use in bridging the
pane and the platform implementation.
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Specific purpose

A particularly interesting form of restriction states the purpose of the use rather than the permitted caller.
For example, the documentation of findDeadlockedThread in ThreadMXBean states that this seem-
ingly useful method should only be used for troubleshooting and debugging rather than synchronization.

Specific thread

Many complex frameworks, and in particular those that involve event-handling and user interfaces, re-
strict access to specific methods to callers from specific threads. For instance, almost all user-interface
operations in Eclipse can only be called from the dedicated user interface thread and thus only from
listener code or from specially submitted tasks. Even in the standard JAVA library there are certain thread
limitations. For instance, in an AWTEvent, the getCurrentEvent method can only be invoked from
an application’s event dispatching thread.

4.4.4 Object state qualifications

A particularly interesting form of restriction is one that is based on object state. In other words, calls
are only allowed or disallowed if the object on which the method is invoked (or the object making the
invocation) is in a specific state. The problem with these restrictions is that they might be difficult to
determine statically, as the same call can be legal at certain points in time and illegal in others. This is
related to the concept of typestates [7].

For example, an SQL transaction cannot be called while auto-commit mode is active on the Connection.

In AWT, attempting to get the Graphics object for an Image is only permitted when the object is
off the screen.

Also in AWT, the getUnitsToScroll method in MouseWheelEvent is only meaningful under a
specific scroll type.
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In SWING, the scrollToReference method in JEditorPane is only meaningful when the com-
ponent is not visible.

The notify threading construct in the standard Object should only be invoked by a thread that
already owns the monitor of this object.

4.4.5 Discourage use

We have also encountered examples where a client is allowed to invoke a method, but is discouraged
from doing so. We survey several types of such restrictions below and will see an additional form of this
type when we later describe alternative directives.
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Indicating that there is no benefit for using

A common variation of stating that a method is meant for internal use is to state that calling from other
locations is allowed but is not likely to provide meaningful value.

For example, the ordinal value of enumerations should not be used but is in fact used in many
programs.

Similarly, purging timers have limited impact in most cases.

Callers to drawBytes in the AWT’s Graphics class are told not to use it due to an issue with
unicode.

Debugging

A variation on this type of restriction is to state that the method is meant for debugging purposes
and therefore its values are inaccurate or may change over time. For example, the values returned
by actionCount in threadGroup should only be used for informational purposes.
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Highlighting severe risk of incorrect use

Another way of discouraging use is to warn callers of severe consequences if the method is used incor-
rectly or in the wrong context.

For example, the documentation of halt in the Runtime class encourages “extreme caution” since
it avoids an orderly shutdown.

In the AWT’s drag-and-drop infrastructure, callers to addNotify or removeNotify in the DropTarget
class are warned that misuse can break the whole infrastructure.

In the AWT’s central Graphics2D class, callers to setTransform are told to never apply trans-
forms on top of another.

4.5 Imperative directives - Alternatives

The restriction directives discussed in the previous section demand or strongly encourage that a method
not be invoked. Implicitly, however, many of them suggest that prospective caller seeking to accomplish
a particular goal seek alternative ways to meet them. This section describes a related group of directives,
which we call “alternatives”. These directives are similar to restrictions in the sense that they discourage
the use of the method. However, they typically do not forbid its use, and more importantly, they explicitly
state which method may be a better fit.

As we shall see, while certain alternatives are only preferable due to “style” and architectural con-
cerns, many others provide a different and often the only correct behavior. A lack of awareness of these
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directives may therefore cause callers and maintainers to settle for an incorrect call, which may lead to
breakdowns.

Perhaps because of the conceptual similarity between restrictions and alternatives, we found that
many examples of alternatives correspond to the types we have found for restriction directives. The
structure of our presentation is therefore similar.

4.5.1 Deprecated methods

Regardless of whether the @deprecated tag is used, many obsolete methods explicitly state the new
alternative which callers should use. In the standard library and in major APIS, calling an obsolete
method may be safe as they are designed for backwards compatibility. In proprietary APIS, however,
such compatibility is rarely ensured, and calling such methods may result in a failure.

Below are several examples of alternative directives in obsolete methods:

4.5.2 Specific callers

We have seen that many API methods are meant for use by specific callers and that some merely state the
permitted callers. Other methods, however, explicitly state alternative calls that can be made to achieve
similar goals.
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Internal callers

We have encountered many cases where implementation-specific methods are public for the reasons
demonstrated earlier, but are meant to be used through a different object or method, or through another
part of the usage model. While use of the internal method may not cause immediate harm, it increases
coupling and thus future risk.

The SWING toolkit provies many examples of these issues in central classes. For example, the
JDesktopPane class, offers a method called setSelectedFrame for selecting a specific internal frame
in the pane. However, developers are actually supposed to call setSelected on the internal frame
object.

A set of additional examples involves the complex focusing mechanism of the SWING and AWT
toolkits, which provide many methods that are used by widgets and window to handle and transfer focus.
One of these operations is the grabFocus method in the central JComponent class. As can be seen
below, this method is meant for use by the implementations, so clients who want the widget to take focus
need to use the requestFocusInWindow method instead.

Avoiding the use of inherited methods

The above example is interesting since both method names (grabFocus and requestFocusInWindow)
appear to meet the goals of the clients. As we shall later demonstrate in our study, two alternatives with
similar names pose significant awareness problems. We note, however, that there is actually a third
such method. The AWT Component class, from which the SWINGJComponent class inherits, defines
a requestFocus method that is public and therefore also inherited into JComponent. The documen-
tation for requestFocusInWindow, shown below, elaborates this.
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The situation where methods inherited from the AWT classes confound the use of their SWING

subclasses demonstrates the challenges of not having ways of removing inherited methods from a public
interface.

A similar issue results from interface implementation. When we discussed restrictions, we saw
examples of “listener” or “handler” interface methods that were made public due to language restrictions.
The documentation of the restriction can be accompanied by a directive referring callers to the method
that will trigger this listener as a side effect.

We note that while such listener methods are often easy to detect based on their naming, that is not
always the case. In one of the layout managers, for example, we found the addLayoutComponent

method that is actually an event handler that should have been named better. Its documentation clarifies
how callers can actually add the component, which will eventually bring about this notification.

In complex event-driven systems such as GUI toolkits, it is easy for a caller to become confused
about the correct “entry point” for a particular behavior. This is the case with painting components, as
we can see below.

4.5.3 Use in special cases or purposes

Use alternative for specific rare subcases

A major difference between restriction directives and alternatives directives is that the latter rarely forbid
the use of the method. One common reason, discussed below, is that the method is actually useful in
most cases, and the alternative is reserved for special cases and situations that are important enough to
point out.

For example, in the AWT ColorSpace class, the methods for converting to and from RGB prescribe
other methods for “colorimetric conversions”

In the standard interface for double-ended queues, it is recommended that offerFirst be used
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when dealing with capacity-restricted queues to check whether an element can actually be added.

In SWING, a non-default constructor must be called to create “unowned” JDialog objects; most
dialogs are owned, making the default acceptable.

Use this for specific rare circumstances

While the documentation of the commonly-used method may prescribe the alternative to use for special
purposes, the documentation of such alternatives may refer back to the commonly-used method for the
general case.

For example, painting is a major performance issue in most GUI toolkits. Accordingly, Swing users
are expected to ask the toolkit to file a repaint request which will be handled in the next cycle. The
method for requesting an immediate repaint, presented below, acknowledges that there are situations
where immediate painting is necessary, but points out the preferred behavior to its callers.

Similarly, there may be rare situations where callers may want to abruptly shut down the JAVA vir-
tual machine, but the documentation of Runtime.exit() highly recommends the more gentle use
of System.exit().

When dealing with font transforms in AWT, the getTrasnform method recognizes that most fonts
are not transformed and therefore recommend that isTransformed be invoked first to see if there is
even a need to call this method.
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When dealing with the new JAVA enumerations, there is sometimes a need to print the name of a
value. The documentation encourages the use of toString for readability, stating that this method is
designed to ensure getting a consistent name between releases.

4.5.4 Discouraged use

As we saw with restrictions, the documentation of many methods attempts to discourage their use. In
some cases, as we shall now see, it also offers a preferable alternative.

Discouraging use for specific goals

When developers are attempting to a accomplish a particular goal, they examine available classes and
methods looking for a potential match match. In some cases, the authors of a method may be aware
of the likelihood that their method may be used to accomplish a particular goal for which it was not
designed and issue a warning in the documentation.

For example, a common but inherently unreliable programming practice is to use empty disk files as
locks. The createNewFile method in the standard File class explicitly warns callers against using it
to establish this goal.

Similarly, developers seeking to use the weakCompareAndSetmethod in the standard AtomicInteger
are discouraged from relying it for comparing and setting, and are referred to the standard version.
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Constructors

As mentioned earlier, some objects can be created and initialized in a variety of ways, with specific
methods intended for specific uses. In addition, the use of factory methods is often preferable to the use
of a constructor, and the constructors of singleton objects should never be called by users.

Debugging

As with restrictions, the use of certain methods is discouraged since they are meant for informational
purposes, but this time an alternative is explicitly proposed.

For example, asking a Component in AWT for its location may return outdated values, so it is better
to listen for movements and capture them in the event handler.

Also in the AWT, calls to TextLayout.getCaretInfo(), should be replaced with calls to getCaretShape.
Interestingly, this directive does not appear in the second overload.
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Platform dependence

Some methods are platform-dependent, so callers are encouraged to use other calls. For example, in
the AWT focus subsystem, the use of requestFocus is discouraged and requestFocusInWindow is
preferred.

4.5.5 Better fit

Certain methods are useful for many callers and operate as expected, but they may be limited in their
accuracy compared to some (possibly more expensive calls).

For example, the definition of bounds in the AWT toolkit is that a rectangle can fully enclose the
shape. However, the standard getBounds call does not always return the tightest fit, due to representa-
tion and calculation issues. In the case of Arc2D, the difference can be significant, so callers are warned
about this.

The SWING JLayeredPane class offers the ability to organize components into layers, so that el-
ements in higher layer block the view of those in lower layers. To place an element in a layer, one can
use putLayer, but that does not lead to a repainting, so callers are encouraged to use setLayer. As we
shall later see in our study, this presents a significant problem.
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Similarly, callers to checkImage on an AWT Component, which checks on the construction of an
image, are instructed to call prepareImage to actually make the image start loading.

Many properties in UI toolkits are merely hints that are up to specific implementations to honor. In the
focus subsystem of SWING, a call to setRequestFocusEnabled merely offers a hint on whether the
component can get focus. To fully prevent it from getting focus, however, one needs to call setFocusable.

In SWING, the way in which tables are printed can be customized. Callers to getPrintable are
discouraged from dealing with the Printable class directly if they simply wish to print the table.

Finally, we note that some methods designate other methods as a more efficient way to achieve the
same goal. Since calling the original is not an error, we consider these directives to be informative
performance directives, and shall discuss them later.

4.6 Imperative directives - Protocols

Many methods are designed to be used as part of a sequence of actions that sets state and context. Their
documentation includes protocol constraints that specify what should occur before and after the call.
Common examples state that the method must: “only be called once”, “be called prior to any calls to X”,
“first call X”, “be the last call on this object”. Since these statements demand an action from the caller,
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we consider them to be directives.

Because such protocols are so important and prevalent, they are the focus of much research. Many
recent techniques and tools (e.g., [31, 8, 57]) offer means for API authors to formally specify facets of
the expected protocol, and for clients to automatically check the conformance of their programs against
these specifications. While such tools are indeed highly effective in applicable situations, our API in-
spection also revealed many cases where writing such formal specifications may be difficult, expensive,
or impractical. In the examples of this section, we will present examples of both types of protocol
directives.

4.6.1 Instructions about repeated invocations

While most protocol directives deal with a sequence of calls to multiple functions, some deal with se-
quences that involve the same call multiple times.

Quite a few methods forbid repeated invocation, suggesting that a language level construct or at least
an annotation should be created.1 Standard threads provide a classic example of this restriction, as a
thread cannot be started multiple times.

Similarly, when creating a throwable object for an exception, it is forbidden to call initCause
multiple times; this is actually surprising because the effect is likely to simply be the setting of a string
field. In addition, depending on the state of the object (i.e., how it was initialized), calls to this method
may be completely forbidden.

In some cases, the restriction will not actually cause an ill effect, but rather have no effect.

Things become more complicated as certain methods may only be called once per “state”, and when
the state changes they may be callable again. For example, result sets in SQL are created for specific re-
sults, and cannot be retrieved twice for the same result. Formal specification would require a specification
of what consists the current result and a modeling of result changes.

1JAVA 5 allows metadata elements called annotations to be associated with methods, and automatic tools can check confor-
mance. For example, methods tagged as override must indeed override an inherited version.
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Iterators are a good example of objects that reflect some underlying state, so certain operations cannot
be repeated. The exact rules can become quite complex, as they are for removing an element on an SQL
list iterator.

The definition of a repeated call becomes less clear with recursive calls that return objects of the
same type, a common pattern for things such as transforms. In the example from AWT below, asking a
text layout object for a justified layout object produces a new object, but the call is not permitted if the
element is already justified. In addition, in certain states a repeated call has no effect.

Finally, repeated-invocation restrictions can be combined with rules about other calls. For instance,
in AWT’s InputMethod, one may only call setInputMethodContext once, but there are also precise
instructions on when that one call should occur.

We note that while methods that explicitly address repeated calls typically forbid it, some explicitly
allow it, such as the cancel operation on a Timer.

Some methods anecdotally specify that they are the only ones that can be called after the initial call,
as demonstrated by the free operation from the SQL Array.
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4.6.2 Placement in sequence

A typical protocol directive will convey a constraint on the placement of a call to the associated method
in some sequence of calls. If other calls have already been made, then the directive should lead the caller
to ensure that the placement is correct. If they have not, then the directive may actually remind the caller
that it is necessary to invoke other methods.

Examples of such directives are quite common. For example, the documentation of init in the JAVA Applet

class clarifies the initialization process: First, init is called by the containing viewer, and only later is a
call to start made; the wording indicates that the subsequent call will always occur at some point and
possibly more than once.

Similarly, the documentation of start in Applet shows the corresponding rule, alerting callers that
a call to init will have to occur first. It also permits multiple calls to this method.

Protocol directives are particularly important when the method name matches the expectations of a
user seeking to accomplish a particular goal, but additional actions are needed. For example, developers
seeking to add widgets to a SWING container need to be aware of the need to invoke validate to
actually cause the container to be redrawn with the new widgets.

Similarly, ignoring deprecation, the impact of calling setModal is not evident until the dialog visible
state is reset with other methods.
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In some cases, the documentation is so verbose that there is a risk that readers may not get to the main
point - the necessary sequence. For example, only the last line tells when to invoke preferProportionalFonts
in SWING’s GraphicsEnvironment class.

Similarly, only the last sentence instructs when to call setFocusableWindowState on a SWING Window,
and what should be done afterwards. I argue that readers may benefit if the instruction would appear be-
fore the explanation.

An interesting form of sequence protocol defines that a call must take during the execution of another
method. For example, calling defaultReadObject on an ObjectInputStream is only allowed from
the readObject method or from a method invoked by it.

Finally, the sequence may be described as an algorithm rather than as a linear sequence of calls. For
example, nextToken on StreamTokenizer is invoked as part of a loop.
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4.6.3 Directives that depend on state

The directives presented so far described protocols in terms of specific method invocations, or in terms
of specific actions that likely correspond to a single method, such as making a widget visible. Such
protocols are relatively easier to formally specify and validate. There are some directives, however, that
work in more general terms of state. Because there may be different ways to reach the specified state,
formal specification and validation may be more difficult.

For example, the setDaemon method on a standard Java thread may only be invoked before the
thread had been started. From the point of view of the caller, the thread can be started with a call
to start, but it may indirectly be started by other methods.

The standard ThreadGroup presents a more challenging example. Prior to destroying the group,
callers must ensure that it is empty, and that all of its threads were stoped. It is not immediately clear
how this can be verified, although one may assume that corresponding methods exist for writing the
relevant code. Nevertheless, specifying this is not trivial, as many invocation sequences may be followed
to accomplish this goal.

Similarly, the close and getWarnings operations may not be invoked on a closed SQL Connection.
However, there may be different ways to close a connection in addition to a call to close, such as not
opening it in the first place, or perhaps failures of other operations.

Certain frameworks such as SQL support revolve around operations on objects that change their state
in response to other operations. For example, various operations change the SQL cursor, so the legality
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of a call to insertRow on an SQL ResultSet may depend on previous calls on this object.

Similarly, the wasNull operation on an SQL CallableStatement can only be invoked after some
“getter” method had been invoked. There could be different getter methods, and there could possibly be
calls to other methods.

Another example of state dependence comes from the SWING JFileChooser class, whose setAccessory
method requires callers to check if there are any previous accessories that still have registered listeners.
Verifying this is quite complex.

We note that in some cases the exact state is unclear. For example, in the SWING DesktopManager,
it is not clear how users indicate that they will begin dragging a component before invoking beginDraggingFrame.

4.7 Imperative directives - Parameters

One of the main roles of function documentation is to describe its inputs and outputs, accurately specify
the conditions on the inputs, and the properties of the outputs. In this section we are concerned with
inputs, while the next one deals with the outputs.

In JAVA, all method parameters are (generally) inputs, although a function can modify the state of
passed parameters. Restrictions on parameters are essentially pre-conditions, and following them is
critical for the correctness of the program. To convey instructions to callers, JavaDoc provides a param
tag. The official guide to writing JavaDocs instructs writers to create these tags for every parameter
“even in straightforward” cases. Indeed, in standard libraries and major APIS like Eclipse, I found that
this instruction is indeed followed in most cases.

While many parameter clauses place restrictions on allowed inputs, not all of them can be considered
directives. For example, many parameter descriptions indicate whether null values are permitted, and
callers can be reasonably expected to check the documentation if in doubt. Under the criteria defined
earlier, a clause is only a directive if it can be considered surprising or is rare or somewhat unexpected.

110



To illustrate these differences, we now survey a variety of such directives found in the JDK. As we shall
see, many clauses are considered directives because they restrict the parameters further than what could
be expected from the signature of the method. Interestingly, many of these directives will appear in the
method writeup, rather than in the parameter summary that uses the @param tag.

4.7.1 Restricting simple parameter value by contents

Most parameter directives are concerned with restricting the legal values of parameters which can be
passed, but the restriction can have different facets.

Some methods restrict the legal values of atomic values passed to primitive variables. These re-
strictions are interesting because they typically cannot be expressed using the type system, and typically
cannot be validated at compile time.

For example, the load methods of the standard Runtime class (below) and the standard System

class take a filename as a string. However, the documentation demands that the passed filename would
be absolute, rather than relative. This may surprise callers, as it is common to specify files in relation to
the current application or working directory.

Similarly, when asking an AppletContext to load an image from a URL, the URL must be abso-
lute, rather than one that is relative to the location from which the applet was loaded.

When creating a TextLayout object in the AWT toolkit, the string passed to the string parameter
should actually represent a single paragraph of text. Note again how this is not mentioned in the param
list.
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Restrictions are not limited to strings. For example, when setting the maximal field size on an
SQL Statement, callers are encouraged to set a value of at least 256 for “portability” reasons.

In some cases, values are actually restricted in ways that are unintuitive and completely unexpected.
For example, we have seen that when using replaceAll in the standard String class must not include
dollar signs or backslashes due to an implementation issue.

A common convention for identifying long-value integer literals is to add an L character following
all digits. When converting such literals to a string using Long’s parseLong method, however, this
character must not be included.
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When inserting character sequences into a StringBuilder, passing a null value will for some
reason actually add the corresponding four characters.

4.7.2 Restricting complex parameter values by contents

Unique restrictions on parameter values can also involve more complex types of parameters. These
restrictions are even more difficult to specify or automatically validate.

For example, when building a custom cursor using the AWT Toolkit class, the given cursor image
must not have multiple frames or the program will hang.

When building a CubicCurve2D and specifying points for a subdivision, the first point should be
identical to the last.
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When working with the AWT FocusTraversalPolicy, the passed container object must be a
cycle root of the passed component value or a different policy provider. Clearly, this would be difficult
to verify or specify at compile time.

We note that many legacy APIS use integer values that are restricted to a specific set of constants. For
example, when building a color profile, each color component is represented by a specific integer, and
the result when using a different integer value is unclear. In situations where a caller would reasonably
expect to have to provide a specific value, we do not consider the description to be a directive because
the caller is likely to consult the documentation to understand what values are legal. In newer APIS this
should be even more straightforward as JAVA finally introduced an enumeration type.

4.7.3 Restricting parameter value by type

Object oriented languages differ from one another in whether they allow variance when methods are
overridden. Variance usually refers to a change in type along a particular hierarchy path. For example,
suppose thatf B extends A and Z extends Y. If A has a method that takes a parameter of type Y, can the
overriding version in B be defined to take a different parameter type, such as a value that must be an
instance of Z? In JAVA, return values can be different, but parameters must be identical. To achieve the
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desired restriction, some methods use the documentation to demand that passed objects would belong to
a specific subtype, rather than to the more general supertype with which the method is declared.

A well known example of that behavior is the put operation from the standard Map interface. In the
overriding version in TreeMap, the passed object must implement the Comparable interface.

In SWING, the setDocument method of JTextPane is inherited from JTextComponent with a
parameter of type Document. Its specific documentation, however, demands an instance of the sub-
type, JStyledDocument.

We note that these situations carry the risk of an awareness problem when callers have a reference
for the supertype but the actual object belongs to a subtype that adds these parameter restrictions.

4.7.4 Restricting parameter value by origin

In many cases, a parameter value is restricted in terms of the state and “history” or “origin” of the passed
object. In other words, one cannot simply pass any instance of the specified type but rather one that has
been obtained in a specific way. Often, this implies a protocol of invocations, so the clause can implicitly
be considered to be a protocol directive as well.

For instance, the JAVA SecurityManager accepts a context parameter which must have been
obtained with a call to getSecurityContext.

Locales passed to getInputMethodDisplayNamemethod in the AWT’s InputMethodDescriptor
class can only be obtained by the descriptor’s getAvailableLocales function.
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4.7.5 Restricting parameter value by receiving object state

Some parameters are restricted by the state of the object on which the method is invoked.

For example, when setting a cursor name on an SQL Statement, the name must be unique so that
it must not conflict with previous names set on that statement object.

When working with the AWT CompositeContext and invoking compose, the passed destinations
must be “compatible” with the color model which was used when initially constructing the context.

4.7.6 Warning of unexpected behaviors

Certain parameters can be misinterpreted based on the signature, or the signature is simply not specific
enough. In those cases, the documentation can warn callers against making a mistake.

For example, in the SWING JTable class, callers to getValueAt, setValueAt, and several other
methods are instructed that the column be specified in the table view’s display order and not in the TableModel’s
column order, as the difference can be substantial.
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4.7.7 Mutability

Finally, a common concern of many documentation clauses involves the mutability of passed complex
objects. Recall that while all parameters in Java are copied, the copy is shallow, so that it is still possible
to change the state of a referenced object.

Some methods will explicitly warn callers that the passed object is saved as-is, so that outside changes
can affect the containing object.

In some cases, callers are assured that a copy is made, though this indicates that outside changes are
not a valid way of changing the state of the receiver.

Finally, here is an example where the passed object should not be modifiable, although the reason is
not clear.
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4.8 Imperative directives - Return values

Just as parameter directives convey knowledge that is more pressing than what is typically conveyed with
the standard param tag, we use the term “return-directives” for important clauses about return values that
go beyond the standard description in the return tag.

4.8.1 Mutability

Just as certain parameter directives described whether the passed value is cloned before it is kept in the
receiver and whether external changes affect the receiver, some return directives convey the same kind of
information about the return value. In particular, is the returned value a clone, or is it a direct reference
that can be used to change the internal state?

For example, the command method in the ProcessBuilder class returns a list that callers are free
to modify.

Similarly, many operations in the JAVA reflection library explicitly state that they return clones that
callers are free to modify.

Many other methods warn callers against modifying the returned collection. This is the case with
much of the standard collections library, where methods such as keys or values are designed for rapid
access and do not create a clone.

4.8.2 Cleanup

A related issue to mutability is that of deallocation. If a method returns a reference to an object that has
been created or acquired within it, who is responsible for cleaning up the object? The standard garbage
collector will eventually recycle unreferenced objects, but there are no guarantee of the timing of this
cleanup. Some objects need specific and more pressing cleanup, deinitialization or release, and some are
bound to costly system resources.
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For example, callers to createInputMethodJFrame in the InputMethodContext class are in-
structed to invoke dispose on the returned frame when it is no longer needed.

4.8.3 Limitations

Some methods return a value which may fall short of what a caller might expect.

For example, the methods for getting an image or an audio clip in a JAVA applet do not actually load
the image or the clip. Instead, they return a reference to a lazily-loaded object that would only be filled
once the image is displayed or the clip is played. In fact, the corresponding file may not even exist at the
time of the call.

Callers to getId on the standard Thread class are notified that the number may eventually be
recycled.

When calling the static getWindows method in the AWT Window class, callers are warned that the
returned list may include some system-generated windows, rather than only user created ones.

When obtaining the list of files in a particular directory represented by a File, there are no guarantees
about order.
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Some methods indicate that the return value may not be valid. We have already seen examples of
this with methods intended for debugging purposes only. These can also result from threading issues, as
is the case for getLocation in the AWT Component class.

Similarly, the capacity reported by remainingCapacity in an ArrayBlockingQueue cannot be
used to determine if an insertion will be successful.

Other examples, however, refer to specific states. For example,in the AWT KeyEvent class, the getKeyChar
method only returns a meaningful value for key typed events. There are many similar examples in
the AWT.

4.8.4 Typing issues

As with parameters, where the type of the passed object may be more restricted than the declared types,
a return type may also not be sufficiently specific.

For example, In an AWT InputContext, callers to getInputMethodControlObjec are in-
structed to check what kind of object was actually returned.
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Also, many specific types of collections use documentation to indicate to callers of certain methods
that the returned objects do not support certain operations. This is the case, for example, with the keySet
operation on a standard Map.

4.9 Information directives - Side effects

Our discussion so far has focused on imperative directives, which gave callers explicit instructions on
actions that must be carried out to ensure correctness; violating these instructions will almost always
result in some kind of error. From here on our focus is on informative directives, which merely provide
callers with important information that they should take into account although they can choose to ignore
it. Since inaction does not necessarily lead to an error and as the information may not imply a clear
reaction that should take place, the formal specification and automatic verification of such directives
would be particularly difficult.

We begin our presentation of informative directives with side effect directives.

The “single responsibility principle” [63] states that each method should be designed to accomplish
a single goal. This goal should be obvious from the method’s name, or at least from its signature. If that
fails, the goal should be described by the first summary line in the JavaDoc description. Nevertheless,
for various reasons, we encountered many calls that result in additional side effects. These effects, by
definition, are different from the method’s primary purpose, and therefore not conveyed by the mediums
described above. When unanticipated, these effects can cause software errors and be difficult to trace
back to the method that has caused them. We survey types of side effects below.

4.9.1 Lazy creation

A fairly benign and often expected type of side effect is the lazy creation of objects. Many inspec-
tion and “getter” operations lazily create an instance of the requested object if one does not yet exist.
Since the primary effect is obtaining an existing object, the just-in-time creation can be considered a
side effect, especially as the state of the container and its memory footprint changes. For example, call-
ing getAccessibleContext on an Applet creates and stores an instance of the context. The same
occurs when obtaining the accessible context of an AWT Dialog.
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Object creation may also be a side effect of more complex operations. For example, inserting a
character to an AWT StyledParagraph may create a new paragraph.

In some cases, a call to a create or obtain an object not only creates the object but also destroys an old
version. For example, in an AWT canvas or Window, calling createBufferStrategy will discard
the previous buffer strategy.

4.9.2 Cascading effects

Many object models, such as those used in GUI toolkits, are designed so that certain objects “dominate”
or affect others. In some cases, calls to methods on the dominating objects can have an effect on the
associated methods. A particularly common pattern is the firing of events or the notification of specific
listeners, which may in turn trigger a cascade of method calls. Awareness of these side effects is impor-
tant because even triggering schemes are inherently complex and difficult to understand from the static
structure of a program.

For example, calling flush on a PipedOutputStream will notify readers that they can begin
reading materials.

Similarly, closing a RandomAccessFile closes the associated channel.

4.9.3 Affecting multiple parts of the state

Each function that changes the state of an object should in general be responsible for a single cohesive
and well-defined change. However, some methods intentionally affect additional parts of the state of the
same object, often in an attempt to keep the object in a consistent form.

For example, calling setContentAreaFilled on a SWING AbstractButton may cause the
opaqueness property of the widget to change.
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4.9.4 Destruction of existing state

Invoking certain methods destroys existing parts of the state beyond the part overwritten by the primary
goal.

For example, disposing of the last AWT Window may cause the JVM to terminate.

A less drastic example is setting the row sorter in a SWING JTable, which clears the current selection
and resets variable row heights. This is not necessarily intuitive, since a toolkit implementation could
conceivably maintain selections when row order changes.

Unexpected state changes may carry serious consequences. For example, in Eclipse, the documen-
tation of the getVisibleRegion method in ITextViewer states that this seemingly straightforward
inspection method may actually change the state of the editor’s visible regions. In the actual implemen-
tation for JAVA editors, folding is permanently disabled, which appears as a bug to editor users.
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4.9.5 Delayed side effects

Finally, we note that some methods have a “delayed effect” on subsequent calls to other methods of
the same object. For example, the documentation for getBinaryStream on an SQL ResultSet it
indicates that the next call to a getter method will close the stream.

4.10 Information directives - Limitations

The name, signature, and summary documentation line of a method are intended to provide potential
callers with a valid understanding of the purpose and effect of the call. Since developers often use APIS

as means to an end, there is a risk that they may be “optimistic” in their expectations of the abilities of
the method and its fit for their specific needs. In some cases, method authors may anticipate potential
misunderstandings and use documentation clauses to attempt and prevent them. We term these clauses
limitation directives, and note that if callers are not aware of them, the program may not operate as
expected.

4.10.1 Null effect

The most severe limitation of a method is, perhaps, that it has no effect under specific conditions. This
is different from a restriction or a protocol directive because the call is still legal. However, callers not
aware of these limitations may be confused as to the lack of desired effect.

For example, the AppletContext class provides a showDocument method to display a web page.
However, while applets are often embedded in a browser, they may also be embedded in other contexts,
in which case this operation may have no effect.

Similarly, the SWING JTable class offers a print operation that displays a standard printing dialog
and can then send the table to the chosen printer. In “headless mode”, however, the dialog is skipped and
the table is printed straight to the default printer, which may not be the intended effect.

Some methods qualify the conditions under which the effect will not be null, as is the case with focus
requests in an AWT Component.
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4.10.2 Accuracy limitations

In the earlier discussion of return-value directives, we saw examples of limitations and shortcomings
in the values returned by certain methods. Since these values were potentially quite different from
expectations, they could also have been considered to be limitation directives. Additional examples
are presented here.

A well known problem in JAVA is the lack of availability of fine-grained timing primitives for bench-
marking and similar purposes. A developer can ask for the current time in milliseconds, but that value
is only updated once in a while by the operating system. Instead, developers can ask System for the
current time in nanoseconds, but the result is thread- and processor- specific. The values can therefore
only be used for comparisons, and this complex limitation is described in the documentation. If results
are taken at face value, serious calculation errors may occur.

When objects are cloned, there is generally an expectation that the cloned object is identical to the
original. Some collections, however, choose to perform only a shallow clone for performance reasons,
as is the case with HashTable. Confusion about this can result in data corruption.

Asking an SQL ResultSet for its warnings will only chain those caused by its own methods; the
warnings caused by the Statement object that was used to obtain this result set are not included.

Most GUI toolkits provide methods for bound calculations, and these are often limited in their accu-
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racy. Below are two examples from GlyphVector and TextLayout in the AWT.

4.10.3 Implementation limitations

Some limitations are not intentionally designed by the method author but rather originate from limitations
in the implementation, often outside the author’s control. These limitations are particularly risky because
they may only appear in specific cases or in specific platforms, and may therefore be difficult to anticipate
or reproduce.

For example, when asking an Exception object for the stack trace, callers expect to receive the
complete breakdown so that they can pinpoint errors. In some conditions, however, this listing may not
be complete.

Similarly, asking an SQL databaseMetaData object for the list of tables in the database, may not
return some tables under some database implementations.

Graphic toolkits face similar challenges. For example, AWT offers a SystemTray class, but the
actual tray may not be available in some operating systems.
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Changing the ordering of windows in Swing is also affected by platform issues.

4.10.4 Limited domain

Limitations can apply not only to the value returned by a method, but also to the input values that it can
operate on. Certain parameter directives can also be considered limitation directives when the method
can only operate on a subset of the inputs which it can receive.

For example, the canDisplay method on the AWT Font object indicates that it cannot handle
certain types of characters.

4.10.5 No event triggering

When we discussed side-effect directives, we saw examples of methods that trigger a cascade of events
and notifications. This functionality is crucial in many GUI toolkits. Some methods, however, indicate
the opposite: they can be used to change specific parts of the state, without triggering the notifications.
If callers do expect them to trigger the cascade, errors will occur.
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An interesting example of such limitations will be presented in our later lab study. In a SWING JLayeredPane,
calling putLayer will only associate an element with a layer but will not actually trigger the expected
redraw. Another example from that study is concerned with adding or removing items from SWING

containers, as there is no visual effect until validate is called.

4.10.6 Cannot support particular goals

We have previously seen method documentations that warn callers against using them for certain pur-
poses. In some cases these warnings were stated as restrictions or as alternatives, but in some cases there
is simply a warning that the method is limited in its ability to support this goal.

For example, the isClosed method on an SQL Connection seems like a logical choice for check-
ing whether the connection is valid, as it would only be open if it is. However, the method warns against
it and indicates that validity can only be checked while operations are executed.

Similarly, a common issue in UI toolkits is determining whether a certain component is actually visi-
ble, as this may have usability and performance implications. The isShowingmethod in an AWT Component

looks like it should provide answers to these queries, but its documentation indicates that in some cases
it may be impossible to calculate this correctly.

A common strategy for comparing two strings in a case insensitive manner or use them as mapping
keys is to change them to all-lowercase or all-uppercase. The standard implementation in a Java string,
however, warns that it depends on the locale, so the resulting values aren’t globally consistent.
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4.11 Informative directives - Performance

API methods generally offer callers means to accomplish a particular goal while encapsulating details of
the implementation. When using high-quality APIS, clients can reasonably expect that the most optimal
implementations and algorithms are used. Nevertheless, clients are expected to have some understanding
of performance issues and the possibilities of implementation. For example, they need to be able to
choose the appropriate data structure or meet the preconditions for a particular search algorithm.

While implementation typically meets expectations, there are situations where the method does not
perform as optimally as it possibly could, or where the performance limitation is not straightforward. In
addition, the platform, hardware, or network may add additional delays. To make callers aware of these
issues, some methods state performance directives. Ignoring them is not necessarily an error, but could
be risky in high-performance systems.

4.11.1 Inherently expensive operations

Some operations are inherently expensive by definition, but the domain may not be familiar enough to
potential callers.

For example, font transformation is quite expensive, so the method setGlyphTransform on an AWT GlyphVector

adds a warning that setting a transformation on the vector (which can represent a line of text) will carry
a performance hit.

Algorithms for detecting deadlocks are inherently expensive and so are dynamic operations for iden-
tifying them. Callers to findMonitorDeadlockedThreads in ThreadMXBean are warned that it
should be used only for troubleshooting rather than for regular synchronization control.

Asking a ResultSet whether the current row is the last one may be expensive since the driver may
need to fetch ahead an extra row.
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Similarly, various performance issues also plague calls to refreshRow on the ResultSet

In many mapping implementations, checking whether a key is mapped is relatively cheap, but check-
ing whether any key maps to a particular value is expensive. Certain implementations warn callers against
these costs, as is the case with ConcurrentHashMap.

Similarly, while some data structures track the number of elements inside them to be able to report it
in constant time, that is not the case with many of the concurrent data structures such as ConcurrentLinkedQueue
and others; care is therefore required, especially in loops.

4.11.2 Presenting more efficient alternatives

Some APIS offer “expert level” versions of their standard operations which allow fine tuning for perfor-
mance.

For example, methods for setting different types of streams on an SQL CallableStatement in-
struct callers to check if their JDBC driver documentation wants them to use a more customizable version
of this method to achieve better performance. The same instruction appears on many other operations
throughout the SQL API.
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Similarly, callers to createStatement are told to use PreparedStatement objects if the same
statement will be executed multiple times.

Rather than merely warn callers about performance issues, some method documentations suggest
ways to improve it. For example, making changes to containers in a UI toolkit is often expensive because
of redraw, and can cause flicker. Many methods of the SWING Container instruct callers to add multiple
items and call validate only once they are ready.

The Eclipse framework offers many additional example. For instance, when using Eclipse content
type matching, names should be provided to “avoid querying the entire registry”. Similarly, performance
critical code should not invoke ITextFileBufferManager.getTextFileBuffer() since it com-
pares all buffers in the system. When using an Eclipse IFileStore, the fetchInfo method should
only be called on a highly available system unless a progress monitor is set up. In the Eclipse Platform
class, users should only call getResourceBundle for externalizing strings from the manifest file, as
memory performance will degrade for other strings. Clients of PerformanceStats.isEnabled()
should cache the result, which is expensive to calculate.

4.12 Information directives - Threading

The final type of informative directives that we discuss here are concerned with threading. When we
discussed imperative directives, we have seen directives that require calls to always (or never) come
from specific threads. Similarly, there are many methods that require callers to acquire specific locks,
and these can be considered protocol directives. These locking comments have been noted in many
languages, and recent research has attempted to parse them automatically and match against system
behavior [83, 84].

Informative threading directives, however, do not make specific demands of the caller. Instead, they
supply information about threading related issues that may affect an unaware caller and potentially result
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in errors.

4.12.1 Thread safety

The first issue conveyed by threading directives is the thread safety of the function. Documentation
indicates whether the method itself is thread safe (and can be invoked concurrently without additional
locking), or whether the returned objects are thread-safe and can be modified without affecting threads
that also called the same method.

For example, the path iterator returned by a Line2D object in the AWT user interface toolkit is not
thread safe.

Surprisingly, the same operation for an Ellipse2D object from the same package is thread safe.
Clearly, callers need to be warned when calling one in case they are familiar with the other.

In some cases concurrent access results in undefined behavior, as is the case with draining a BlockingQueue
in the concurrent collections library.

Finally, the threading behavior may be very complex and multiple directives may be potential callers
to read the entire documentation.

4.12.2 Blocking

Another threading related issue involves the blocking of the invoking thread. Certain methods that de-
pend on outside event are designed so that the thread blocks until a certain condition is met. If the caller
is not aware of this behavior, serious errors may result, at least on the first invocation.

For example, when reading an element from a ByteArrayInputStream in the standard IO library,
the method returns immediately with a value or an indication that the end of the stream has been reached.
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When reading from a FileInputStream, on the other hand, the thread will block until the input is
available. If the program is single-threaded and the input never materializes, the program will effectively
hang.

The definition of read in the parent interface InputStream is more general, telling us that the
method may block until a variety of conditions are met.

We note that our lab study, described later, shows that unexpected blocking behavior can be quite
challenging for users to debug. In our first task, there is a method that blocks until input is available or
until another operation is invoked.

Blocking directives are also very common in UI toolkits, which even offer special methods for that
purpose as is the case with SwingUtilities.

4.12.3 Performance

Finally, we note that some methods present warnings and issues related to performance in the context of
multithreading.

For example, the standard random operation recommends that if multiple threads need to generate
random number, they may benefit from each having its own local generator.
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The standard ScheduledExecutorService warns when scheduling tasks at fixed rates about the
consequences of using intervals that are too short.

4.13 Conclusions

In this chapter, I presented guidelines for the recognition of directives and a detailed taxonomy with
many examples of directive types. These examples illustrate the breadth of directive types and their
prevalence across various facets of the JAVA standard library. While only few of these methods may be
previously familiar to the reader, it should be straightforward to understand how a lack of awareness of
these directives will cause problems for developers who seek to use these methods.

It is important to note that while the presence of directives could be indicative of design, documen-
tation, or naming issues, in some cases such surprises are not avoidable. Certain APIS, such as SQL,
rely so much on state and complex relations between methods, that it is impossible to convey everything
via method naming. Such APIS may simply be too difficult to use without a general understanding of
their architecture and usage principles, although there still a need for awareness of the directives in each
method.

One reason that this chapter focused on a classification of directives is the potential utility in helping
users filter or adjust the presentation of specific types. For instance, a developer that is currently focused
on correctness issues could be distracted by directives that recommend performance improvements. On
the other hand, a developer concerned with threading problems may want increased visibility for calls
that have associated threading directives.

Accordingly, our eMoose tool is used with sets of directives that are each assigned a major type from
the above taxonomy. When examining the JavaDoc of a method, the type of each directive precedes its
text, allowing readers to skip types that they are less interested in. Users can also filter out specific types.

Currently, the annotation over a call that has an associated directive is the same for all directive types
- a simple dashed box. When the necessary support is added in future Eclipse versions, the annotation
will be adjusted and accompanied by an icon to help distinguish the type of directive. This information
should help developers with the decision whether to investigate the call or ignore it.

An opportunity for future research is to investigate whether the directive type can be automatically
tied to the user’s recent activities to dynamically adjust the priority and presentation of displayed direc-
tives.
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Chapter 5

The eMoose tool

This chapter presents eMoose, an implementation of the approach proposed in this dissertation of “push-
ing” directives into the awareness of developers who are examining calling code.

The presentation is focused on the functionality of the tool as it appears to API authors and to
developers who use these APIS, but includes some relevant implementation details. It is also concerned
only with the standard version of the tool, which is available online at http://emoose.cs.cmu.
edu. The tool was initially developed as a more comprehensive client-server based framework for
capturing episodic activity [26]. Inspired by my studies of design, it preserved a complete record of
the activities of developers along with the viewports and documents they were exposed to. However, this
version was never released and is outside the current scope.

From the point of view of IDE users, eMoose has three primary features: First, it highlights calls to
methods that have associated directives. Second, where applicable it augments the JavaDoc hover with
a list of directives for the method. Third, it allows developers to easily add new directives.

eMoose is written in JAVA and is currently aimed only at JAVA developers. We chose to focus on JAVA

for several reasons: Most importantly, this language is relatively straightforward to parse and analyze.
Each file can be analyzed independently, and it is straightforward to determine the static type of the
object on which a method is invoked. While header comments similar to JavaDocs are present in lan-
guages like C++, the linking model, complex file inclusion rules, and the presence of function pointers,
all make it difficult to resolve calls efficiently. Similar comments are also available in dynamic languages
like python or Smalltalk but the lack of compile-time types makes it difficult to resolve calls. Neverthe-
less, our approach could potentially be implemented for these languages at higher computation costs.
Another reason for choosing JAVA is that libraries are often provided as obfuscated archives with exter-
nal HTML based documentation but no human-readable header files. I believe that the higher cost of
investigating documentation makes it even more crucial to bring important directives to the awareness of
callers.

eMoose is built as a set of plug-ins for the popular open-source Eclipse IDE. This IDE is designed
for extension, has a very robust representation of JAVA projects, and also allows developers to add deco-
rations to program text and augment the JavaDoc hover. Nevertheless, it should be relatively straightfor-
ward to implement our approach in other IDEs, although not necessarily as external plugins.
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5.1 Knowledge space

The eMoose tool revolves around an abstract knowledge space which consists of knowledge items (KIs).
A KI is an atomic and concise element which is intended to be captured rapidly and cost-effectively
as a single sentence or text line conveying one idea. In the scope of the standard version, each KI is
associated with a method. Most KIs correspond to a single directive in the JavaDoc of a method, but
some are associated with an embedded to-do comment. Every KI is also assigned a single type from a
predefined set that is based on the major types described in Chap. 4.

5.1.1 Creating embedded knowledge items

All KIs are initially created as embedded KIs . That is, they are automatically generated to reflect
specially tagged lines within comment blocks in the source code loaded within the current Eclipse
workspace. For eMoose, we borrowed a notation proposed by the TagSEA tool [78], of using a @tag

marker to identify specific lines within the documentation. However, while tags in TagSEA serve primar-
ily as bookmarks, in eMoose they serve to define a KnowledgeItem. In our case, a KI is created with
the following syntax:

@tag usage.TYPE [-rating=0..5] [-author=AUTHOR]: Text until EOL

That is, the line starts with @tag, followed immediately by usage.TYPE where TYPE is replaced by
a literal from specific set (e.g., restriction, protocol, sideeffect, etc.). It can then be followed
by optional arguments such as a numeric rating (default is 3) and an author id string. All this is followed
by a colon, followed by the text of the KI until the end of the line is reached.

These tagged lines can be embedded in the comment block by anyone using any editor, and are
therefore distributed with the source code. If they are embedded within the JavaDoc block, they will
also become part of the public HTML-based documentation and be visible through the JavaDoc hover.
An investment in creating the tagged line still offers benefits to non-eMoose users who will see explicitly
tagged directives when they read the text.

If authors wish to avoid having the tagged line visible within the JavaDoc, they can place it within
the source code of the method or as a line-comment (//) between the JavaDoc block and the actual
method declaration. In both cases, the line would be transformed into a KI but would not appear inside
the JavaDoc when it is exported or presented.

In addition to tagged lines with the format described above, eMoose also recognizes all variants of
to-do comments [79] and creates corresponding KIs, as illustrated in Fig. 5.1. While the Eclipse IDE
already recognizes such comments, it merely adds them to a global task list that encompasses all files in
the project and might be very lengthy. eMoose is designed under the premise that the presence of a to-do
comment in a function is likely to indicate a limitation in its current ability to meet its contract. If it is
invoked without the caller’s awareness, the effects may not match expectations and errors may result. By
automatically creating KIs and “pushing them”, we let callers know that the method they are invoking is
incomplete, and possibly also lead them to complete it.

One of the costs associated with function documentation is the need to switch from the current
location to the header and back. For example, a developer who realizes a precondition or limitation
while writing a complex conditional in the body of a long function may not want to leave the current
location. This can be avoided with a key combination that brings up a series of pop-ups, requiring only
keyboard input, for the creation of KIs. The new KI is embedded in the JavaDoc block while the insertion
point remains in its original location in the source code.

In principle, the set of embedded KIs maintained by eMoose at any point in time should correspond
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Figure 5.1: Knowledge items that are automatically created from to-do comments

to the set of all tags in the current source files. For performance reasons, however, we had to somewhat
relax this continuous consistency. To avoid flicker and slowdowns, a new tagged line or an edited existing
line is not recognized or updated until the file is saved by the user. Once it is recognized, a solid box
appears around the line to indicate that it has become a KI, as depicted in Fig. 5.1.

A side benefit of these solid box decorations is that they help readers who are skimming the source
code to quickly recognize KIs and to-do comments. By default Eclipse adds a small icon on the side for
to-dos, but nothing for directives.

5.1.2 Exporting and sharing knowledge items

APIS and their documentation are typically meant to be used by multiple developers. While the sharing
of embedded KIs may be practical for in-house code and APIS, it is not practical for third-party APIS.
First, available library source code is rarely loaded into the actual Eclipse workspace, where it would
be monitored for KIs by eMoose. Instead, individual files are loaded temporarily only when relevant,
for example when interactively debugging into platform code. Second, while the source code may be
available for us to add embedded KIs, other users would still have the default distribution without them.
Third, many libraries are distributed as archives without the source code, which may be proprietary.

To this end, eMoose also supports virtual KIs . These have similar properties to embedded KIs, such
as type, text, and possible rating. They are also tied to specific methods identifiers, but without being
tied to specific locations in the source code. As a result, eMoose will be able to decorate calls to these
methods even if their source code is not available. However, they cannot be removed by changing the
method source code, or if the method signature changes.

When API authors use eMoose on the annotated source code of the API, they can export all the KIs
into an XML file. This file can be distributed to other users and loaded to create virtual KIs. To further
facilitate distribution, the XML files can be embedded in special plug-in files, which can be distributed
and regularly updated using Eclipse update sites.

This export-import mechanism is effective for distributing sets of directives for APIS that are outside

137



our control. For example, I obtained and annotated the publicly-available source code of the JDK and
of Eclipse with lines for directives. I then exported these into XML and created wrapping plug-ins.
These plug-ins are now distributed with eMoose, allowing users to immediately benefit from the tool for
some of their existing code without having to invest in creating any KIs.

A similar benefit of the export-import mechanism is its potential support for distributing community-
generated information. Popular APIS have active user communities that generate new knowledge about
it, including: best practices and solutions for common problems, limitations and errors in the API and
workarounds, and references to additional material. Since communities typically cannot change the API
documentation, this knowledge is currently maintained externally on the web and requires an active
search (e.g. [20]). Using eMoose, community volunteers could potentially obtain the source code, em-
bed KIs corresponding to the community-knowledge, and distribute them as plug-ins.

One problem with this community-generated information is that it would not be visible when the
method is examined as it does not appear in the embedded documentation. eMoose will signal the
availability of such information by creating a solid box decoration over the method name. By hovering
over this box and opening the JavaDoc hover, users can see the list of associated KIs.

5.1.3 Rating directives

As mentioned above, every KI has a rating that can be specified explicitly, or is 3 by default. The rating
represents a (subjective) estimate of the importance of the directive, a single dimension that should
encompass associated risk, relevancy, confidence that this is indeed a directive, and other concerns. I
arbitrarily decided to use a 5-point scale, where 5 is a very clear and important directive, while 1 is a
clause that has little importance or is not clearly a difrective. A rating of 0 is perceived to represent a
clause that is not a directive at all. The default rating for a directive is 3, exactly at the middle of the
scale.

Directive ratings have three purposes: First, they are used to make the calls to methods with highly-
rated directives more visible by using a higher-contrast decoration. Second, to determine the order in
which directives appear in the JavaDoc hover. Third, to allow lower-rated directives to be filtered out.

In the client-server version of eMoose, other users (in addition to the author) can rate the directive.
These user ratings are averaged with the original rating provided by the author, and the average is rounded
to the closest integer for presentation.

5.2 Contextual model

To enable the decoration of calls and the augmentation of the JavaDoc hover, eMoose continuously
maintains a contextual model. This model reflects the currently visible source code, the methods invoked
by it, and the directives which may be associated with them. Much of the complexity of this model
derives from the fact that the same method may be invoked from multiple locations, and that a single call
may have multiple potential targets due to polymorphism.

The contextual model consists, in principle, of relevancy trees for every source file in the system. For
performance reasons, however, only a single tree is built and managed at each point in time, and reflects
the current source file. The relevancy tree has several types of nodes: Call nodes represent specific offsets
in the source code, allowing decorations to be placed and updated as the code changes. Method nodes
represent all potential call targets, so that call nodes can point at them while nodes representing KIs can
be associated with them. Finally, type nodes are used internally to represent the relation between types
in order to manage polymorphism-related presentation.
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To illustrate how the relevancy tree is constructed, suppose that we have a file named Driver.java
file, which contains a single method named run. This method, depicted on the left side of Fig. 5.3,
operates on a parameter of type B, which is part of the hierarchy on the right side. Some methods in this
hierarchy have associated KIs. A version of the relevancy tree that does not include KI nodes is depicted
in Fig. 5.3.

void run(B o)
{
     o.foo();
     o.bar()
}

Driver

foo()
A

bar()
B

init()
foo()
bar()

C

bar()
E

Usage Requirement: Invoke foo() first

Usage Requirement: Invoke init() first

Todo: finish implementing output creation

Usage note: Singleton class

bar()
D

Figure 5.2: Sample class hierarchy

A relevancy tree like the one of Fig. 5.2 is created in the following manner: First, a node is created
for the “enclosing class” represented by the source file (e.g., Driver) and subnodes are created for each
of its “enclosing methods” (e.g., run). A subnode is then created for each compile-time static type on
which at least one method is invoked within the enclosing method (e.g., B for run). For each actual call
in the enclosing method, a call subnode is created. In this example, we have subnodes for foo and bar,
although if there was a second call to foo in run there would also be another call node.

driver
class

run
method

B 
static type

B.bar() 
statically invoked

B.foo() 
statically invoked

C 
dynamic type

D 
dynamic type

E 
dynamic type

C.bar()
dynamically invoked

D.bar()
dynamically invoked

E.bar()
dynamically invoked

C 
dynamic type

C.foo()
dynamically invoked

Figure 5.3: Relevancy tree example

If there are any subtypes or supertypes of the static type that explicitly override (or declare) this
method, a subnode for each type is created under the call node. In this case, since bar is redefined
in C, D, and E and all are subtypes of B, there are three children to the B.bar() node. Each of these
dynamic-type nodes has a subnode representing the overridden version of the method.

Finally, although not shown in the figure, every call node and some overriding method nodes have
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subnodes representing the relevant KIs associated with that specific version of the method. For exam-
ple, B.bar() will have a subnode for the need to invoke foo, E.bar() will have a subnode for the
to-do reminder, and C.bar() and D.bar() will not have any.

The current implementation of eMoose uses the Eclipse built-in facilities to identify all outgoing calls
from a particular method, and to identify all possible dynamic types for the compile-time types on which
a method is invoked. These calculations are moderately expensive, and require us to use result-caching.
However, they are also inaccurate, as they assume that every declared subtype of a particular static type is
a potential dynamic type and thus a call target. For instance, in the following code, all subtypes of List
(and there are dozens of them) are considered potential call targets for add even though a smarter analysis
may deduce that the dynamic type is a LinkedList:
List li = new LinkedList(); li.add("Value");

A consequence of the construction algorithms described above is that the relevancy tree may contain
many duplicates. In other words, if there were two calls to bar in run, the entire subtree would be
replicated for each. This redundancy (rather than the sharing of sub-lattices) allow us to maintain a tree
structure.

One reason for doing so is that it minimizes computation (and thus presentation delay) when the user
hovers over a particular call. The subtree of the call node corresponds exactly to the structure that will be
displayed to users in a tree widget, as we shall later explain. We seek to minimize this delay as increased
latency when hovering over a call may reduce the willingness of developers to explore its documentation.
The relevancy tree is calculated in the background, and therefore has limited impact on users.

A second, and more critical reason for the redundancy is that by maintaining a separate subtree for
every invocation, our implementation is ready to support “smarter” type resolution-algorithms. Suppose,
for example, that method run had the following source code:
if (o instanceof E) { XXXX; o.bar(); YYYY} else { ZZZZ; o.bar(); WWWW;}

While our default implementation considers all subtypes of B to be potential targets for calls on o in run,
a smarter algorithm could restrict this set for each branch of the conditional. By maintaining separate
subtrees, the subtree for the first call to bar can be different than the subtree to the second call.

We note that the set of KIs associated with nodes in the relevancy tree can be a subset of all the
potential KIs in our knowledge space. Based on user preferences, KIs with a low rating, those with
unwanted types, and those that have previously been explored can be omitted from the tree.

Finally, while the relevancy tree should ideally reflect the current state of the code, we relaxed this
requirement for performance reason. While code is being edited, the need to continuously update the
relevancy tree and the locations of the decorations would significantly slow down the editor and cause
visible flicker. Instead, the decorations may disappear, and only reappear when there is a break in the
editing activities. As platforms become faster, this compromise could be disabled for a more fluent
user-experience.

5.3 Contextual presentation

The main feature of eMoose is its ability to present decorations over calls to functions with associated
directives. We now explain how this is implemented.

The Eclipse IDE maintains an annotation model, an internal collection of Annotation objects.
Each annotation has a type that determines its presentation, and is associated with a specific range of
characters in the source code. This model is designed for efficiently making transient visual changes
(“annotations”) over the source code. Internally, it is used for things like the red underlines that appear
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under syntax errors, the yellow underlines for warnings, or the strikethroughs for deprecated methods.
The decoration over the code is accompanied by an icon on the left bar and an indicator on the overview
bar.

Eclipse allows plug-in authors to define new annotation types with some custom visual properties.
In writing eMoose, we defined new annotation types. Five directive types correspond to five possible
directive ratings (from 1 to 5). Each is visually represented as a green dashed box. In each subsequent
rating level, however, the contrast of the green against the white editor background is increased, so that
higher rated directives are more visible. This is illustrated in Fig. 5.4, where the decoration on the first
call in test is barely visible while the decoration for the last call has high contrast. We created a similar
range for to-do comments. Ideally we should have different types with different presentations for each
directive type, but at present Eclipse does not offer sufficient decoration options to make this worthwhile.

Figure 5.4: Contrast level of method decorations adjusted by ratings

When the user opens a new source file or the code of the current file changes, the relevancy tree
is created or updated. eMoose then attempts to synchronize the details in the tree against our custom
annotations in the Eclipse annotation model. To do so, it maintains a bidirectional mapping between
call nodes in the relevancy tree and annotation objects from the annotation model. The synchronization
process works as follows:

1. Take all current eMoose annotations for the current source file and put them in the kill list.

2. For every call node in the relevancy tree for the current source file:

(a) Scan the subtree in the relevancy graph that is rooted at the call node and obtain the set of
all KIs.

(b) Filter out any KIs whose types or rating fall outside or below the user’s current preference
settings.

(c) If there are no remaining KI, continue to next call node in relevancy tree.

(d) If the only KIs are tied to a dynamic type (rather than the call node), check if polymorphism
support is enabled; if not, continue to next call node.
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(e) Identify the KI with the highest rating in the subtree, and obtain its type and rating. Determine
the appropriate custom annotation type to match that type and rating.

(f) Check if there is an Annotation object already associated with the current call node. If
there is, update its type if necessary, and remove it from the kill-list. If there isn’t one, create
a new annotation object with the necessary type.

3. Eliminate all annotations which remain in the kill-list.

When this algorithm finishes executing, every call that has an associated KI that falls within the
viewport of the caller and meets the filter settings is decorated. The contrast of the decoration depends
on the highest rated directive in the subtree for that call. Calls whose targets do not have associated KIs
are not decorated, offering some assurance of lack of KIs. The problem with this assurance is that with the
present implementation, users cannot distinguish between targets that have no associated directives even
though they belong to APIS that have already been tagged with directives, and targets from other APIS

that have simply not been tagged. A planned extension will keep track of all packages for which at least
one KI has been created. Calls to methods in that package will be decorated in gray to indicate that there
really is no associated directive.

5.4 Augmented JavaDoc hover

Once the user decides to explore a decorated call, hovering over it opens a floating tooltip window with
two panes. The upper pane contains the standard JavaDoc presentation which would have been displayed
by default, while the lower pane presents KIs. Each KI knowledge item is preceded by its type, helping
readers quickly distinguish its purpose before noticing the text. Users are expected to first read the KIs
in the lower pane, and decide accordingly whether to read the entire JavaDoc in the upper pane.

In non-polymorphic situations, the lower pane looks like a two-level tree - it lists the method as the
root and all KIs as its subnodes.

In polymorphic situations, however, the tree is deeper. The statically-invoked version of the target
becomes the root, and its associated KIs become child-nodes. Overriding versions and their KIs are
represented via subtrees with a similar structure, but all of them are at the same level, just as they are in the
relevancy tree. If KIs are only associated with the overriding method but not with the overridden version,
the latter is grayed out so users can focus on the former. For example, Fig. 5.5 presents the JavaDocs
for the method containsAll in the standard JAVA Collection. In the lower pane, however, that
method is grayed out to indicate that it has no associated KIs, while the subnode for containsAll in
the subtype Bag appears with full contrast to indicate that there are associated KIs if the actual dynamic
type is Bag.

One drawback of the use of the JavaDoc hover is that an extra step is necessary for a user to under-
stand why a particular call was decorated. To alleviate this, eMoose also supports an overlay layer that
presents all KIs in a semitransparent “bubble” next to relevant locations. However, this increases clutter
and received negative feedback from pilot users.

5.5 Related work

Before we proceed to the evaluation of eMoose, we discuss related several tools in the domain.
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Figure 5.5: Example of JavaDoc hover for polymorphic code

5.5.1 Improving reference documentation

The central role that reference documentation plays in software development has motivated various at-
tempts to create better and more useful formats, such as Soloway’s two-sided booklet [75]. Since the
introduction of JavaDocs, automatically-generated API reference documentation has gained widespread
acceptance for many modern language. Because of the widely standardized formats, it offers many op-
portunities for researchers to test out incremental enhancements that preserve the look-and-feel of the
underlying format.

Early versions of the JavaDoc tool produced fixed HTML files which were difficult to scrape and
recreate in enhanced forms. Newer versions, however, offered hooks that allowed JavaDoc generation
to be easily customized. One successful example of a JavaDoc enhancement is Jadeite [81]. The tool
builds on research [80] which showed that developers face difficulties in determining how to perform a
certain operation when no single direct method exists to accomplish it. To this end, it allows method
placeholders to be defined, with instructions on the appropriate sequence of operations to be invoked.
These placeholders appear in the lexical table of methods, and can be found by developers seeking a
method with the corresponding name. Other features of the tool include the addition of object construc-
tion samples that are automatically gathered from publicly-available code, and the ability to vary the size
of elements based on the prevalence of their use in the wild.

Another tool from the same time called Apatite replaces the traditional static form of a JavaDoc
document with a more concise and interactive version. The tool shows a small selection of the most
popular elements in the API, and allows the user to interactively collapse or expand listings, search, and
make selections. It also provides suggestions based on the user’s selections.

eMoose is fundamentally different from the above tools in its goals and mode of operation. Whereas
these tools aim to assist developers who are already looking up information on a specific class or trying
to learn the API, eMoose focuses on making developers aware that they may want to consult the doc-
umentation. eMoose works within the IDE and aims to provide value to the developer before there is
any decision to explore documentation. Furthermore, while Jadeite’s mechanism of placeholders aims
to help developers who want to add a new call, eMoose is focused on method calls that are already there.
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5.5.2 Search tools for delocalized knowledge

eMoose is concerned with addressing the problem of delocalization, where important information is
present in one medium but is useful in the context of another. Delocalization and heterogenous informa-
tion present a more general problem in software engineering. It is not rare for an entity such as a line of
code to appear in different artifacts in project support tools, such as commit logs, bug reports, electronic
communications and other documents. One tool that addresses these problems is Hipikat [20], which
builds a representation of the knowledge networks and allows users to search it. Though the scope of
this tool is much greater than that of eMoose, it does not address the problem of directive awareness
in documentation. More fundamentally, however, HipiKat is an active search tool that requires users to
initiate a search for specific artifacts. eMoose, on the other hand, is a passive tool that aims to operate in
the background and alert users to the availability of information.

5.5.3 Comment parsing and checking tools

Automated software verification is a major focus of contemporary software engineering research. Many
tools (e.g., [8], [57] can apply static analysis techniques to check programs against formal specifications.
At present, however, the applicability of these techniques is limited because the specifications must
typically be provided by humans in a time consuming process that requires proficiency in the formalism.
For these reasons, in recent years several researchers began exploring automated ways to elicit some
specifications from natural text comments and documentation.

One of the first attempts at automatic recognition and verification was carried out by Tan et al.
[84]. Coming from an OS background, they chose to focus on locking correctness, as that is relatively
easy to analyze statically and also to recognize as natural text. They argued that focusing on a specific
type of comments rather than general comments allowed them to improve recognition percentages. By
constructing locking specifications for many C functions in Linux and comparing them to the results of
an analysis, they were able to identify previously unknown discrepancies that were filed as actual bugs.
In subsequent work [83], they applied additional recognition techniques to further improve the quality of
their engine, and were able to find locking errors in non-OS programs.

Other NLP based techniques were presented by Hill [42, 41], who proposed applying them to com-
ments for automated verification.

Another tool with similar goals is Zhong et al’s Doc2Spec [91]. This tool is particularly interesting
because it focuses on APIS and JavaDocs, rather than actual programs. The tool first parses the summary
sentence from each method’s documentation to determine what it is supposed to do. This is represented
as an action and associated target resource, where the action belongs to one of several categories. The
representations for multiple methods operating on the same resource are then joined into an automata.
The tool then uses static analysis to determine what actions actually occur and warns of potential dis-
crepancies between specifications and implementations. The tool was used to detect actual errors in a
real system.

The above tools aim to provide the significant value of identifying actual bugs. eMoose, on the
other hand, does not attempt to automatically detect bugs; its more modest goal is to help increase the
developers’ awareness of potential risks. This, however, may help maintainers detect bugs faster, as we
shall see later in this dissertation, or may even help developers not create the bugs in the first place.
It is important to note though, that the above tools intentionally operate on a more limited scope: Tan
et al’s tool is limited to issues such as locking, while Zhong et al.’s tool is focused on specific method
patterns that can be determined from summary sentences. Directives, which can appear anywhere in the
documentation, can convey much more complex instructions and issues. In addition, some directives are
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informative: violating them is not necessarily an error, making it more complicated to provide automatic
awareness.
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Chapter 6

Comparative Lab Study of eMoose

In this chapter we describe the comparative lab study that we have conducted to evaluate the severity of
the neighbor knowledge awareness problem in code, and the impact of eMoose.

This chapter is the largest in this dissertation, and is organized as follows: Sec. 6.1 presents the intent
and goals of our study. Sec. 6.2 describes the decisions that we have made about its design and the
rationale behind them. Sec. 6.3 describes the recruitment process for the study, the procedures, and the
subjects. Next we devote a full section (Secs. 6.4, 6.5, 6.6, 6.7, 6.8, 6.9) to each of the tasks, in which we
introduce the API, describe the task, present the results, and discuss them. We then describe additional
general results and findings in Sec.6.10. The limitations of this study are discussed in Sec. 6.12.

6.1 Intent and goals

The primary focus of this dissertation is on the neighbor awareness problem in software implementation
and maintenance: whether developers become aware of directives in methods that are invoked by the
code that they are examining.

This existence of this problem in real development scenarios is quite plausible. It is not difficult
to envision, based on the examples from Chap. 4, situations where certain directives would be missed
with severe consequences. Indeed, in my personal experience as a developer and even while working on
the eMoose tool, I have frequently encountered problems due to unexpected details in the documentation.
Similar anecdotes were reported by others.

To properly establish the importance of the problem, however, it is necessary to demonstrate that
given a situation where a directive in an invoked method is important, a significant portion of developers
with present techniques will indeed miss this directive. While such evidence may not be predictive of
whether a particular developer will miss a particular directive in real-life work, it would establish the
potential for such problems and may help us understand better why such situations occur.

To establish that my approach of knowledge pushing has the potential to be useful in real-life situ-
ations, it is necessary to first demonstrate that given a situation where a directive is important, the tool
will have a significant impact on whether a directive is missed. Even if there is a positive effect, it is
necessary to ensure that the tool is not prohibitively expensive to use. If the effects of the intervention
are too strong, then there is a risk that developers would explore every decorated call as soon as they first
encounter it. This will not only waste much time, as some directives are already known or irrelevant, but
will also disrupt the goal-driven approach taken by many developers. To understand the greater implica-
tions of the eMoose interventions, we must understand how it is used or what its important mechanisms

147



are.

In order to address these initial concerns, I chose to conduct a lab study in which multiple developers
would face identical situations where a directive plays an important role in resolution, and I would
measure the proportion of developers who fail to become aware of it. In other words, I attempt to
induce situations in which the directive could potentially be missed. My goal is not merely to obtain
quantifiable evidence for the incidence of the problem, but also a qualitative understanding of the sources
of difficulties.

Nevertheless, we must also evaluate whether the proposed interventions, first decorating calls whose
targets have directives and then explicitly listing directives in the text, have a positive impact on reducing
these difficulties. Since these interventions also carry the risk of distraction, it is important to also verify
that the costs are not greater than the benefits.

My study is therefore comparative, so that each task will be performed by a roughly equal number
of subjects using eMoose and of controls using standard tooling. The limitations of the study will be
discussed in Sec. 6.12.

In reading the description and results of the study, consider the following four research questions: 1)
How well did controls and eMoose users perform these tasks? 2) Why did some controls who are using
existing tooling fail to fix relatively simple problems, and what differentiated those who succeeded? 3)
In what ways did eMoose change how its users performed the tasks? 4) What are the implications for
documentation writers?

6.2 Study design decisions

We now turn to describing the “design space” for our study and the steps and decisions that we followed
to come up with the final design.

6.2.1 Decision to use multiple tasks

Rather than have subjects perform one large task, I decided to have them perform a sequence of multiple
independent tasks.

One reason for this choice is that it allows us to obtain multiple and independent “data points”, for
each subject. This will allow us to not only compare the performance of multiple subjects on the same
task, but also the performance of the same subject across multiple tasks.

A second reason, elaborated later, is that this separation will allow us to focus tasks on smaller code
sections and the use of documentation, and reduce the influence of other development activities.

A third, and perhaps most important reason, is that this separation allows us to try and separately
evaluate each of the mechanisms by which eMoose can affect users:

1. The decoration of methods should lead users to investigate methods that they may not have other-
wise explored or that would have been investigated much later.

2. When documentation is read, the augmentation of the JavaDoc hover to reveal a list of directives
should increase the likelihood that readers become aware of relevant directives.

3. As we have ve noted, there is a significant risk that the approach would distract users by presenting
too many decorated methods with directives that are not relevant to the task at hand.
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4. In the case of polymorphic code where directives are associated with a specific dynamic type, the
decorations should make the user aware of the potentially important information.

5. Also in polymorphic situations, the augmented JavaDoc hover should make it easy to locate the
directives associated with each overridden version of the method.

There are therefore five tasks corresponding to each of these mechanisms. In addition, I added a sixth
task to evaluate whether newly added calls are explored, but as shall later be described, ended up omitting
that task. These tasks, their purposes, the mechanism by which eMoose affects them are summarized in
Fig. 6.1.

Figure 6.1: Summary of tasks in the lab study

The main drawback of using multiple tasks is that there is a significant risk for a “memory effect”,
in the sense that with each successive task whose solution depends on directives in the documentation,
subjects are more likely to pay careful attention to documentation and specifically seek out directives
when working on the next task. Eventually, this behavior may differ significantly from the level of
attention that the same subjects devote to documentation in earlier tasks and in their everyday work.
Because of this, both controls and eMoose users might be more likely to identify directives towards the
end of the study than they would at the beginning.

While I cannot fully eliminate this effect, I attempted to minimize it in two ways: First, all subjects
perform the tasks in the same order, so that effects should be comparable across subjects. In other words,
any differences we see between the conditions at the later tasks are valid in the sense that subjects in both
conditions have the same prior experience from the study. Second, the tasks are ordered so that earlier
ones evaluate whether subjects become aware of directives when they are not specifically expecting to
find any, whereas later ones involve situations in which subjects should expect to find directives but may
have difficulty doing so due to polymorphism.

6.2.2 Decision to use limited set of directives

This study attempts to obtain meaningful quantitative data on the differences between developers who
use existing tools and those who also use eMoose in becoming aware of directives in invoked methods.
Since directives are very different from one another in their content, purpose, and importance, I chose
to restrict the study to a small set of specific directives and compare the subjects’ awareness of each of
them.

As part of my effort to understand directives better and create libraries of directives for use by eMoose,
I systematically surveyed several APIS and tagged directives that could potentially pose problems if ig-
nored. During this effort I used special tags for directives which I felt to be particularly “interesting”. A
directives was considered interesting if it were straightforward and yet was not obvious from the name
of the method whose documentation contained it.

When I turned to search for directives for our study, I used the set of specially tagged directives as
a starting point. In deciding whether these could potentially serve our goals, I laid out several criteria:
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First, I required that the directive be straightforward to interpret even without significant domain knowl-
edge. Thus, even though it could refer to less familiar concepts, it should treat those concepts as “black
boxes” and allow most readers to understand what it requires. Second, I required that the directive be
unambiguous and specific, so that it would be straightforward for readers to determine whether a certain
call fragment complies with it, and what the consequences of violating it would be. Our intention is also
that if a user is looking for an explanation for a specific erroneous behavior, and if that behavior is listed
in the directive as a consequence of ignoring it, then it would be straightforward for a user examining the
directive to correlate it to the erroneous behavior.

Obviously, many directives meet these criteria, so I attempted to find a set that would represent a
wide range of directive types, while covering a limited number of APIS. I then looked at public code
samples that invoked the associated methods to see if I could use them with minor changes as codebases
for the tasks. In all samples, I required that some other calls in proximity to the invocation of the method
containing the prospective directive would have some associated directives so that these calls could serve
as potential distractors.

I ended up selecting a set of six directives for this study, one for each task, and these will be described
with the tasks and codebases.

6.2.3 Decisions on codebase scale

My study is designed to allow a comparison of the subsets of calls that different subjects choose to
explore out of the set of calls to which they are exposed. To this end I needed to ensure that all subjects
are exposed to the same set of calls for comparable amounts of time.

Since subjects are given a time limit for each task, these exposure periods also need to be sufficiently
long to give everyone a chance to notice every call and to read it with sufficient attention. To allow
this, subjects must be immediately exposed to the relevant calls, rather than have to spend significant
effort on searching them. Otherwise, success may depend on an early identification of the focus region
which would leave sufficient time to identify the offending call and the directive. In other words, it
may be difficult to disentangle the time it takes to become aware of the directive from the time it takes to
encounter or become aware of the call in the first place. I initially carried out pilot sessions using real full-
scale programs with complex control flows. I found that subjects differed so much in their interprocedural
exploration and search strategies that they were not exposed to the same code for fragments for similar
amounts of time, which would have made it difficult to compare what they read.

To this end, I decided to either use very short code fragments, in which the relevant calls would be
visible most of the time, or to use specific fragments within larger programs with a “cover story”. In the
latter cases, I guided subjects to relatively limited code scopes, representing it as if they have already
debugged the program to the point where the offending region was found, and they must now continue
and identify the bug. All subjects were therefore faced with the calls immediately or very early, making
an analysis of their moves meaningful. Another benefit of my choice to use smaller fragments is that it
was easier to obtain a codebase that can be comprehended in limited time without significiant background
knowledge about the program, domain, and API.

An obvious risk of a limited scope is that one can use a systematic approach and follow a process
of elimination within the alloted time; this is not possible for longer programs [76]. This does not pose
a threat to validity because all subjects are given sufficient time to explore every call in depth, if they
so wish, even if they do not follow a systematic strategy. However, the eMoose interventions have no
impact in a systematic approach, so my findings may fail to identify an impact. If, on the other hand, we
find that subjects without eMoose face significant difficulties and fail to become aware of directives even
in such small fragments, and that subjects with eMoose are significantly more successful, then it can be
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argued that the problem could be even more severe in larger programs.

Another risk of using only small code fragments is that it is not clear whether my findings will
translate to realistic large programs. To obtain some data on this question, I decided to have one task
which will use an entire (though not very long) program. This task also offers us enough opportunities
to create potentially distracting decorations, and to evaluate whether developers investigate all directives
even in blocks that are not necessarily related to their goals.

A related decision that I made was to forbid the use of the Eclipse interactive debugger on all tasks
but the full-program one. Since my goal was to investigate which calls would be examined in an attempt
to understand a failure in a small fragment, I had to prevent users from stepping the debugger until the
point of failure. As interactive debuggers are used primarily for exploring large programs with complex
interprocedural connections, I were not withholding a critical tool from subjects. In addition, during
the pilot sessions I found that subjects tended to try and address the failure by stepping through code
and into invoked functions. Since many of the APIS used in my tasks are provided via interfaces that
can be implemented by different vendors, pilot subjects either got frustrated when they couldn’t see the
implementation or when they became lost in the complex implementation by a specific vendor. Note that
in the one task that used a full program, use of the debugger was permitted as it is an important tool for
understanding complex control flows.

6.2.4 Decision to use customized programs

Although it would have been beneficial to use tasks that are based on actual problems that developers have
faced with actual codebases, that was not practical for this study. First, there are no straightforward ways
to search existing project bug databases for bugs that resulted from a lack of awareness of a directive,
as typically the manifestations are described rather than the underlying cause. Second, even if we could
find such programs, it would be difficult to distill them into a short and simple fragment that subjects can
easily understand and debug. Third, it may be difficult to place enough “baits” to measure distraction.

For these reasons, I made the decision to “manufacture” codebases in which awareness of directives
can lead to resolution. For the first three tasks, I chose to use official examples for the API and artificially
break them. Such examples are generally simple and straightforward and are meant to be understood and
used for learning. Since one of the goals of eMoose is to assist with API learning, a lack of awareness of
an important directive may represent a breakdown in the learning of the API. However, I took special care
to create breakdowns that result from very minimal changes yet are plausible, such as erasing, moving, or
renaming a single call. I have frequently encountered such bugs in my development experience. For the
fourth task, which involved writing new code, I made slight modifications to an official example and had
developers implement new functionality. For the polymorphism tasks, I chose to design a code fragment
from scratch so that the subject’s work could be limited to becoming aware of the conformance violation.

6.2.5 Decision to use fixed codebases

The decision to choose a specific subset of directives aims to allow a comparison of directive awareness
between subjects. However, it is very likely that the location and context of a particular call, and the
goals of developers who are exposed to it, affect the decision of these developers on whether to explore
it and the amount of attention to pay to the text. To make a reliable comparison, all subjects need to see
the same call and context.

In addition, eMoose currently handles new calls by decorating them as soon as they are created. It
does not, at present, augment function listings in the IDE such as the autocompletion recommendation
mechanism. Therefore, if our target directive is in a call that is not initially in the code, there are no
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guarantees that the call would ever be added, reducing the sample sizes on which we can compare
awareness of the associated directive.

For these reasons, we decided to base all but one of the study’s tasks on an existing codebase and
not require subjects to write any new code. The other task aimed to evaluate whether eMoose users
immediately notice decorations that appear on newly-added calls and therefore required subjects to add
new code.

6.2.6 Decision to use debugging tasks

A major choice in my design was to cast all but one task as a debugging task. The tasks are designed so
that the bug is caused by a violation of the directive. If a subject is capable of identifying (and preferably
fixing) the bug, then there is evidence that the subject became aware of the directive. On the other hand,
if the subject never becomes aware of the directive, then the task is essentially unsolvable. Recall that
our criteria in selecting directives is that they are phrased in a way that is clearly related to the erroneous
behavior.

A major limitation of this decision is that focused debugging does not actually represent the main
usage situation for which eMoose is designed. The goal of eMoose is to help developers become aware
of the directive as soon as they have added a call and when they are examining existing code or learning
the API. While the error would be in place, the resolution will preferably occur before executing an
incorrect program. However, success in debugging gives us an objective measure of whether the subject
has become aware of the directive. In addition, if subjects fail to become aware of a directive during the
intense and focused effort involved in debugging, I argue that there is a lower chance that they would
become aware of directives in other situations, making our support even more necessary. Nevertheless,
the tool clearly needs to be evaluated in the field.

6.2.7 Decisions on time limits and measurements of success

By this point, I have decided to have 6 tasks in the study:

• A debugging task involving a small code fragment where a directive will be hidden in an unex-
pected call.

• A debugging task involving a very small code fragment where a directive will be “hidden” in a
method with a very straightforward signature.

• A debugging task involving a full program with significant potential for distraction

• A task where the developer adds new code.

• A task that tests the ability of the developer to become aware of a conformance violation in an
overriding method.

• A task that tests the ability of the developer to find directives added in overridden methods.

Since I needed subjects to perform multiple tasks, I had no choice but to place a cap on the amount
of time available for each task. To facilitate comparisons between subjects, leftover time from one task
could not be transferred to later tasks. In the end I chose to let developers work for up to 15 minutes
on each task, with an additional 5 minutes of instruction reading and preparation prior to “starting the
stopwatch” on each task. This allowed me to fit the six planned tasks in two hours, budgeting another
half an hour for introductions and a debriefing questionnaire.
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Pilot sessions confirmed that this time limit would be quite sufficient for the successful completion
of all tasks, even for subjects who would not be using eMoose. Specifically, in the tasks involving
small code fragments, this limit would allow subjects to read everything, and with time to spare. In the
full-program debugging task, the program is small enough to allow it to be surveyed in the given time,
although success would require subjects to identify and focus on the area of the breakdown. In the task
that involves adding code, users need to add less than 10 lines. In the task that requires users to become
aware of a conformance violation, the code is so short that success would largely be determined by the
ability to consider the option of a conflict, and then to understand its implication. In the task where users
just need to find violating directives, there is sufficient time for a systematic survey of all the overriding
versions.

Because of the time limits, the definition for success in performing a task requires that it is observed
within the first 15 minutes. For analysis purposes, I let subjects work for a few minutes, so that I could
determine if they were on the cusp of success, though that rarely ended up being the case. Since all tasks,
with the exception of the one involving writing new code, use a fixed amount of code, given unlimited
time it is likely that every subject would eventually be able to explore every option and become aware of
the directive. Therefore, success rates on tasks must be interpreted as measures of efficiency rather than
of capability. If eMoose users are more successful, it will be because they become aware of the relevant
information faster, rather than that they have gained capabilities that allow them to solve otherwise-
unsolvable problems.

Success in the first three debugging tasks is defined as the ability to identify the cause of an error,
and to present a well-motivated and correct plan for a solution. In other words, if a subject accidentally
stumbles across a solution, he would still have to explain why the problem happens and why the solution
works. Since the directives are chosen to be straightforward, once the subject becomes aware of the
directive, the solution for these tasks should be immediate and straightforward. Since the actions to
break these programs are minimal, fix time is extremely short. In fact, I decided to count success as
either the point of actual fix, or the point where a subject voices the fix.

The interpretation of success is different in the other tasks. For the task where developers have to
write code, success is achieved when the program works as expected. For the two polymorphism tasks,
success was measured as the ability to identify the directives, without requiring a fix since a solution
would require significant changes to the code or finding an alternate class to provide the same service.

6.2.8 Decision to have two conditions

To get the maximal value from a limited subject pool, I decided to make the study compare between
subjects who use a standard Eclipse distribution, and subjects who use Eclipse with eMoose and our set
of annotations for the API. I decided not to have additional groups that will only receive the decoration
support or only the augmented JavaDoc hover. As a result, I will not be able to fully differentiate the
impact of each of these mechanisms, although some of the tasks are designed to specifically test them.

Rather than divide the subjects into two groups for the entire duration of the study, I chose to have
each subject perform some tasks in the control condition (CTL) where eMoose is not available, and some
tasks in the experimental condition (EXP) where it is available. One benefit of this decisions is that it
minimizes the impact of a particularly skilled or unskilled subject on the overall evaluation of the impact
of the tool. A second benefit is that I get all subjects to experience the tool and provide feedback. The
most important benefit, however, is that in addition to comparing the performance between subjects in
the two conditions for each task, it is also possible to compare the performance of the same user across
tasks and evaluate the impact of the tool. While the tasks are different from one another, if we see a
pattern where subjects generally succeed more with the tool then that is a positive indication about the
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strength of my approach.

The risk of this approach, however, is that we are potentially creating a memory effect or priming
effect. If a subject performs a task with eMoose and receives a benefit from it, and then has to perform
the next task without it, he may be more cautious and systematic in that task to compensate for the lack
of cues.

My plan was to have six tasks that will be carried out in the same sequence by all subjects. I decided
to split them into three conceptually-related pairs. Within each pair, every subject will perform one task
in the control condition and one in the experimental, but the order is random.

One can look at the assignment of a particular subject as a three-digit binary number, where each digit
represents whether he is performing the first or second task in the corresponding pair in the experimental
condition. My initial intention was to use a sequential and wrapping binary count to ensure that each of
the eight possible combinations would appear at a uniform distribution, but things turned out differently.
First, I was not sure how many subjects would participate in the study (due to gradual response and a
paper deadline). Second, one subject disrupted the count by performing only part of the study. Third,
one of the tasks was eventually eliminated. Thus, I tried to follow such a count but had to do some
manual balancing to ensure an equal or nearly equal number of subjects in each condition for each
task. Nevertheless, the assignment was always done before the subject showed up, reducing potential
assignment bias.

6.2.9 Choice of APIS

While the standard library of JAVA provides a wide range of capabilities, few users are familiar with all
its intricacies. In addition, many libraries and APIS meet needs not supported by the standard libraries.
For example SUN publishes the J2EE family of APIS to provide functionality necessary for large scale-
enterprise applications, while apache provides a variety of components and functions to supplement
things missed in the standard library.

Since my intended subject population was large and diverse, it seemed unlikely that I could find APIS

and functions with which all subjects are equally familiar. Instead, I chose the opposite route: Within the
standard library, I chose to use obscure or specialized classes which none of the subjects had used. I also
selected APIS that are widely used in enterprises but which none of the subjects have used. I screened
subjects for familiarity with these APIS and classes prior to beginning the study.

In many respects, my study evaluates the learning of a new API, rather than the use of a familiar
one. However, since most APIS consist of many more classes and functions than those used in a single
program, learning an API is a gradual process, over which certain directives and caveats are learned by
experience. Even experienced developers can be surprised by the directives associated with a method
that is less frequently used. In addition, APIS or parts of APIS are often learned from code examples, as
they are in this study.

In selecting the actual APIS for my study, my first principle was to select high-quality and widely-
used APIS. My second was to choose ones that are concerned with straightforward concepts that subjects
can understand easily. A side benefit of these choices is that subjects are likely to encounter these
facilities in their future, perhaps making them more likely to become involved in the tasks and learn from
them.

I decided to use three different APIS, so that each pair of tasks would involve the same API. The first
two tasks use the Java Message Service (JMS), an API by SUN for providing robust and reliable com-
munications between JAVA processes at a much higher level of abstraction than sockets. The JMS API
is today part of the J2EE standard and is widely used by many projects. The next two tasks use a less-
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familiar class from the SWING API, the standard user interface toolkit distributed as part of the JAVA

standard library. The last two tasks use the JAVA collections framework but also a set of additional
collection classes from the apache commons project.

6.2.10 Decisions on amount of training

Another important decision had to do with the amount and nature of training provided to subjects on the
use of eMoose, and on each of the involved APIS.

My decisions here were unfortunately motivated by time constraints. Since subject recruitment is
more difficult for longer sessions, I capped sessions at two and a half hours. I had planned six tasks
that would take about 20 minutes each, with sufficient time for reading task instructions. This only left
up to 30 minutes for everything else, including time for filling a debriefing questionnaire, and a “safety
margin” due to computer problems, interruptions, etc.

The main consequence of this time limit is that I decided not to have a “pilot task” before the actual
tasks start. In other words, after subjects receive the initial training, they are immediately “thrown into”
a task that counts. If they are performing the first task in the control condition, they may not truly
understand the importance of reading documentation, and may approach the problem as they would in
everyday work, for example with the integrated debugger. If they are in the experimental condition, they
may ignore eMoose completely since they have not benefitted from it or used it directly in the past, or
they may get overly distracted by it and follow every directive.

However, pilot tasks have some drawbacks, as users having to go through a series of pilot tasks may
increase fatigue and a memory effect as described earlier. Also, if eMoose users are successful with only
minimal training, that may bode well for adoption in the real world, where developers are less willing to
spend effort on learning new tools.

All subjects were therefore given materials to read about JavaDocs and eMoose; these booklets
are reproduced in Appendix A. These materials were supplemented by a verbal presentation from the
experimenter, which covered: the notion of directives, examples of directives, the use of eMoose, and the
use of eMoose in polymorphic situations. During the study, subjects received background information
about each API when they first encountered it.

6.2.11 Decision not to use think-aloud or gaze tracking

A major goal of my study was to learn more about how subjects understand code in the presence of
documentation. In particular, I wanted to learn how they make documentation reading decisions, when
they become aware of directives, when they form certain hypotheses, and when they refute them. The
only way to obtain the subjective facets of this knowledge is to have subjects provide it, typically by
thinking aloud. Unfortunately, the process of vocalizing thoughts is known to have significant impact on
subjects under certain circumstances [73].

In this study, a requirement to think aloud would have carried significant risks: First, subjects may
spend a longer amount of time with each idea, call, or text line, as they would vocalize it. The additional
time may lead them to recognize errors, mistakes, and deeper meanings. While this may increase success,
it steers us away from the level of concentration these subjects would typically exhibit. Second, the need
to think-aloud might steer subjects towards a more structured and less opportunistic investigation, since
in many ways it is easier to vocalize and rationalize a process of elimination.

Since one of my primary goals was to evaluate whether directives are noticed, I could not accept
the risk of influencing attention with a think-aloud and told subjects that they did not have to do so.
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Note though that subjects were not prevented from subvocalizing as they read or thought, or even from
vocalizing out of their own volition.

I decided not to use gaze-tracking equipment in my study, as the potential rewards were not sufficient
to justify the logistic complexities. When developers examine code, gaze tracking would have indicated
how frequently they examine a call without investigating its documentation. However, since many of
the code fragments are very small, subjects can often “take the whole picture in”, and the data may be
ambiguous. In addition, in my pilot sessions subjects often vocalized or used the mouse to trace code
as they read, so that approximation is available. Similarly, when JavaDocs are inspected the font is
relatively small so it is possible to absorb many lines at the same time. Use of subvocalization, mouse,
and scrolling was deemed a sufficient approximation.

The main benefit of gaze tracking might have been in determining whether a subject is actually
reading an open JavaDoc hover or staring at nearby code. However, since the hover is often overlaid
on the code in close proximity to the call, it may be difficult to precisely establish focus. Therefore, I
defined the “reading” of a JavaDoc to be the entire time that the hover is open and visible. The reading
durations I report are therefore upper bounds, since in very long readings it is possible that some of the
time is spent looking at the code or glancing elsewhere.

6.2.12 Policy on answering questions

Subjects performed all tasks in the physical presence of the experimenter (myself), who was there to
handle the transition between tasks, monitor the time, and address issues.

Since subjects were working with unfamiliar codebases, APIS, and concepts, and since they did not
have an execution context or debugger for some of the code fragments, I needed to allow subjects to
ask questions. In conducting several early pilots, many of the questions repeated themselves and were
straightforward to answer. In particular, there were many questions about the state of the system and
certain conditions. For example, “is the broker running correctly” or “is the network address correct?”.
Scripted answers were therefore created to many questions, to ensure that all subjects received equivalent
assistance.

However, not all questions could be anticipated in advance, and the experimenter occasionally had
to respond to a new question raised by a non-pilot subject. In those cases, the answer was added to the
set to ensure that future answers to the same question, if it was asked again, would be identical.

To cope with those unanticipated questions that were not asked in the pilot sessions, I made three
decisions: First, questions asking for help in finding the correct answer (e.g., “which statement fails?”)
would not be answered. Second, questions which the subjects could answer with the means already
available to them (e.g., “what does the function do?” when documentation was available) would also not
be answered. Third, if a subject asked if a specific clause in the documentation text was the cause of
the bug, a truthful answer would be given. Namely, if it was not, then the subject would be told so. If
the clause exactly explains the error, the subject would be encouraged to try and fix the problem. If the
clause was only part of the problem, the subject would be told so and encouraged to continue searching.

6.3 Study procedures and subjects

6.3.1 Subject recruitment

To have reasonable statistical power under the assumption that variance across conditions would be
much larger than variation within conditions, I aimed to have at least 10 subjects perform each task in
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each condition. Thus, I needed at least 20 subjects who would be available for a session lasting up to 2.5
hours.

To obtain these many subjects for such a long time committment I chose for practical reasons to aim
my recruiting efforts at students on the Carnegie Mellon University campus, even though most of them
do not have significant industrial experience. Like many other studies that use students rather than very
experienced practitioners, the results are limited by the nature of this population.

I advertised on the university’s online bulletin board (Fig. 6.2), and on physical bulletin boards in
the computer science building (Fig. 6.3). Participants were requested to have significant experience
in JAVA development, at least with one internship, and some experience in using the Eclipse IDE which
is uniformly used in the university. The study promised a flat compensation of $25 USD, as well as raffle
tickets corresponding to the number of successfully-completed tasks as a motivation to perform well.

For a lab study focused on how Java programmers use existing documentation and on the
effects of a new Eclipse plugin, we are seeking participants with significant experience
in Java programming. Participants should have at least half a year of routine experience
in Java, preferably in the industry or at least via internships. Familiarity with IDEs and
preferably Eclipse is necessary.
The study will take between 2 to 2.5 hours, in which you will perform several debugging,
maintenance and code inspection tasks on existing code using Eclipse. A shorter 1.5-2
hour version of the study is available with less tasks; contact me for details. Slots are
available weekdays and weekends in the next 1 0days. Compensation is 25 USD for the full
session, and you will also participate in a raffle of a prize where the number of tickets will
be determined by the number of successfully completed tasks. If you are interested, please
fill the screening questionnaire below. Note that you are not expected to be familiar with
the mentioned APIs.

Figure 6.2: Text of online recruitment ad for lab study

For a lab study of documentation use in Java and Eclipse we are seeking developers with
significant experience in Java programming (preferably industrial, at least one internship)
and with Eclipse (at least one month). Earn 25 USD and participate in a prize raffle! Study
lasts 2 - 2.5 hours where you will be asked to find errors in several Java programs with and
without our eMoose tool.

Figure 6.3: Text of online recruitment ad for lab study

All applicants were requested to complete a detailed survey form, reproduced in Appendix A. The
form asked subjects to list their development experience in several languages, and then asked specific
questions about JAVA development, familiarity with specific APIS, and the use of the Eclipse IDE. The
goal was primarily to filter out candidates who lacked the relevant background.

6.3.2 Subject characteristics

The eventual set of applicants was quite diverse, given the limitations of the academic environment and
the constraints of the summer vacation during which this study took place. I accepted a total of 26
applicants to participate in the study, of which 24 were males.

16 subjects were students in several professional-masters programs in information management and
information technology. These students had relatively limited industrial experience, and my impression
was that while JAVA was the language they were strongest in, they were not very experienced develop-
ment in general. However, they have participated in at least one major internship in the US or in their
home country and were about to join the US job-market, so they were included in the study.
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These relative novices were balanced by 10 applicants with a much stronger but diverse background:
Two CS undergraduate students with significant development experience, three students from a presti-
gious software engineering masters program, one experienced masters student from electrical engineer-
ing and another from language technologies, and three Ph.D. candidates in the field of programming
languages with significant experience.

Table 6.1: Assignment of lab study subjects into groups for each task

Table 6.1 lists the subjects in the study and their group assignment for each task. Note that subject S4
had to leave the study early due to personal reasons after having arrived late. He completed the first two
tasks, and was instructed to perform the short sixth task. I kept the results for the tasks he performed and
included them in the results.

Also note that the fourth task (swing2) was eliminated halfway through the study and the collected
results were not formally analyzed. As shall be explained in Sec. 6.7, this task aimed to identify whether
users become aware of directives in methods that they have just added, and was the only method where
subjects were asked to create new code. However, I found that most subjects failed to add the relevant
code, thus nullifying the purpose of the study.

6.3.3 Preliminary procedures

An exclusive time slot for the study was coordinated with every subject. On arrival, subjects signed a
consent form and then the session began.

Setting up the work environment

The subject was seated in front of the computer used for the study. The computer was a quad-core
PC with 4GB of RAM, significantly above the minimal requirements for Eclipse. This hardware en-
sured maximal responsiveness even with the screen recording in the background, as I was worried that

158



slow Eclipse response time may affect the subject’s attention and willingness to explore calls. The com-
puter was equipped with a 20” widescreen LCD, large enough for comfortable viewing from the subject’s
seat.

The computer was running Windows XP, with which all subjects had working experience. On the
screen, already started was version 3.4 of Eclipse, running on Java 6, with eMoose installed (but turned
off). The Eclipse workspace contained several projects which were used in the study. Also open but
minimized was a Firefox 2 web browser, which contained bookmarks for the main JavaDocs page for
each of the APIS used in the study.

The subject was then invited to change the resolution of the computer and the font type and size
in Eclipse to his level of comfort. A few subjects took advantage of this option, which made text more
readable for them but slightly changed the amount of information visible to each subject.

Subjects were then invited to choose between a standard low-end keyboard and a higher-end split-
keys ergonomic keyboard. The majority picked the standard keyboard.

In accordance with Fitts’ law [32], the characteristics and sensitivity of the mouse can have significant
effect on the subject’s ability to scroll and use the hover mechanism of Eclipse. Subjects were given
the choice of using a standard low-end mouse, or of using the default mouse, a Microsoft Wireless
Laser Mouse 6000 which is very sensitive, has a scroll wheel and is considered usable for left-handed
individuals. All subjects chose the latter, but many of them accepted the invitation to change the mouse
speed and sensitivity to their comfort through the operating system.

Tutorial

Subject were then instructed to read the introduction booklet, reproduced in Appendix A, which covered
the procedures of the study, a short eclipse usage test, javadocs, and the use of eMoose. While read-
ing, subjects performed the Eclipse test with the experimenter. After the subject finished reading, the
experimenter repeated the rationale behind eMoose, and demonstrated to the user how the tool is used,
including examples of polymorphism. The interaction around this tutorial took up to 10 minutes. Once
the subject was ready, the experiment moved to the next stage.

6.3.4 Process for each task

For each task, the subject read some background materials and was then taken on a quick tour through the
codebase, and when relevant also through the execution results. The subject was reminded of the goals
and 15-minute time limit, a small stopwatch was placed on the screen, and screen recording was started.
The subject was asked whether he was ready to start, and then the stopwatch was started, and eMoose
decorations were activated if the subject was in the experimental condition for that task.

To avoid pressuring subjects while still offering them opportunity to ask questions, the experimenter
was in the room but not sitting next to them. Subjects could ask questions whenever they wanted, and if a
longer interaction took place the experimenter stood next to the subject for a while and if necessary used
a second mouse to point at things. The experimenter sometimes asked questions, but tried to time them
for situations when the subject did not appear to be too busy. In particular, when the subject appeared
lost, the experimenter sometimes asked if the subject already had some theory in mind. Care was taken
not to steer subjects towards answers. During all interactions, the stopwatch was not stopped.

Subjects typically announced when they found the problem, or asked for confirmation when they
thought that they had. In the debugging tasks they were asked to fix the problem and run the program to
demonstrate that their solution worked.
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When subjects ran out of time, they were allowed to continue for a few more minutes, under an
understanding that they would not be credited for the success. If they still could not find the problem
or chose not to continue, they were shown the solution in an effort to put them on equal footings with
successful subjects when they arrived at the next task. In the case of subjects in the control condition,
the eMoose features were turned on and they were given a chance to try and find the problem with it,
before the actual answer was given.

Once subjects finished the study, they were required to fill a debriefing questionnaire, presented and
discussed in Sec. 6.11.

6.3.5 Analysis technique

During the study, the experimenter wrote down the outcome for each task, forming a simple measure-
ment of subject success rates. To facilitate further analysis, however, all sessions were recorded using
the Camtasia 4 screen capture program. I therefore have a complete visual record of the subject’s actions
and interaction with the IDE. The recorded voice track also contains the subjects’ interactions with the
experimenter, and some of their subvocalization.

As a quantitative approximation for the duration of time that subjects focus on each method’s docu-
mentation, I defined the entire period during which the JavaDoc of a method is visible in the JavaDoc
hover as a “reading” of this method. This is possible since the hover mechanism only allows one JavaDoc
to be presented at a time. I accommodate situations where subjects are reading JavaDocs on the web by
arbitrarily determining which of the visible methods (if more than one) is being read. This determination
is based on the location, the mouse pointer, and the subjects’ speech and actions. A similar policy is
taken in the rare cases where JavaDocs are inspected by examining the method declaration in the source
code.

The problem with the above metric is that it is too conservative: it will include durations during
which the JavaDoc was open but the subject was not actually reading it. For example, the subject
may have finished reading the JavaDoc and is contemplating its implications, he could be interacting
with the experimenter while the JavaDoc is open, or he might have been looking at the source code
while keeping the last JavaDoc open. Nevertheless, I believe that this approximation is still meaningful
since my impression during the study was that subjects were reading the JavaDocs when they were
visible. They often traced sentences vocally, with their mouse, or with their fingers close to the screen.
After finishing reading the text for the first time, they sometimes kept it open as reinforcement and read
previous sentences again.

For each debugging task performed by a subject, I created a transcript of the subject’s “reading ac-
tions” - times at which the JavaDoc was open. These measurements were taken at an accuracy of tenths
of a second. However, due to limitations of the screen recording software and the way in which Eclipse
renders JavaDocs, my measurement of when the hover becomes open and when it closes may be inac-
curate by up to 3/10 of a second. This is not a problem since most actual readings are longer than a full
second, making the impact of such inaccuracies minimal. The transcript also included data on other ac-
tions, such as scrolling, editing, and speaking. These are used to supplement detailed analysis in specific
cases, but most of the analysis will focus on the subject’s reading actions.

Next, I aggregated the data of each transcript by counting the number of readings of the same target,
and adding up the total duration of these events. I adjusted my count so that two subsequent reads of
the same target with a short pause between them and no other reads would be counted as one visit. This
adjustment helped address the frequent situations where the hover was accidentally closed and had to be
re-opened, for example when the mouse slipped beyond a certain threshold or when the users attempted
to turn the hover into a floating window.
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Figure 6.4: Template for timing data tables

Finally, I aggregated the data of all subjects performing a task in the same condition. These results
will be presented in tables based on the template of Fig. 6.4. First, the table presents the total time spent
by each subject on each function. Next, it presents two types of averages for each function: an average
that includes all methods (treating unvisited methods as 0), and an average that only includes methods
visited for a total of at least 1 second. The first value gives us a general idea about the amount of time
spent on the method, but it can be greatly affected if few subjects read the method. The second average
addresses this problem, but may be less meaningful when the method is read by few individuals. I chose
to require a minimal total duration to account for accidental hovers: many subjects occasionally opened
the hover by moving or leaving the mouse over a call or variable. They immediately moved the mouse
away when the hover appeared. Therefore, if the sum of all such visits adds up to less than a second, we
treat this target as if it had never been read.

In creating the transcript for each task, I included every use of the Eclipse hover mechanism, even
when it was used over classes and variables. In the former case, Eclipse presents the JavaDoc of the
target. In the latter case, Eclipse merely displays the type of the object, unless the program is stopped
in the debugger, in which case it will provide the current value. In the aggregate tables presenting the
results, all these will be considered as “others”.

All the reading data was summed into a total “reading time” that is presented along with the time the
subject spent on the task and the ratio. I also counted the total number of read actions, and the average
read length.

In every debugging task, I also aggregated task-specific data, such as the duration during which
certain code or documentation fragments were visible.

Finally, note that due to crashes of the the recording software and the operating system, the recordings
for several sessions were irreparably corrupted. This crashes were eventually traced to faulty memory. I
therefore use the outcome recorded for these tasks, but they are not included in our timing analysis.

6.4 First debugging task, based on the JMS API

The first task in our study was designed to investigate the choices developers make about which JavaDocs
to explore (read), rather than how they read each one. It presents subjects with a small code fragment
whose last statement causes execution to hang, and requires subjects to fix the problem. The cause and
solution for the hang are conveyed as a directive by a seemingly straightforward method that is invoked
early in the fragment.
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6.4.1 The JMS API

The first two debugging tasks are based on code and directives from the Java Messaging Service (JMS)
API. This API is used to reliably send messages between processes in a synchronous or asynchronous
manner. JMS supports point-to-point messaging via queues, and publish-subscribe messaging via topics.
Processes communicate via a JMS broker process which can reside on any machine and is responsible for
physically managing these data structures. In other words, senders and receives do not have to discover
each other or communicate directly, but rather have to contact the same broker and use abstracted medium
identities such as queue or topic identities.

The JMS interfaces were initially published as standalone libraries, but are now published as part
of the J2EE standard, and form the basis for more sophisticated J2EE technologies. Different vendors
provide open-source and commercial implementations for JMS; in this study, I used Apache ActiveMQ.
Note though our study is based on the first version of JMS, the documentation of relevant methods is the
same even in the current J2EE version.

Figure 6.5: Sun’s illustration of the JMS programming model

Clients usually follow a standard sequence of actions to communicate via JMS, as illustrated by
Sun’s diagram of the JMS programming model in Fig. 6.5. First, they instantiate a vendor-specific
implementation of the JMS connection factory, and typically refer it to a specific broker. The factory
object is then used to generate a connection. A connection can be used to generate multiple sessions,
and each session object can be used to generate objects representing queues and topics, though these
structures are physically maintained on the broker. The session object can also be used to create message
producers or consumers that are bound to a specific queue or topic. The client can then create message
objects, and send them via the producer; the consumers can receive messages and generate objects.

All subjects are given an overview booklet on the JMS API, which is reproduced in Appendix A.

6.4.2 The directive for this task

The first directive I chose for our study involves the peer-to-peer communications mechanism via queues.
It is found in the QueueConnectionFactory interface, and specifically in its createQueueConnection
method. The JavaDoc for this method, depicted in Fig. 6.6, states that the connection is created in a
stopped mode, and that no messages will be delivered until the start method is invoked.

This kind of directive can be considered a protocol, since it clearly describes a sequence of invoca-
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Figure 6.6: Documentation of QueueConnectionFactory.createQueueConnection() in JMS

tions. However, it refers to future errors but does not actually demand that the connection ever has to
be started; after all, the process may send messages rather than receive them. A better classification of
this directive may be a return-value directive. It serves an informational role, warning callers that the
returned object may be considered incomplete or unfinished for their purposes.

Note that this directive meets the criteria I have set for the study as it is straightforward and unam-
biguous. It should also be relatively easy to find within the text of the documentation, as long as the
subject reads beyond the first summary sentence.

The main reason I have chosen this directive, however, is that it appears in a method which I believe
is not likely to be investigated by users. By its name and declaring class, I expect that developers will
expect this to be a straightforward factory method for creating queue connection. They would therefore
not expect to see additional directives or requirements placed here.

6.4.3 Codebase and task

The first task in our study was designed to investigate the choices developers make on which methods
to explore. It focuses on exercising the decoration mechanism of eMoose and its potential ability to
attract readers to methods which might not be investigated otherwise. Our choice of core directive, which
appears in a relatively short JavaDoc, minimizes the importance of the augmented JavaDoc hover. While
distractions by other decorated methods are possible, the relatively limited code size for this task should
limit the impact of such distractions.

All subjects are first shown the SenderToQueue class, without eMoose annotations. This class
consists of only a main method. The first part of its listing, depicted in Fig. 6.7, declares a variety of
local variables. It makes sure that one or two parameters have been sent, and obtains a queue name and
the number of messages to be sent.

Its second part, depicted in Fig. 6.8, begins with a try block responsible for initializing a queue.
Specifically, a factory for queue connections is created with the hardcoded details of the broker. The
factory is then used to create a connection, which is then used to create a session, which in turn is used
to create the queue. Any exceptions will close the connection and quit from the program.

The next try block constitutes the heart of the test. The session and queue are used to manufacture
a sender object and a text message object. A loop then uses the message object to send multiple distinct
text messages through the sender object. Once this is done, an empty message object is created, and the
queue is closed. Again, exceptions will close everything and terminate the program.

Subjects are next shown the SynchQueueReceiver class, which also consists of a single main

function. The upper half of this class, depicted in Fig. 6.9, starts in a similar manner to SenderToQueue:
a variety of objects are declared and the command parameters are parsed to identify a queue name (but
not a number of messages).
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Figure 6.7: Source code listings for SenderToQueue.java - upper half
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Figure 6.8: Source code listings for SenderToQueue.java - lower half
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Figure 6.9: Source code listings for SynchQueueReceiver.java - upper half
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The lower half of this class is depicted in Fig. 6.10, with the eMoose annotations that subjects in the
experimental condition would see only once the timer is started. This part starts in a similar manner, with
a try block that initializes a queue in an identical manner to that of SenderToQueue. The second try

block, however, is different: instead of creating a sender object, a receiver is created. Then, a while

loop attempts to receive a message using the receiver’s receive method. If the received object is a text
message, the result is printed, and the next iteration begins. Otherwise, the message indicates the end of
the sequence, and the loop breaks and the program ends. It is important to note that in the original code,
there was a call between lines 81 and 82, immediately after the creation of the receiver, which invoked
the start method on the queueConnection object. As explained below, that call was deleted in the
version seen by the users.

Figure 6.10: Source code listings for SynchQueueReceiver.java - lower half with eMoose annotations

After subjects are shown a quick skim of both programs, they are shown a JUnit unit test and receive
an explanation that it will run both programs together and indicate in green or red the results of execution.
The experimenter starts the test, and shows that it does not terminate for a while, at which point the test
times out and a failure indication appears. The experimenter shows them the console window, where the
output of both programs shows that they are using the same queue. The remaining output then belongs to
the sender program, which indeed sends a sequence of messages as expected. Subjects are assured that
the sender works correctly, and that all messages are now waiting on the broker process.

Next, subjects are shown again the receiving program, and told to imagine that they have already
debugged it and found that the first call to receive in line 83 causes the program to hang indefinitely.
They are told that their role is to find and fix the problem, and that all changes would have to take place in
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the receiver program. They are also assured that the problem occurs in all concrete JMS implementations
and that the problem has to be fixed at the level of the receiver program rather than inside specific
implementations.

I created this bug by deleting the call to start on createQueueConnection. Recall that I selected
a directive stating that messages will not be delivered until the connection is explicitly started. As a result,
the call to receive blocks on first entry. If the program was multithreaded, another thread could have
started the connection at some point.

Interestingly, however, the JavaDocs for the receive method, depicted in Fig. 6.11, do not warn
of this possibility. Rather, they are somewhat confusing. They state that the call will block until mes-
sages are produced or the connection is closed. The former is not applicable here since there are already
messages on the broker waiting for delivery, and the latter is not applicable since the program is single-
threaded (though the means to close the connection may not be clear to our subjects). Thus, the docu-
mentation of this method is actually misleading, as subjects are expected to eliminate these two causes
and accept the fact that there must be a third, undocumented, reason. After being occupied by this for
a while, they should eventually give up and begin exploring earlier statements as the potential source of
failure.

Figure 6.11: JavaDocs for the MessageConsumer.receive() method with eMoose directives

Note that within the Eclipse IDE as seen by virtually all subjects, the two try blocks never appear on
the screen at the same time,. Thus, subjects focused on the receive call would not see the upper block
until they start searching elsewhere or start suspecting that the problem actually lies in the initialization
code. To be able to compare the time during which subjects have an opportunity to be exposed to our
directive, I will measure the duration of time spent with the first block visible. I call this block our “core
area”. Nevertheless, with so few statements up to and including the call to receive, I expect all subjects
to at least be exposed to the initialization code.

The few other calls in this code are likely to pose some distractions to the users. The call to createQueueSession,
which is not decorated in the experimental group, takes two parameters. However, as can be seen in
Fig. 6.12, its documentation is fairly straightforward and the parameters themselves involve acknowl-
edgements in transacted mode. Since messages are not received, that is likely not related.

The documentation for the decorated call to createQueue on the queueSession object, on the
other hand, presents many details and directives. As can be seen in 6.13. it first states that the facility of
creating queue identities is “meant for rare cases where clients need to manipulate queue identity”. The
reason behind this obscure description has to do with the typical use of JMS, where specific destinations
are requested via JNDI lookups. Nevertheless, the examples themselves and the API are meant exactly
for this not-so-rare use. The fact that the client is not portable is concerning, but of little relevance
here. Finally, the documentation states that the method is not meant for creating a physical queue.
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Figure 6.12: JavaDocs for the QueueConnection.createQueueSession() method

This is consistent with how JMS works, as the actual messages are stored on the broker process. The
queue created in sending and receiving processes is merely a representation for the broker-based process.
Nevertheless, this may confuse some of the subjects, especially those in the experimental condition.

Figure 6.13: JavaDocs for the QueueSession.createQueue method with eMoose directives

Note that users in the experimental condition who examine createQueue will see a set of identical
directives from the Session interface which QueueSession extends. For some unclear reason, SUN

chose to present the method in both superinterface and subinterface, and to repeat the documentation
(with a minor adjustment in the use of a @since tag rather than have the documentation inherited. Since
the method and documentation are redefined, eMoose presents the directives in both versions (though the
portability issue was accidently not included in one of them). The duplication was expected to slightly
perplex some users.

The call to createReceiver on queueSession, which is not decorated, presents very few details,
as can be seen in Fig. 6.14.

Figure 6.14: JavaDocs for the QueueSession.createReceiver method with eMoose directives

Finally, note that the code of the receiver after our change could have plausibly been written by
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a developer who was exposed only to the sender program. After copying the first try block (with the
initialization sequence) verbatim, that author could then create a receiver instead of a sender and begin
receiving messages. Since the code for the queue initialization was copied, the author would not be likely
to have read the directive on the call to createQueueConnection.

6.4.4 Results - Success rates

Success in this task required subjects to identify the need to call start to ensure that messages are
delivered, and to do so in the code. Of 13 subjects who performed this task in the control condition,
only 4 were successful and 9 were not. On the other hand, of the subjects who performed this task in the
experimental condition, 10 were successful while 3 were not.

Since eMoose was expected to help performance, I used a one-tailed test to determine statistical
significance. Given the small sample size, I used Fisher’s exact test to test the independence of eMoose
use and success, rejecting the null hypothesis in each case. For this task, the difference in success rate was
statistically significant (p = 0.024). However, we must examine the behaviors in details to understand
the reasons for this difference.

In the detailed narrative below, we refer to certain call targets by mnemonics. For ease of reference, a
simplified version of our program is presented with these mnemonics in Fig. 6.15 below. The mnemonics
are: FAC for the ActiveMQConnectionFactory constructor, CQUC for createQueueConnection,
CQUS for createQueueSession, CQUE for createQueue, ST for start, CREC for createReceiver,
and RECV for receive.

CQUC

FAC

CQUS
CQUE

CREC

RECV

[Error handling code, then exit]

[Long message handling code, never reached due to hang at RECV]

ST

Figure 6.15: Method mnemonics in the codebase for Task 1
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6.4.5 Results - Successful subjects in the control condition

Table. 6.2 presents the timing data for the four successful subjects in the control condition of this task.
Unfortunately, the recording for subject S17 was corrupted, leaving us with data for only three subjects.

Before we proceed, a brief explanation of the structure of this table. Its first part refers to the time
spent reading the documentation of each target method, using the mnemonics presented in Fig. 6.15. The
second part presents the work and reading time.

The third part is unique to this task, and presents four rows: Time in core - The total time that the
subject has spent with the core area visible. Ratio in core - The proportion of time (from the overall
work time) that the subject has spent with the core area visible. First visit core - The first time in the
study that the core area became visible. First CQUC visit - The first time that the subject has opened
the documentation of the CQUC method.

Table 6.2: Timing data for successful controls in control condition of Task 1

Visits to CQUC

The three successful subjects for which we have data explored CQUC relatively early in the allocated 15
minute time window: S6 within 3 minutes, subject S12 in about 1.5 minutes, and subject S20 in a little
over 5 minutes.

I examined the recordings to see what each subject did in this visit. Subject S6 took some time to
absorb the directive and fix the problem, while subject S12 immediately spotted the directive and fixed
the problem. Subject S20, however, read the JavaDocs of CQUC for a very long time, and then indicated
that he is unclear about how JMS works in terms of where the queue is actually located. After receiving
clarifications about how JMS operates, the user eventually announced the issue.

Actions before arrival at CQUC

Finding CQUC helped the subjects identify the problem, but what “wrong” choices had they followed
first? According to the detailed logs, subject S6 initially swept the entire file, then spent some time exam-
ining the code in the receiving area, until migrating higher. Interestingly, he never examined RECV, and
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spent very little time on CREC. Subject S12 worked extremely fast, and after a very brief visit to CQUS

immediately visited CQUC. Subject S20 started with CREC, then spent about 20 seconds on RECV,
and then spent significant time on CREC and CQUE until he reached CQUC. Thus, we have one subject
who was instantaneously successful, and two others who followed a path through other methods before
exploring CQUC.

An interesting fact about all successful subjects in the control condition is that they spent very little
time exploring anything in the “other” category, such as variables, classes, and unrelated calls.

6.4.6 Results - Unsuccessful subjects in the control condition

The timing data for the 9 unsuccessful subjects in the control condition is presented in Table 6.3.

Table 6.3: Timing data for unsuccessful controls in control condition of Task 1

Where time was spent

Unsuccessful subjects spent an average of 4 minutes reading JavaDocs, while their successful peers
spent only 2. However, they appeared to spend this extra time in the wrong locations. All of them
read the RECV method, spending an average of 95 seconds, whereas this method was barely explored by
their successful peers. Most of them also explored the other method in the receiving area, CREC, for an
average of 37 seconds, while successful subjects only spent 14 seconds there.

Since each unsuccessful subject spent 15 minutes on the task, it is somewhat surprising that they spent
only a fifth of their time, on average, with the core area. Nevertheless, these 173 seconds are actually
more than the 144 spent by successful subjects. It is therefore striking that 3 of the 9 unsuccessful subjects
did not explore any methods in the core area. Most importantly, of the other 6, only one explored CQUC,
though he did so 10 minutes into the session, long after his first visit to the core area. In other words,
even given ample time in the core area, all but one of the unsuccessful subjects did not explore CQUC.
Among all controls in general, only 5 of 13 explored CQUC.

Why subject S1 did not find the directive in CQUC

While it is not surprising that the 8 controls who did not examine CQUC did not succeed in the task, it is
peculiar that subject S1, who did examine it, was not successful. In the recording transcripts, the subject
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did not use the mouse pointer or selections while the JavaDoc for CQUC was open, so it is not clear
whether he read the directive. However, soon after reading CQUC he was starting to wonder if there is an
exception thrown, and received an assurance that none were, after which the subject explored other calls
and did not return to CQUC. It is possible that the presence of the throws block attracted the subject’s
attention.

Proportion of subjects examining calls

Interestingly, the portion of unsuccessful subjects who explored a particular call tended to decrease with
distance from RECV. All 9 examined RECV, 7 examined CREC, 4 examined CQUE, 3 examined CQUS,
and only 1 explored CQUC and FAC. In fact, for all these subjects with the exception of S1, it holds that
if a call was explored so were all the calls that were closer to RECV. However, an examination of the
actual transcripts shows that despite this pattern, subjects did not necessarily examine calls in a reverse
order, and that sometimes they returned to calls that they have previously explored after examining ones
farther away from RECV.

Reading the “other” category

Before we proceed, the issue of the “other” category must be addressed. The timing data shows that most
unsuccessful subjects spent an average of more than a minute on items in this category, compared to only
a few seconds among successful ones. Time spent in this category is aggregated from a large variety of
items on which subjects could hover to reveal a JavaDoc window. These items generally fall into four
groups:

• Classes, for which the class-level JavaDoc is displayed.

• Alternative versions for some operations (receiveNoWait instead of receive), which the sub-
jects typically examine in the web-based version or via the auto-completion mechanism.

• Variables and objects, for which all they received is an indication of type.

• Classes, objects, and methods that are not relevant to the task, such as standard library classes
(e.g., String), or that appear in areas that are not relevant (e.g., within exception blocks, after the
blocked call).

While an exploration of the first two types of items makes sense as subjects are trying to gather an
understanding of the problem or find a solution, the next two are perplexing. Note that a similar behavior
will appear in all other tasks. As a result, we will ignore this category in the subsequent tasks and then
discuss this issue in general in Sec. 6.10.

6.4.7 Results - All subjects in the experimental condition

We now turn to the experimental condition. The timing results for the 10 successful subjects is presented
in Table 6.4, while the data for the 3 unsuccessful ones appears in Table 6.5. Surprisingly, beyond the
expected differences in work time, there are are no obvious differences between the two conditions,
although the small sample size for unsuccessful subjects makes comparisons difficult.

We see that all subjects in the experimental condition explored CQUC. The time spent on it, however,
varied greatly between subjects. 6 subjects spent 10 seconds or less on CQUC, while 7 spent significantly
more. Interestingly, two of those who actually spent more time did not fix the problem, suggesting that
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Table 6.4: Timing data for successful subjects in experimental condition of Task 1

Table 6.5: Timing data for unsuccessful subjects in experimental condition of Task 1
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the delay may be attributed to a misunderstanding of the directive or to something else that attracted the
reader’s attention. All the subjects in the experimental condition also explored RECV and all but one
explored CQUE, so together with CQUC we can say that they explored all of the decorated methods.

Why some subjects did not find the directive

Figure 6.16: JavaDocs for the QueueConnectionFactory.createQueueConnection() method with eMoose
directives

To investigate why three subjects failed to fix the problem despite being exposed to the directive, I
reexamined the recordings. I found that these subjects seemed to ignore the lower pane. For reference,
Fig. 6.16 presents the augmented hover for CQUC. Subject S4 viewed the JavaDocs of CQUC with
the autocompletion mechanism, which is not augmented by eMoose. He was therefore not exposed to
the explicit highlighting of the directive, although it is not clear why he did not grasp it from the text.
Subject S8 read the text in the upper pane, and after the first statement skipped to the return clause and
vocalized it; he focused on this line again in his two visits towards the end of the session. When asked
afterwards about this behavior, he said that he did not look at the lower part at all. Subject S11 made
two very brief visits as part of a systematic scan of methods in the core area, and appeared to focus on
the upper pane.

Note that it is not clear whether the successful subjects identified the directive from the lower pane,
which explicitly lists the directives, or from the full text in the upper pane. The entire window was visible
at the same time, allowing users to see both. The second JMS task, discussed later, investigates this issue
with a hover in which seeing the directive in the text would require scrolling.

6.4.8 Results - Contrasting results for the two conditions

Our attention in this study is primarily focused on the differences between the two conditions. To facili-
tate this discussion, Table 6.6 compares the values for specific rows from the previous table.

Treatment of CQUC

The most important difference between the conditions is that all 13 subjects in the experimental condition
read CQUC, compared to only 5 in the control condition. This accounts for the significant difference
in success rates between the groups. The statistically significant difference suggests that the eMoose
decorations may have had a significant impact on directive awareness.

Examining the rest of the results related to CQUC, however, highlights several additional and puzzling
differences.
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Table 6.6: Comparison of certain behaviors across both conditions

First, the first visit to CQUC by subjects in the experimental condition was on average much later
than the first visit by those in the control condition who did visit it. Specifically, successful subjects in
the experimental condition took on average nearly 9.5 minutes before their first visit, and unsuccessful
subjects took 6 minutes. For successful controls, it took only 3 minutes, though the unsuccessful control
who examined CQUC took 11. In other words, while the subjects in the experimental condition for which
the method CQUC was decorated were more likely to eventually visit it, they did so much later than those
who did happen to examine it.

Second, subjects in the experimental condition tended to explore CQUC significantly later after their
first visit to the core area than those in the control condition who explored CQUC. Successful controls
took 2 minutes, on average, after the first visit, while successful eMoose users took 7 minutes and unsuc-
cessful ones took 2 minutes. Thus, even after the core was visible, CQUC was not immediately examined.

Third, the average time spent reading CQUC in the experimental group was actually higher than that
in the experimental group, despite the availability of the lower pane.

Other methods in the core area

Subjects in the experimental condition spent more time (in absolute terms and relative to the total work
time) in the core area than those in the control condition. Perhaps as a result, a greater portion of them
explored each method in the core area. For example, the decorated method CQUE, was explored by 6
controls and 12 eMoose users, for a similar amount of time. Interestingly, the undecorated method CQUS

was also investigated by 7 eMoose users vs. at least 3 controls.

Time reading RECV

A curious finding is that despite the increased time spent in the core area, almost all subjects in the
experimental condition spent, on average, significantly more time than those in the control condition
reading the decorated RECV method. Specifically, successful and unsuccessful subjects in the experi-
mental condition spent 2 and 3 minutes respectively, while controls spent 20 seconds and 1.5 minutes
respectively.

This finding is particularly interesting because it cannot directly be explained by the eMoose inter-
ventions and their potential for distractions. Since this method was known to be the point where the
program hangs, subjects did not need to rely on the decorations to know that they may want to explore
it. Once they opened the JavaDoc hover, the contents of the upper and lower pane were very similar as
the text primary conveyed the directives.
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6.4.9 Discussion - Explaining the difficulties of controls

The results for the control group demonstrate the reality and potential seriousness of the problem of
directive awareness. Out of 13 subjects, 8 never explored the CQUC method despite spending a significant
amount of time in the core area and in many cases reading some of its other methods. Understanding
this inconsistency is critical, and while we lack “think aloud” data to determine the cause, the data can
support several interpretations.

We saw that among unsuccessful control subjects, methods were less likely to be read as distance
from the call to RECV increased. This is perhaps not surprising, as calls in the core area were never
visible at the same time as those in the receiving area on which subjects initially focused. I suspect that
had both parts been on the screen at the same time, earlier and more extensive attention would have
been given to the core area and its methods. It would be interesting to repeat this experiment with a
larger viewport and also with code that splits the blocks into two separate functions. Nevertheless, this
separation does not explain why the call to CQUC was explored much later than the first visit to the core
area and significantly less frequently than the calls in the two lines that follow it.

My interpretation of the results offers a tentative answer for the study’s research question, which
aimed to determine why subjects in the control condition failed to identify the directive. It is inspired
by recent applications [56] of information foraging [70] theory. That model suggests that information
exploration decisions are based on scents that help identify targets relevant to goals and estimate the
profitability of exploring them. I argue that decisions on method exploration are influenced by a “scent”
given by the method’s likely role and by the apparent relation of its name to the developers’ goals. In this
case, CQUC may have seemed like a trivial factory method that generated a remote ancestor of the object
whose method causes the failure. This may have constituted a negative scent that made its exploration
less attractive even as options were running out.

Regardless of the reasons for missing CQUC, these results carry implications for my study’s second
research question, about the implications for documentation writers. I argue that with standard IDE sup-
port, authors must take into account the significant possibility that the documentation of their methods
would not be read at all by users. My survey of APIS suggests that at present, many methods merely
present a contract in the documentation and perform no runtime “sanity” checks. While this policy im-
proves performance, it can also result in difficult-to-trace problems that defeat the goals of API providers
and their clients. In the future, it is possible that design by contract with static analysis may offer a solu-
tion, but at present the specification and checking effort is not yet practical. API authors may therefore
wish to err on the side of caution and include additional safety checks when possible, and avoid surprising
users with caveats and side effects.

The limited exploration of method CQUC reinforces the need for means to signal the availability
of important information to clients who may not otherwise explore the documentation of an invoked
method. We now turn to examining the impact of eMoose in this task.

6.4.10 Discussion - Explaining the impact of eMoose

Impact of eMoose on exploration of CQUC

The most notable difference between the experimental and control conditions is that every eMoose user
explored the decorated methods CQUC and RECV, with all but one also exploring the decorated CQUE.
Thus, in this small fragment the call decorations had the expected effect of increasing the chances of
finding the important directive. On the other hand, these findings also indicate a potential for disruptive
distractions, as subjects explored decorated methods whose directives were not relevant to the problem.
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This is wasteful and could have sent them down costly “dead-ends”.

It turns out, however, that though eMoose users explored more decorated methods, the tool did not
seem to lead them to examine everything. In addition, closer scrutiny of the data and recordings shows
that the JavaDocs for decorated calls were also not necessarily explored as soon as they were first visible.
Subjects frequently did so only later, as their goal changed or when other options were less promising.
This was evident with CQUC, which was initially ignored by most subjects. In many cases, subjects also
explored undecorated calls before exploring decorated ones. In other words, eMoose does not seem to
force users to examine everything, at least not immediately.

My interpretation of this behavior is once again based on the model of information foraging. I suspect
that the presence of an eMoose decoration on a method contributes another type of positive scent to the
call; conversely, the lack of a decoration contributes a negative one. However, these eMoose scents are
factors together with the other scents based on location, role, and naming, into a decision whether and
when to explore the call.

Applying this interpretation to this case, the call to CQUC still emitted the same negative scents that
warded off our control subjects, but also a positive scent from the eMoose decoration. Once other targets
seemed less promising, this positive scent may have been sufficient to overcome the negative scents and
push the perceived potential profitability of an exploration past the threshold. While the calls to RECV

and CQUE were also decorated, the effect of the positive scent was not as dramatic here, as these already
emitted positive scents due to their location and name relevancy. Similarly, the negative scent from a
lack of decorations on the calls to CQUS and CREC was not sufficient to prevent their exploration.

If my interpretation is accurate, then it implies a limitation on the potential benefits of eMoose, since
it is still possible for targets with important directives never to be explored if they emit too many negative
scents. However, it also limits the disruptive impact of too many decorated methods, which would have
rendered the tool frustrating to use and thus impractical. Note that in the third task, subjects will be
debugging a much larger program with many decorated calls, so we will have a chance to examine
whether this expected behavior holds.

Based on the increased time spent in the core area and on its undecorated method CQUS, I also
suspect that the presence of multiple decorated calls in a small area may increase the perceived scent of
the entire area and even of undecorated items within it. However, more studies are needed to evaluate
this possibility.

Impact of eMoose on exploration of RECV

My finding that eMoose users spent significantly more time on RECV than controls was surprising be-
cause its directives closely resembled its documentation, which stated the two blocking conditions, as
was seen in Fig. 6.11. Subjects in both conditions tended to focus on these two conditions in a cycle of
“inquiry episodes” [75] until they accepted that other blocking conditions are possible, and essentially
acknowledged the imperfection of the text.

Previous studies [54] hinted that developers treat authors of respectable programs as “correct until
proven otherwise” and are reluctant to second-guess their work. The decorations and presence of explicit
directives may have somehow lent credibility and authority to the blocking conditions, making users
more reluctant to distrust them and begin exploring other options. The potential effect of tools on per-
ceived credibility and thus on performance deserves further study. Another possibility, however, is that
users assumed that a decorated call is more likely to contain the solution.
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Impact of the eMoose lower pane

The discussion here has focused on the impact of the decorations on function calls, as the task was con-
cerned only with investigating which invoked methods are explored. The impact of the augmented JavaDoc
hover was not expected to be significant since the documentation of most invoked methods was short and
paralleled the presented directives.

In fact, as we have seen, several subjects ignored or bypassed that pane and read only the documen-
tation text, and this may have contributed to their difficulties. Additional training and experience may
bring more attention to this feature. Nevertheless, mouse movements and speech in the recordings sug-
gest that most other subjects did focus on the eMoose pane first, and often quickly screened the method
by systematically going over the listed directives. eMoose users may therefore be able to quickly deter-
mine the reasons that a call is decorated and decide whether to investigate further, without paying the
cost of a full text read. However, more evidence is needed for this from subsequent tasks.

The second task, to which we now turn, is designed to explore in depth the impact of the augmented
hover on long JavaDocs, while minimizing the impact of method decorations.

6.5 Second debugging task, based on the JMS API

Whereas the first task of our study was designed to investigate how developers choose to read the docu-
mentation of certain call targets, our second task is designed to study how they find directives in the text
of such documentation. This task uses a small number of calls, offering sufficient opportunity to explore
all of them, but the key directive is hidden deep in the verbose documentation of one of the targets.

6.5.1 The directive for this task

Like the preceding task, the directive and codebase for this task is also based on the JMS API. This
time, however, the focus is not on the peer-to-peer communication facilities via queues, but rather on the
publish-subscribe facilities which revolve around topics. JMS allows a program to announce itself as
a publisher to a topic, to which it sends messages. JMS allows multiple clients to register themselves
as subscribers to these topics, so they can receive any messages that are being published. However,
the connections are typically not durable. In other words, clients only receive messages that are being
published while they are active.

The second directive comes from the setClientId method in the Connection class. The doc-
umentation for this method was previously shown, and is reproduced in Fig. 6.17. As stated in the
next-to-last parargraph, client identifiers can be used by JMS providers (typically broker processes) to
maintain state information about the client. At present, the only permitted use is for durable subscrip-
tions. This mechanism allows a subscriber in a particular process to pick up messages that were not read
by a subscriber carrying the same identifier in a previous process that has already ended. This mecha-
nism can be used, for example, to ensure reliable message delivery if a user switches between machines.
The relevant bookkeeping takes place on the broker, which remains active even as the client switches
processes.

As can be seen in Fig. 6.17, the documentation is quite verbose (277 words) and includes a variety
of directives. The first paragraph indicates that there are better ways to configure connections, although
this is merely a recommendation. The last paragraph indicates that it is an error to have two connections
with the same client identifier active at the same time.
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Figure 6.17: Javadocs for the Connection.setClientId method in JAVA JMS (Reproduced with
added emphasis)

Our focus, however, is on the first highlighted directive, which states that a call to this function must
come after the connection object has been created but before any other operations on the connection. An
exception is “promised” if this obvious protocol is violated. This kind of protocol makes sense since
connections in JMS are used to generate sessions, which are in turn used to create other communication
related objects. If the client identifier has an effect or propagates to any of these objects, it becomes
necessary to set it up before any of them are created or the connection is started. The interesting point
about this directive is that it is placed in a paragraph deep within the verbose documentation, and starts
deep inside that paragraph. I conjecture that readers would be more likely to miss it, albeit for a very
different reason from the one in the first task.

Also note that the highlighted directive has a corresponding redundancy in the throws clause at
the end of the JavaDoc, which states that an IllegalStateException may be thrown if the iden-
tifier is set at “the wrong time” or if it is administratively configured. This may confuse users, or ac-
tually lead them towards the full directive since they could skim the text in search of more details on
the IllegalStateException.

Finally, note that because of the length of this JavaDoc, it may not be fully visible when developers
view it using the JavaDoc hover. In fact, in the study, the default viewport extended only up to the
middle of the highlighted directive. Users in the experimental condition, however, also saw a lower pane
with three directives: 1) Client ID must be unique among running clients, 2) If ID is set explicitly, it
must be done immediately after creating connection and before any other action, 3) Preferred way is via
configuration in a ConnectionFactory which is then used to create connection.
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6.5.2 Codebase and task

The codebase for this task is taken from the sample file DurableSubscriberExample. In this file, a
main class uses several inner classes to create a publisher and several subscribers, which are then discon-
nected and reconnected with the same client identifier to demonstrate the concept of durable subscribers.
Since our focus is on reading long JavaDocs rather than on which calls are read, we immediately take the
subjects to a specific fragment, shown in Fig. 6.18, and specifically to lines 126–131 in the constructor
of the DurableSubscriber inner class.

Figure 6.18: Constructor for the DurableSubscriber inner class

Subjects are told that when the test program executes, there is an error or exception which can be
immediate or delayed. They are not told what the error is, but are instead told to imagine that they have
already narrowed down the problem down to this constructor. They are assured that the system state and
parameters are all correct, but that there is some problem in those six lines. To avoid revealing the exact
call responsible for the error and the resulting exception, which would turn the task into a simple search,
subjects are not allowed to run the program and are asked to rely solely on the code and documentation.

The problem in this code fragment was caused by a reversion of the order between line 128 and 129,
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so that now the call to setClientId comes after, rather than before, the call to createTopicSession.
This will cause the program to throw an exception, as there is now an action (setting session) on the
connection object prior to setting the client identifier. Note that such an inversion is quite plausible for a
developer to make when the dependencies between lines are not fully clear.

The code fragment is very similar to the queue initialization sequence of the previous task but uses
analogous operations that are specific to publish-subscribe topics rather than peer-to-peer queues. One
difference in this task is that the call to start, which was eliminated in the previous task, is visible in
this codebase. The only truly new method in this sequence is setClientId. Its presence should steer
users towards investigating it, though the short size of the fragment is likely to ensure that anyway.

6.5.3 Results - Success rates

Success in this task required subjects to identify the directive stating that no other calls on the connection
are allowed to take place before the call to setClientId, and to fix it by accordingly swapping two
calls. Of 13 subjects who performed this task in the control condition, only 7 were successful and 6 were
not. On the other hand, all the 13 subjects who performed this task in the experimental condition were
successful.

Once again I applied a Fisher’s exact test to test the independence of eMoose use and success,
rejecting the null hypothesis. For this task, the difference in success rate was also significant (p =
0.007). However, we must once again examine the behaviors in details to understand the reasons for this
difference.

In the detailed narrative below, we refer to certain call targets by acronyms. For ease of reference, a
simplified version of the code section is presented with this mnemonics in Fig. 6.19 below. The acronyms
are: FAC for the ActiveMQConnectionFactory constructor, CTOC for createTopicConnection,
CTOS for createTopicSession, SCID for setClientId, CTOP for createTopic, and ST for start.

L1
L2
L3
L4
L5
L6 ST

CTOP

SCID

CTOS

CTOC

FAC

Figure 6.19: Method mnemonics in the codebase for Task 1

On the machine used in the study, the default size of the JavaDoc hover typically only covered the
text up to the middle of our directive, and it had to be manually resized or scrolled to reveal more of the
text, including our key directive. To facilitate analysis, I created a detailed log containing the subject’s
interactions with the method and the visible viewport into the text at each point in time.

6.5.4 Results - Successful subjects in the control condition

Table. 6.7 presents the timing data for the seven successful subjects in the control condition of this task.
Unfortunately, the recording for subject S22 was corrupted, leaving us with data for six subjects.
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Table 6.7: Timing data for successful subjects in control condition of Task 2

The 6 successful controls for which we have data spent on average 80% of their work time (4.5
minutes) reading JavaDocs. Nearly 3 minutes of that time, on average, was devoted to the SCID method,
with the rest spent primarily on CTOC and CTOS.

To understand what reading choices they made, I investigated the detailed transcripts. I found that
subjects S2, S14, S16, and S19 essentially followed a systematic top-down approach in which they ex-
plored every call and attempted to eliminate every clause in its JavaDocs until they reached the directive.
Since they found the problem in SCID in one pass, they never continued past it to CTOP and ST. Note that
even during this systematic exploration, they sometimes closed the hover, examined other objects (but
not methods), and hovered again on the same item.

The other two successful controls behaved differently. Subject S8 started out with a top-down ap-
proach, but appeared to miss the directive in SCID or not recognize its importance. He continued, reached
the end of the code section, and came to the wrong conclusion that the call to start had to be moved.
He began “thrashing” and exploring other options, until eventually returning to SCID and finding the
directive. Overall, he made 17 JavaDoc reads. Subject S11 also read SCID, but was jumping around its
text and missed the directive. He only found it after a total of 22 JavaDoc reads.

6.5.5 Results - Unsuccessful subjects in the control condition

Table. 6.8 presents the timing data for the 6 unsuccessful controls. Five of them did not find the cause of
the problem nor fixed it, and one (S7) was able to fix the problem but not explain what the problem was.

Table 6.8: Timing data for unsuccessful subjects in control condition of Task 2

The unsuccessful subjects spent more time in absolute terms reading JavaDocs than their successful
peers, although this accounted for a much smaller portion of their work time. They also spent slightly
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more time, on average and in absolute terms, reading SCID, with only S18 spending very little time
there. The major difference, however, is that unsuccessful controls spent significantly more time on
other calls beside SCID. For example, they spent twice as much time than controls on CTOC and CTOS,
and more than twice on CTOP and ST. The total number of reading actions, due to repeat visits, was also
significantly higher. This is consistent with the behavior of subjects S8 and S11 among the successful
controls, who did not find the directive and therefore searched in more places.

Since almost all unsuccessful controls spent significant amounts of time on SCID, we need to under-
stand whether they saw the directive and not realized its importance, or whether they had missed it. As
mentioned above, I created a detailed log of the areas of the JavaDoc of SCID which were visible at each
point in time. For ease of reference, I marked each clause in the JavaDoc of SCID with a serial number,
presented in Fig. 6.20. The tables that shall now be presented reflect the intervals during which specific
portions, highlighted in light green, were visible. They use darker green to indicate that the user was
moving the mouse over the clause, and an even darker shade to indicate when the mouse was explicitly
used to select the text of the clause or when the user was reading the text out loud.

P1

P2
P3
P4
P5
P6
P7
P8

P9

P10

P11
P12
P13

Figure 6.20: Javadocs of setClientId with enumerated clauses

Fig. 6.21 presents the view table for subject S4. As we can see, the subject made 8 visits to SCID and
still missed the directive or glossed over it. In visits 1, 2, 5, 6 and 7 he only revealed the default viewport,
so that our directive in (in P5–P6) was not fully exposed. In his third visit, which was the first in which
he clicked on the JavaDoc and explored lower sections, and on the eigths visit, he scrolled lower so that
our directive was visible, but his focus was on the later directives. In his fourth visit, he focused on the
throws clause.
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Figure 6.21: Log of visible regions of SCID documentation for subject 4
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Figure 6.22: Log of visible regions of SCID documentation for subject 5
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Fig. 6.22 presents the view table for subject S5. As can be seen, the subject made 10 visits to
the SCID method. In the first four, he clicked and scrolled the view to the last part, which described the
later directives and exception; our core directive was outside his view. On the next few visits, he resized
the hover window to show everything, making it difficult to determine the focus as he did not use the
mouse or vocalize. He did another systematic scan and a last-minute visit to the top part, but never seem
to have encountered or paid attention to our core directive.

Figure 6.23: Log of visible regions of SCID documentation for subject 7

Fig. 6.22 presents the view table for subject S7. This subject is different than the other unsuccessful
controls in that he did fix the problem, but could not determine precisely why the fix had worked. What
happened is that he followed a systematic approach in exploring functions, and then systematically went
over all the text in the hover window that he had maximized, vocalizing or using the mouse and selections
as he covered each clause. He eventually reached our core directive, but then had a momentary lapse of
concentration. He read out the directive, but then wanted to explore the list of exceptions and quickly
moved to the end. From then on, he focused on the exceptions, and started pondering what “wrong time”
could mean. He conjectured that the two functions needed to swap and did so, thus fixing the bug, but
when prompted to explain why he kept looking for a reason, he never recalled the directive which had
lead him there.

Subject S18 spent so little time on SCID, that it is perhaps not surprising that he never encountered
the directive.

Fig. 6.24 presents the view table for subject S24. As can be seen, this subject made several scans of
the documentation but never seemed to focus on the core directive, although it was occasionally visible.
It appears that he may have read the beginning of the paragraph, but ignored its ending, including our
core directive.
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Figure 6.24: Log of visible regions of SCID documentation for subject 24

Subject S25 scanned SCID once in a systematic manner, but his questions suggest that he may have
been distracted by the issues of duplicate identifiers in clause P9.

My general impression from examining the recordings for the control group is that the chances of
reading a particular clause in the main body of the long JavaDoc text roughly decreases with distance
from the top and with distance from the beginning of the visually distinct paragraph. In their initial visits
to SCID, most subjects also seemed reluctant to click the hover to create a standalone window and then
scroll the text beyond the initial viewport.

6.5.6 Results for successful subjects in the experimental condition

As previously indicated, all 13 subjects in the experimental condition were successful in identifying the
problem and completing the task. Their timing data is presented in Fig. 6.25. Once again, the recording
for one subject, S15, was corrupted.

Their average work time, JavaDoc reading time, and the time spent reading SCID were all roughly
half of those of successful controls, indicating that the subjects were significantly more effective in their
work. Note, however, that they spent significant amount of time, comparable to that of controls, on
the decorated CTOC method. In addition, several of them spent significant amount of time on the other
decorated method, CTOP. On the other hand, only half of subjects in this condition read CTOS, which
was not decorated and which was read by everyone in the control group and significantly distracted the
unsuccessful controls.

Since all subjects in both conditions read SCID, the difference might be in how it is read. Subjects
in the experimental condition could see the directive in the lower pane without any need for scrolling.
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Figure 6.25: Timing data for successful subjects in experimental condition of Task 2

Indeed, the recordings revealed that only three subjects: S10, S13, and S23 scrolled the text viewport in
a way that could have revealed the entire directive. Thus, for all those other subjects the directive in the
lower pane was sufficient to identify and fix these problems. However, even those subjects who never
needed to scroll did not necessarily realize the implication of the directive immediately. Subjects S6
and S21 visited SCID several times before identifying the directive. It appears that the implications of
the directive were not clear, or that subjects were distracted by the first directive. The three subjects who
did scroll also made several visits, so they may have faced the same challenge.

6.5.7 Discussion

The limited scale of this task, which is even smaller than that of the first task, lent itself to a systematic
exploration of each call and of the documentation of each call. Such behavior, which is of course not
practical for larger programs [75], appeared to account for the success of many of the controls. However,
the small scale also meant that there was sufficient time for everyone to explore the SCID method and
become aware of the directive.

Failures among controls

Since everyone explored SCID, I argue that the 7 of 13 success rate among controls is low considering that
certain conditions were favorable compared to real world situations. The code fragment was extremely
short and known to contain a bug whose solution was likely to appear in the documentation. One may
even argue that the gap between uses of the connection and session objects looked suspicious. This
demonstrates the serious difficulties that developers may face in becoming aware of important directives
in verbose text. I acknowledge, though, that many subjects were relative novices, worked with limited
context, and had to cope with documentation of unfamiliar concepts.

Since all subjects in the control group, with the exception of S18, spent a significant amount of
time in SCID, failure in the task likely resulted from a failure to notice the directive or to realize its
importance. My analysis of the viewports shows that users tend to read the materials at the beginning of
the documentation, especially as that is what is shown to them without additional effort.

Once scrolling begins, it appears that reading is not necessarily systematic, but rather opportunistic:
these subjects sometimes focused on materials towards the end of the text, missing materials in the mid-
dle. My interpretation is that within the verbose text, certain visual or textual cues attract more attention
than anything exhibited by our directive. One such cue is the explicit listing of thrown exceptions, which
are easy to identify and seemed to attract significant attention. Another type of cue is the presence of a
relatively short paragraph with distinct vertical space around it, as was the case for the directive in P7-P8
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and the directive in P9.

Conversely, our directive was often not noticed even when it was visible on the screen, regardless of
its relative position in the viewport at the time. It appears that several factors contributed to missing it or
not realizing its importance, including: its placement late in the text and deep within another paragraph,
the lack of keywords to attract a reader’s attention, and a phrasing that was not sufficiently clear or
powerful. Even those who noticed it might have considered it unremarkable and unmemorable, as was
apparently the case with subject S7, who used it to find the relevant exception but could not recall having
read it previously.

Since documentation writers cannot assume that all readers would be thorough, the key to directive
awareness, then, is in making directives more salient through an explicit effort by the author or via tools
like eMoose.

Experimental group

Since the SCID method was explored by all subjects in the control condition, it is unlikely that method
decorations had significant impact on success in the experimental condition. A possible impact may have
been in increasing the perception that the solution to the problem may lie in SCID, which could lead to
closer scrutiny among those in the experimental condition. However, since CTOC and CTOP were also
decorated, whereas three other methods were not, these methods provided sufficient distraction to offset
this effect, and indeed attracted the attention of many subjects in the experimental condition.

The much higher success rates and shorter time spans in this condition are therefore likely to result
from the presence of the lower pane, since directives can be missed within the verbose text of SCID. This
is particularly likely since many subjects in the experimental condition were able to solve the problem
without ever scrolling the JavaDoc.

Even with this presentation, however, identifying the problem often took time and repeated visits.
This may be indicative of the risk of stating directives in unclear ways, or of having one directive distract
readers from subsequent ones.

Note that the fact that many subjects relied on the explicit list of directives and never explored the text
raises the risk that information would be missed if it were not explicitly tagged as directives. Whoever
tags the documentation must therefore be careful to ensure that no directives or critical information are
left untagged.

Improving the usability of the documentation text

While API authors can do little (without tools) to attract readers to the documentation of their methods,
how they write this documentation can have significant impact on its utility to potential readers. The
reading behaviors observed in this task, but also in other tasks in this study, suggest ways in which
documentation can be made more usable.

First, authors should not assume that the entire text would be read thoroughly in a linear order, and
must write accordingly. In particular, authors should determine what details are the most critical and
present them first. Each clause should also describe the instruction or required action before describing
the rationale or the qualifying issues. In my survey of APIS, I found many descriptions that began with a
long line of reasoning, and then concluded with an instruction to the caller. Since readers skimming the
text tend to focus on the beginning of each paragraph, they are more likely to miss the directive. Also,
the phrasing of directives should be more forceful and direct, and should use stronger phrases such as
“warning”, “note that”, etc.
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Second, authors should review their documentation and consider whether some of the information
can effectively be pushed into the signature. For example, renaming a method of the form getValue

to getValueBlocking is a more effective way to convey that it may block if the value is not avail-
able than merely documenting that fact. Similarly, calling it tryAcquireValue is more effective than
documenting that it would return immediately if there is failure or that it would return a null.

Improving documentation generation tools

My findings indicate that current documentation support tools, which present the same text to all users,
should be expanded to allow the creation of different documentation for different audiences.

A single medium forces authors to pick between creating detailed documentation that can be read in
the browser, and shorter documentation for reading via IDE tooltips. Because JavaDocs were originally
distributed in HTML form, developers were encouraged to provide a detailed narrative similar to the
contents of a web page or a blog post. In many ways, however, the tooltip window is more suited
to “tweet”-like materials than to complete “blog posts”. The text should be much more concise, with
the most important details clearly visible and separate from one another. In particular, while lengthy
paragraphs may fit well in a narrative, multiple shorter structures that convey a single idea are easier to
skim.

A separate presentation could also be useful for the common scenario where a method’s author needs
to convey some information to callers, and different information to those who implement or override it.

In addition, I believe that the technique of presenting a method’s “summary”, as is the case with
web-based JavaDocs, does not improve usability. Good API design practices should focus on making
method signatures self explanatory, so that the summary is left redundant. Throughout this study, subjects
often read the summary sentence, were reassured that they understood the method’s purpose, and did not
read further. As evidenced by the behavior of some subjects, this may have led them to miss important
directives.

The results of the first task demonstrated that eMoose decorations may help lead developers to explore
the documentation of call targets with relevant directives. The results of the second task showed that
explicitly highlighting these directives in verbose text makes them more likely to be noticed. While
these impacts are beneficial when the directives are truly relevant, there is a risk that developers may
be distracted by many irrelevant calls and directives. We evaluate this risk in the third task, which uses
the SWING API and the code of an entire program.

6.6 First Swing Task

The third task is primarily designed to investigate how developers choose what JavaDocs to read and
how much attention to devote to them when confronted with a larger code base. I was particularly inter-
ested in investigating whether the presence of decorations on many unrelated calls would significantly
distract eMoose users.

6.6.1 The directive for this task

The next directives comes from the standard SWING GUI toolkits packaged with JAVA. Initially, JAVA

was released with the Abstract Window Toolkit as a platform-independent API for building user inter-
faces. This toolkit is relatively thin, and relies on the native UI implementation in the hosting operating
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system. Since every OS has different widgets and they are not always compatible, the resulting programs
are not truly portable. To overcome these limitations, later versions of JAVA included the SWING widget
toolkit. SWING offered a variety of features such as a consistent look and feel with custom-drawn wid-
gets, a rudimentary model-view-client architecture, and many others. However, many parts of SWING,
including its component widgets, are based on AWT classes and services. Today, SWING is the most
widely used GUI toolkit for JAVA.

The directive for this task is taken from a relatively obscure but highly useful SWING class called JLayeredPane.
It is a subclass of the standard SWING JComponent, which is in turn a subclass of the AWT Container.
Its benefit is that it allows contained items to be organized into layers, and its rendering functionality han-
dles the hiding of elements in lower layers by elements in higher layers. Every object also has a position
within a layer, so that it can be hidden by other items in the same layer and hide others, while still
conforming to the hiding implied by the layer numbering.

Figure 6.26: Javadocs for the JLayeredPane.putLayer method in SWING

Figure 6.27: Javadocs for the JLayeredPane.setLayer method in SWING

The directive I picked is in the method putLayer. This method is used to assign an object (that is
usually already in the container) to a different layer. However, this method appears to merely change the
layer assignment in the internal data structures maintained by the pane object, without actually causing
any visual effect. Its documentation, depicted in Fig. 6.26, explicitly states that to get “side-effects” like
repainting, one must call the method setLayer instead. This is an example of an alternative directive;
it may appear informational, but one can easily foresee errors that can occur if it is ignored in the wrong
context. Interestingly, the documentation of setLayer, depicted in Fig. 6.27, is much more terse and
indicates nothing about refreshing.

Though I have frequently noticed these kinds of alternative directives, this specific case is particularly
interesting. We have two methods that superficially appear almost the same and each may meet the
expectations of a developer seeking to reassign a contained object to a different layer. When developers
try to figure out how to accomplish this goal, they may automatically think of the set verb because
of the setting of property, or they may actually think of the put verb if they think about the act of
putting an object in a particular layer. If the developer explores the summary descriptions in the web-
based JavaDoc, as depicted in Fig. 6.28, the difference between the methods is not evident, though if one
goes lexically, putLayer may be found first and the search might not continue. The only way to truly
distinguish between the two is to read the documentation.

Note that the API is not wrong in providing two ways to set a layer, though a better effort at dis-
ambiguation would have been beneficial. If every change to the model was immediately reflected in the
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Figure 6.28: Outline area in the Web-based JavaDocs for the JLayeredPane class

UI, this would be computationally intensive and cause flicker. Since some changes occur in batches, the
availability of a method that does not cause a refresh is important. Support for batching is a common
idiom in toolkits like SWING.

6.6.2 Task description

Since our directive comes from the JLayeredPane class, I chose to base this task on Sun’s official demo
for this class which is part of the official Swing tutorial.1 The demo class, called JLayeredPaneDemo 2

consists of 220 lines.

Figure 6.29: Initial state of the JLayeredPaneDemo program

When executed, it presents on the screen a Swingwindow with a control panel on top and a JLayeredPane
1The demo can be found at http://java.sun.com/docs/books/tutorial/uiswing/components/

layeredpane.html.
2http://java.sun.com/docs/books/tutorial/uiswing/examples/components/

LayeredPaneDemoProject/src/components/LayeredPaneDemo.java
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on the bottom, as can be seen in Fig. 6.29. The layered pane has five predefined layers, ranging from 0 to
4. To illustrate them, a colored square (actually a JLabel widget) is placed in each layer with a caption
indicating the layer number. A graphical image (Java’s mascot Duke) is then placed in layer 2, so that
it is in front of the purple box of layer 1 but behind the red box of layer 3. Within layer 2, however, its
position is assigned to be in front of the cyan box. Moving the mouse within the lower pane moves Duke
while still respecting the layer ordering.

Figure 6.30: State of the JLayeredPaneDemo program after Duke is moved to layer 3

The upper pane offers two ways for clients to change the location of Duke. By unchecking the top
position in layer checkbox, Duke will be moved to a lower position within his current layer. As
a result he will appear behind the corresponding box (e.g., the cyan) while still appearing in front of
lower-ranked layers but behind higher-ranked ones. The user can also move duke to another layer using
the list box, affecting the way he is displayed. In this case, however, his position relating to the box
representing the new layer depends on the state of the checkbox. For example, Fig. 6.30 depicts Duke
after he had been moved to layer 3 but behind its box.

As with previous tasks, however, I have broken the program. In this case, when the user moves Duke
to certain layers by making a selection in the list box, it has no effect. When the user moves Duke with
the mouse, Duke stays in the previous layer. For example, Fig. 6.31 shows how Duke is still in front of
the box of layer 3 even though it had been moved to layer 1. Subjects are shown such scenarios, and then
also shown that checking and unchecking the checkbox results in Duke being assigned to the appropriate
layer.

The problem has been generated by making a change to the method actionPerformed, which
occupies lines 173-188 and is depicted with eMoose annotations in Fig. 6.32. The change that I have
made is that initially, the lower conditional (for LAYER COMMAND) did not have the call to putLayer

and setPosition. Instead, it had a single call to setLayer:
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Figure 6.31: Error state of the JLayeredPaneDemo program after Duke is moved to layer 1

Figure 6.32: Source code of the actionPerformed method in the JlayeredPaneDemo class
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layeredPane.setLayer(dukeLabel, layerList.getSelectedIndex(), position);. To
break the program, I split this call into a call to setLayer with two parameters, and a separate call
to setPosition. I then replaced the call to setLayer with the call to putLayer, thus preventing
the refresh that would move Duke. When the user changes the checkbox, the calls to moveToFront

and moveToBack implicitly cause a refresh. If the user replaces the call to putLayer with the call
to setLayer, the problem is fixed.

Note that the program itself is quite long and the reader is encouraged to consult the source code.
Fig. 6.33 presents a “folded” version, which only shows the declarations of fields and methods.

Since we will be investigating the distraction by decorated calls outside actionPerformed, we
present the source code for methods that contain them and count instances. The class constructor, de-
picted in Fig. 6.34, contains 6 calls to add, a single call to setBorder and another call to setBackground.
The methods createColoredLabel and createControlPanel, depicted in Fig. 6.35, add 2 more
calls each to add and to setBorder, and a single call to setBackground. The method createAndShowGUI
(in Fig. 6.36) has a call to setDefaultCloseOperation, while main (also in Fig. 6.36) has a call
to invokeLater. In summary, outside the core area we have 8 calls to add, 3 calls to setBorder, 2
calls to setBackground, and single calls to setDefaultCloseOperation and invokeLater.

6.6.3 Results - Success rates

Of 13 subjects who performed this task in the control condition, only 5 were successful and 8 were
not. On the other hand, all of the 12 subjects who performed this task in the experimental condition
were successful. Note that group sizes are unbalanced since one additional subject who was assigned to
perform this task in the experimental condition left the study early for personal reasons and did not even
start this task.

Once again I applied a Fisher’s exact test to test the independence of eMoose use and success,
rejecting the null hypothesis in each case. For this task, the difference in success rate was also significant
(p = .001). However, we must once again examine the behavior of subjects in detail to understand the
reasons for these differences and the impact of eMoose.

To understand the differences between subjects in each condition and outcome group, I created com-
prehensive logs of the time spent reading JavaDocs. For each element, I counted the total time spent on
that element as well as the number of times it was read, and this will be presented in the form ttt − nx
where ttt represents the time in seconds and n represents the number of reads.

Rather than present detailed timing data for every method and element in the program, most values
are aggregated into five categories. First, we distinguish between the reading of calls to methods outside
the current program, which will be reflected in our first four categories, and the reading of “other”
elements, including: fields, variables, classes, declarations, and methods within the program. In our
tables, all method names will be followed by parentheses. Second, we distinguish between elements
within the actionPerformedmethod, which we term “core”, and elements outside it (“other”). Finally,
we also distinguish between methods which are not decorated in the experimental condition, and those
that are, which we indicate with an asterisk after their name. We make this distinction to enable an
analysis of the impact of eMoose on this subset of methods. However, while we will discuss how subjects
in the control condition read these decorated methods, it is important to remember that these subjects do
not see these decorations.

In the tables presented below, our categories are: DecoratedCoreMethod and UndecoratedCoreMethod
for actionPerformed, DecoratedOtherMethod and UndecoratedOtherMethod for other locations, and Other
for non-methods (which will be broken into specific subtypes). In addition, details will be included for
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Figure 6.33: Folded code outline for the JLayeredPaneDemo class
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Figure 6.34: Source code of the constructor in the JLayeredPaneDemo class
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Figure 6.35: Source code of the createColoredLabel and createControlPanel methods in
the JLayeredPaneDemo class
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Figure 6.36: Source code of the createAndShowGUI and main methods in the JLayeredPaneDemo
class

200



every element in the actionPerformed method, and these numbers make up part of the aggregate
values in the above categories.

The complete timing data for successful controls are presented in Table 6.9, and for unsuccessful
ones in Table 6.10. Both tables are split into four parts. First, we present aggregate timing data for each
specific type of element in the “other” category. Second, we present the data for each of the method
categories. Third, we present the general statistics on reading time and work time seen in the previous
tasks. Finally, we present the detailed timing for every element in the core area. Methods calls in the
core area are followed by the parenthesis, and an asterisk indicates that they were decorated. Also note
that setLayer is included in this table, since it could be viewed in different ways.

6.6.4 Results - Control condition

Behavior of successful subjects

We begin by examining the behavior of the 4 successful control subjects for which we have data; the
recording for subject 15 was unfortunately corrupted, leaving us with a very small sample. The detailed
timing data for these subjects is presented in Table 6.9.

Table 6.9: Timing data for successful subjects in control condition of Swing 1

Successful subjects in the control condition spent about a third of their time, on average, read-
ing JavaDocs. An average of 44% of this read time was spent on the methods which would have been
decorated for eMoose users in the core area, and 33% on decorated methods in other areas. Less than
a quarter of the reading time is spent on undecorated methods, suggesting that the would-be decorated
methods somehow attract attention even without visible decorations. Very little time was spent on ele-
ments which were not methods.
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As we can see, subject S3 exhibited a very different behavior from his peers, having spent most of
his four minutes of work examining the code without actually inspecting anything. Then, with “surgical
precision”, he made a single read, that of putLayer, and fixed the problem. This subject was a Ph.D.
student with significant programming experience and his skill may be an outlier. Although he was not
very familiar with SWING, he appeared able to spot the actionPerformed method quickly, identify
that the relevant condition involves the list box, and apparently suspect that something was amiss in how
the icon was assigned to a label.

Our three other successful control subjects, S19, S23, and S26 took significantly more time and
made more reading actions, for a greater portion of their work time. Subject S23 spent almost all his
time on the decorated methods in the core area, and primarily on putLayer. He appeared to become
aware of the directive, but spent time investigating the alternative by reading its web-based JavaDocs.
Subject S26 got distracted by many decorated and undecorated methods and elements in the core area,
and spent significant amounts of time on getActionCommand and getSelectedIndex. He also spent
about 20 seconds on a completely unrelated method outside the core area, setMouseMotionListener.
Subject S19 realized the importance of actionPerformed and focused primarily on putLayer. Ear-
lier, however, he got bogged down for more than 3 minutes by the invokeLater method in main which
merely activates the main thread of the program.

Behavior of unsuccessful subjects

We now turn to the unsuccessful subjects in the control condition, whose detailed data is presented in
Table. 6.10, and try to understand what could have caused the failures.

Table 6.10: Timing data for unsuccessful subjects in control condition of Swing 1

Since success in this task depended on an awareness of the directive in putLayer, our attention turns
first to this method. Surprisingly, 7 of the 8 unsuccessful subjects actually examined this method, and 6
examined it for a significant amount of time (more than 24 seconds on average). In other words, unlike
our first task (the one based on JMS), the problem is not that subjects did not get to the documentation,
but rather that they did not benefit from it. While 24 seconds is about half the time spent by the successful
subjects, it should still have been sufficient to allow subjects to notice a directive that occupies most of
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the two lines of documentation (see Fig. 6.26).

Like their successful peers, unsuccessful subjects appeared to realize the importance of actionPerformed,
and spent relatively little time reading methods outside the core area, regardless of decoration status.
However, they spent significantly more time examining other calls and elements in the core area. Con-
sider the striking visual difference in the lower third of the table (“Core”) between the sparse access of
successful subjects (Fig. 6.9) and the dense access of unsuccessful ones (Fig. 6.10). Every unsuccessful
subject explored the majority of elements and calls in the core area; this accounts for the significant
amount of time spent on undecorated core methods, and on fields in the “other” category. It is quite
possible that the access to putLayer was “accidental” rather than intentional when subjects followed a
systematic or random examination of everything in the actionPerformed function.

When we examine the functions investigated within the core area, we see that most of the unsuccess-
ful subjects were distracted for a significant amount of time and multiple visits by one or two specific
functions, but the identity of these functions differs from subject to subject. For example, subjects S8
and S25 spent a lot of time on the undecorated moveToFront and moveToBack combo, which are
located in the other control path for actionPerformed. It is possible that these subjects did not
fully understand the structure of the action handler. Subjects S7 and S13 spent significant amounts
of time on setPosition, which presents a short but very perplexing documentation (Fig. 6.37). Sub-
jects S8, S11 were captivated by getSelectedIndex while subject S13 focused on isSelected.

Figure 6.37: Javadocs for the JLayeredPane.setPosition method with eMoose directives

Unlike successful subjects, however, unsuccessful ones spent significant amount of time examining
elements that are not calls, although most of these elements tended to be in actionPerformed. Much
of the time in the Other category (about 20 seconds on average) was spent examining fields, and some
time was spent on variables. Subjects appeared less interested in classes and constants.

6.6.5 Results - Experimental condition

All 12 subjects in the experimental condition were successful. We move to compare their behavior to
that of the 5 successful control subjects and the 8 unsuccessful ones.

Aggregate time comparisons

Before we dive into the detailed timing data, let us first compare some aggregate data between the three
groups. Tables 6.11 and 6.12 respectively present the proportion of reading time and the total reading
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time spent on average on each of the categories. The average is calculated for each subject group and
treats subjects who did not participate in a particular category as 0.

Table 6.11: Comparison of proportion of reading time in each category in first Swing task

Table 6.12: Comparison of total reading time in each category in first Swing task

As can be seen from the proportions table (Tab. 6.11), the behavior of subjects in the experimental
condition is more similar to that of their successful peers in the control condition than to that of the
unsuccessful ones. They spent most of their time reading decorated methods in the core area, and spent
relatively little time reading undecorated methods or elements in the “Other” category. Note that while
there is also an apparent similarity in the reading of decorated methods outside the core area, this may be
misleading as the average for successful controls is biased by a single subject who spent a lot of time on
such methods, while others barely spent any time. Therefore, only subjects in the experimental condition
spent a significant portion of their time on decorated methods outside the core area. This could indicate
a distraction caused by eMoose.

When we turn to the absolute times in Table. 6.12, we see that subjects in the experimental condition
actually spent a lot less time reading the decorated core methods than their peers in the control condition
regardless of success. They also spent significantly less time reading undecorated methods or elements
in the “other category”. The time spent on decorated calls outside the core area is actually not that high,
though still higher than for unsuccessful controls.

Detailed timing data

Now that we understand the major differences, it is time to examine the detailed timing data for subjects
in the experimental condition, presented in Table. 6.13.

As we have seen in the aggregate tables, subjects in the experimental condition spent very little time
with undecorated methods, leading to sparseness in the last four rows of the table.

Of the decorated methods in the core area, only putLayer was explored by everyone, and it ac-
counted for most of the time spent on the core area. However, awareness and understanding of the
directive in putLayer was not always immediate, as 7 of the 12 subjects needed more than one visit,
and two needed more than a minute of total time. Because so few of the subjects in the control condition
were successful, it is hard to determine whether they were slower or faster to identify the directive.

Interestingly, of the two other decorated methods in the core area, setPosition and getActionCommand,
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Table 6.13: Timing data for successful subjects in experimental condition of Swing 1

only the former was explored, and by only half the subjects. Something led everyone in the experimental
condition to avoid exploring the latter even though it was heavily explored in the control condition.

Investigation of decorated methods outside core area

This task was different from the other tasks in our study in that it involved the code of an entire pro-
gram, and thus offered ample opportunities for distraction. An important question is whether eMoose
users were distracted by decorated calls outside actionPerformed more than their peers in the control
condition.

The data shows that 8 of 12 subjects in the experimental condition explored at least one decorated
method outside the core area, compared to 4 of 12 controls. In that sense, more eMoose users were
distracted. We examine the specific methods to understand the source of the differences.

Outside of actionPerformed, there were a total of five distinct invoked methods which were
decorated (some were invoked multiple times). The method setBackground was explored by a sin-
gle eMoose user. The method setBorder was explored by two controls and three eMoose users. The
method setDefaultCloseOperation was briefly explored by a single control and two eMoose users.
The method invokeLater was explored for a long time by one control, and briefly by two eMoose
users. Finally, the add method (on various widget containers) was explored for moderately long periods
by a single control and four eMoose users.

The first four functions are clearly not related to the problem, and were generally explored for short
periods. While it seems that eMoose users were slightly more likely to read them, there is no clear
pattern. The last method add method received more attention and was clearly explored more frequently
by eMoose users, although they were still a minority from among the participants.

6.6.6 Discussion

Unlike the previous two tasks which involved short code segments, our third task more closely resembles
a real-world software maintenance problem. It involves a sizable and non-trivial code base which cannot
practically be approached with a systematic brute-force investigation. Identifying and isolating the bug
requires subjects to understand and map complex GUI behavior into actual source code statements.
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Explaining failure to notice directive in putLayer

The fact that all subjects were able to identify and focus on the relatively short actionPerformed
method is testimony to their ability to understand, at least superficially, the structure of the program and
its control flow. However, the low success rate (5 of 13) among controls is alarming, as it indicates that
even exposure to an explicit directive in a short JavaDoc does not guarantee absorption and understand-
ing. Unlike the first task where many subjects did not even find the relevant method or the second task
where the directive was hidden deep inside the text, the putLayer method was explored by almost ev-
eryone and the directive occupied most of its text. This leads us to question why eMoose users tended to
notice the directive while controls did not?

I suspect that the difference in the prospects of noticing and recognizing the importance of the direc-
tive in putLayer are related to the level of attention paid to that specific call.

As previously hinted, I suspect that the presence of a decoration lends the call an “aura” of impor-
tance. The fact that the directive is repeated via the lower pane may further increase this perception. In
this case, however, the text was actually somewhat misleading as it didn’t mention what the “desired side
effects” would be, requiring subjects to read the original text.

A more central factor, however, could be that the reading of other elements in the proximity of putLayer,
either systematically or randomly, reduced the attention paid to that method. In other words, by reading
so many JavaDocs in the actionPerformed area, unsuccessful controls may have been exposed to the
important directive in putLayer but failed to recognize it as a directive or as a more important issue
than the information they absorbed from the other elements. For example, a developer perplexed by the
complex definition of positions for setPosition could have failed to pay sufficient attention to the
issue of side effects. Since many controls investigated so many elements in actionPerformed, the the
reading of putLayer might have been “accidental”. I believe that developers may pay more attention to
a method’s documentation when it stands out among other calls and a conscious and deliberate decision
to explore it specifically is taken.

If the above conjectures are the explanation for the difference, then they may indicate additional
mechanisms of impact for eMoose beyond drawing subjects to a specific call and letting them quickly
identify its directives. First, the the presence of a decoration may increase the perceived reliability of
the information it conveys. Second, the absence of decorations on other methods indirectly increases the
attention given to decorated ones. While these effects are positive, they carry significant risks if the set
of tagged directives is incomplete or inaccurate.

Even if the above conjectures are correct and explain why the directive was not immediately apparent,
it is not clear why subjects did not identify it even after repeated readings. My impression from hearing
subjects subvocalize and from talking to them is that some focused only on the first sentence and did
not read beyond it. Others read the next sentence but did not necessarily connect the bug to refreshing
because they may have attributed it to a logic problem. When they decided that the side-effect issue was
not relevant, they may have stopped reading and never noticed the subsequent explicit instruction about
using setLayer.

Distraction in the control group

The behavior of subjects in the control group demonstrates that developers attempting to understand or
debug a program can be significantly distracted by methods even without the “help” of eMoose dec-
orations. The reasons for these distractions are not always clear though they seem to be associated a
perception that a particular call could conceivably be related to the error.

It is likely that in many cases subjects focused for long periods of time on seemingly unrelated
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methods simply because they misunderstood the mechanisms of the program or of the error. For ex-
ample, of the undecorated calls outside the core area, the one explored for the longest time was actu-
ally addMouseMotionListener. which was explored for about 20 seconds by two controls and two
subjects in the experimental condition. Even though the bug stems from an error in actionPerformed
which is invoked when the user interacts with the list boxes, it is only manifested when users move
the mouse,. This may have lead subjects to explore the point closest to the point of error. The next
most explored undecorated method, addActionListener, may have been explored when subjects be-
gan attributing the error to interaction with the list boxes, but before finding out that the handler is
in actionPerformed.

Of course, the amount of distraction and actual exploration choices may depend on familiarity with
the API. Experienced SWING developers are likely to be quite familiar with addActionListener, and
are less likely to investigate it.

Avoiding distraction in the eMoose group

One of the potential risks of using eMoose on large code bases is the that of significant distraction that
could be brought on by decorated methods. To confirm that such distractions exist, it is not enough to
show that eMoose users were spending significant time on decorated methods. Rather, it is necessary
to show that it happens more frequently than for subjects who were not exposed to the decorations.
Unfortunately, determining this is difficult with the limited sample size that we have.

As we have seen, subjects in the control condition spent significant time exploring everything in
the actionPerformed method, including undecorated methods but also many of the the decorated
methods such as setPosition and getActionCommand. Subjects in the experimental condition, on
the other hand, spent very little time on the undecorated methods, which would offset the cost of distrac-
tion by decorated methods. In addition, at least within actionPerformed they also spent less time on
the decorated methods except for putLayer.

It is also interesting that while many subjects in the experimental condition spent time on the per-
plexing setPosition method, nobody spent time on getActionCommand. This latter method was
used to obtain the identity of the UI widget with which the user interacted, and serves as the basis for
the switch statement. By not examining it despite the presence of decorations, subjects showed that they
were capable of applying discretion and an evaluation of a call’s potential relevance prior to making an
exploration decision.

Outside actionPerformed, we saw that eMoose users were slightly more likely to explore the
unrelated decorated methods. However, they seemed significantly more likely to explore add although
they were still a minority. This focus is perhaps not surprising because this method could conceivably
have been the source of the problem and is therefore an important avenue for exploration. As can be seen
in Fig. 6.38, its documentation states that changes may not be seen until the validate method is called.
While the implementation in this program merely reassigns the icon to a layer with putLayer, it could
have also changed the display by removing and reinserting the object. In fact, this directive is the basis
for our second SWING-based task.

Nevertheless, we see that subjects are not compelled to investigate every decorated call and were not
significantly more distracted than their peers. I believe that these results offer evidence that developers
can cope with a large number of decorated methods over large code ranges without having to explore all
of them.
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Figure 6.38: Javadocs for the Container.add method in AWT with eMoose directives

Examining non-methods

As we have found in the previous tasks, subjects spent significant amounts of time examining via the
hover mechanisms things that are not method calls and which may not have JavaDocs. This behavior
was quite noticeable in this task, but surprisingly affected mostly unsuccessful subjects in the control
condition.

One explanation is that these subjects might have realized the importance of actionPerformed,
and then systematically or randomly examined every element in it, even if that element was a field or a
constant.

However, I have also seen frequent examinations of elements outside this function. The fact that
such examinations focused on fields and variables suggests that the developers may have been trying to
use the debugger’s variable inspection feature. Note that unlike the previous tasks, where the use of the
debugger was prohibited to avoid pinpointing the exact point of failure in a small code section, subjects
in this task were allowed to run the program and even to use the debugger, as it does not directly reveal
the point of failure. Many subjects did so, placing breakpoints and using the hover to examine variables.

6.7 Second Swing Task

The first three tasks aimed to evaluate the decisions that developers make when confronted with decorated
methods in existing code. The fourth task aimed to investigate whether developers investigate and benefit
from the highlighting of newly-added calls. Recall that at present eMoose does not augment the code-
completion mechanism, so a developer is made aware of a directive in a newly-added call via a decoration
that appears several seconds after its addition.

This task builds upon the code base from the previous SWING task, and asked subjects to write the
code for an empty function. My expectation was that in doing so they will make use of the add method,
whose documentation appears in Fig. 6.38, and fail to become aware of the need to call validate to
obtain a refresh behavior.

Unfortunately, subjects who were not previously familiar with SWING struggled to write new code
using this API, and in many cases did not even make the call to add. In addition, there was a risk that
some subjects would have encountered this call while working on the first SWING tasks, or that they
would already be familiar with it if they had SWING experience. As a result, halfway through the study I
decided to scrap this task. I leave here the description of the task since it could be useful if the experiment
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is ever carried out with more experienced SWING developers.

6.7.1 Directive for this task

The fourth directive comes from the standard Container class in AWT, and is thus inherited by SWING’s Component, JPanel,
and JLayeredPane. Objects are added to containers and components using the add method and re-
moved using the remove method. As can be seen in the documentation in Fig. 6.38, these methods
indicate that to cause the actual refresh, one must explicitly call validate. Failure to do so may cause
actions to have no visible effects until something else, such as a window resize, causes the container to
be repainted.

6.7.2 Task Description

The codebase for this task has been modified from the official LayeredPaneDemo class used in the pre-
vious task. The new class, called LayeredPaneDemoDual now contains two layered panes that appear
in a vertical order below the control panel. They are assigned to the fields topPane and a bottomPane.
In the top pane, the Duke icon always appears “on top” of the current layer, as if the checkbox is checked.
In the bottom pane, he appears below everything in the current layer, as if the checkbox is unchecked.

The revised control panel no longer includes the checkbox. Instead, there are three new checkboxes.
The first two boxes controls whether each of the panes appears. The third box controls whether the entire
control pane appears before (higher than) the layered panes or below it. By interacting with these boxes,
users should be able to hide one or both of the panes, and move the control panel if at least one pane
is visible. However, that functionality is not implemented, and the event handler simply calls a function
that is supposed to update the view. The subjects are taken to this function, which has an empty body,
and asked to implement it.

A straightforward way to implement this function in about 10 lines of code is to first remove all
components, then add them in the appropriate order based on the checkboxes, calling validate at the
end. Users were expected to write the code but probably miss the call to validate, leading to failures
that they would fix by immediately or eventually investigating add. My plans were to measure the time
until this was noticed. Unfortunately, users who were not familiar with SWING did not attempt a removal
and addition based solution. Rather, most looked for a solution that involved reordering the elements, or
changing the visibility.

6.8 First Collections Task

Liskov’s principle of substitution [59, 66] states that the behavior of a subtype must conform to that
of the supertype so that it can safely be used in its place. For example, if a method can operate on a
certain parameter value, any overriding version should do the same, although it could potentially support
additional values. Unfortunately, substantial conformance violations exist even in well-respected APIS.
In addition, some overridden versions may not be violating their contract in the strict sense, but may
introduce caveats such as performance issues or side effects. A difference in implementation may be
accompanied by different documentation, and thus a different set of directives.

One of the goals of this study was to evaluate the directive awareness challenges presented by poly-
morphic code in which the documentation of an overriding version of a method conflicts with the over-
ridden. The goal of the first collections task is to examine the developers’ ability to become aware of
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a conflicting directive when they do not expect it, and the second task will examine this when they do.
This behavior will then be compared to that of eMoose users.

The challenges of directive awareness in polymorphism

Before turning to the task, it is important to understand the nature of the challenge to directive awareness
presented by polymorphic code.

In JAVA, the documentation of a method is inherited by an overriding versions unless it specifes its
own version. In the same way that the code of an overriding method can violate the behavior of the
overridden, the documentation of an overridden method can conflict with that of the overridden, or even
just add to it.

In most IDEs, however, the documentation presented via the hover mechanism corresponds to the
static (declared) type of the object on which the method is invoked. In such situations, a developer
confronted with a call to a method which can be overridden will explicitly have to seek the documentation
of that version. As described below, doing so in a consistent manner can be a tedious and time-consuming
process.

First, the developer must become aware of the fact that the variable on which the call is invoked,
and which is declared with a certain static type, may contain a different dynamic type at runtime. While
this is trivial for very familiar types like standard JAVA collections, in many cases the developer may
explicitly need to check the static type by hovering over it or examining its declaration. If the declared
type is an interface or an abstract class (which cannot be instantiated), then it is clear that at runtime the
variable will contain a different concrete dynamic type. The greatest challenge, however, is when the
type is concrete but could potentially be subtyped and its methods overridden. In those situations, the
dynamic type could be identical to the static type, but there is a chance that it is not.

Once the developer has become aware of the possibility of different dynamic types, he must identify
all of them. The Eclipse IDE offers a convenient tree presentation for the subtypes of a given type;
however, this tree can contain duplicates. While JAVA does not support multiple inheritance of classes, it
allows a class to implement multiple interfaces. Thus, while class hierarchies have the shape of a tree, the
typing graph has a lattice structure. The developer must examine the entire tree and identify duplicates.
Another option is to use the subtypes list in the JavaDoc, but this list is not transitive, thus requiring a
tedious scan of the lattice. In any case, once the set of subtypes have been collected, it must be further
filtered to contain only concrete types which can actually be instantiated as the dynamic type.

Once all possible dynamic types have been identified, one must proceed to identify the exact version
of the method that would be invoked for each of them. If the method is defined in that specific type, then
this is straightforward since it is now the “lowest overriding version”. Otherwise, however, one must
trace up the lattice following class inheritance nodes until an overriding versions is found.

It is important to note that while given a dynamic type it is always possible to determine which version
of the method would be invoked, there are situations where it is not clear which documentation should
apply. One of the reasons that JAVA, unlike C ++, forbids multiple inheritance of classes is to avoid
the difficulties in determining what code should execute when the inheritance takes a diamond form or
simply when the method is inherited from two parents. With interfaces there is no such problem because
they consist only of method declarations rather than actual definitions. However, since interface methods
are documented, it is possible for a method to inherit several versions with conflicting documentation,
with no way to determine which one should apply.
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6.8.1 API and directive for this task

To evaluate directive awareness, I chose to have subjects work against a very familiar static type but
with a less-familiar subtype that presents conflicting directives. As the static type, I chose to use
the Collection interface from the java.util package of the standard library. This interface is the
base for all specific collection types in the standard libraries and in supporting collections libraries such
as the apache-collections library.

Despite its central status in the language, the collections framework contains conformance violations
that are very familiar to most programmers. For example, the interfaces set and map have add and put
methods that can potentially accept everything. However, if the chosen implementation is a TreeSet

or TreeMap, and the added object does not implement the Comparable interface, an exception will be
thrown at runtime, a clear conformance violation. To prepare subjects for these sort of violations, I used
this example during the initial eMoose tutorial, and showed how eMoose will present the decoration and
the directives for the overriding version.

Two characteristics that can be used to broadly distinguish between collections are the handling of
element ordering and of duplicates. For example, a linked list or array preserves order and duplicates,
while a set keeps neither.

Our task is focused specifically on two methods: containsAll and retainAll. Both are invoked
on a collection (to which we shall refer as the left-hand-side LHS) and receive a second collection (the
right-hand-side RHS). As can be seen in Fig. 6.39, containsAll returns true if LHS contains all of the
elements in RHS. As can be seen in Fig. 6.40, retainAll removes all elements from LHS that are not
contained in RHS.

Figure 6.39: Javadocs for the Collection.containsAll in standard JAVA library

Figure 6.40: Javadocs for the Collection.retainAll in standard JAVA library

Interestingly, the documentation of neither of these functions states how cardinality (the number of
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copies of identical objects) is treated. For example, if one collection contains X instances of an object
and the other contains Y , what constitutes containment and how many are retained?

All collections in the standard library extend the abstract AbstractCollection class, which in-
cludes the implementation of many higher-level convenience methods. As a result, the implementations
in AbstractCollection can be considered as the default behavior of the Collection interface. The
implementations of containsAll and retainsAll in AbstractCollection provide a different
documentation from that of Collection and directly address cardinality.

The documentation of containsAll in AbstractCollection states:

Returns true if this collection contains all of the elements in the specified collection. This
implementation iterates over the specified collection, checking each element returned by the
iterator in turn to see if it’s contained in this collection. If all elements are so contained true
is returned, otherwise false.

In other words, the default behavior is that every element in RHS is separately checked against LHS.
Thus, if every unique element in RHS has at least one copy in LHS, containment exists.

The documentation of retainAll in AbstractCollection states:

Retains only the elements in this collection that are contained in the specified collection
(optional operation). In other words, removes from this collection all of its elements that are
not contained in the specified collection.

This implementation iterates over this collection, checking each element returned by the
iterator in turn to see if it’s contained in the specified collection. If it’s not so contained, it’s
removed from this collection with the iterator’s remove method.

Note that this implementation will throw an UnsupportedOperationException if the iterator
returned by the iterator method does not implement the remove method and this collection
contains one or more elements not present in the specified collection.

In other words, the default behavior is that every element in LHS is separately checked against RHS and
if it does not exist at least once in RHS it will be removed.

The above behaviors are followed by all collections in the standard JAVA library. Because the breadth
of this library is limited, many projects in the Apache foundation make use of a project called Apache

Commons, which includes a smaller library called apache-collections. The Apache Commons libraries
are widely used by developers. Among the many collections in apache-collections is a collection repre-
senting a Bag data structure. A bag is a collection that respects cardinality but ignores order. In other
words, it counts the number of instances for each element.

Because Bag is an interface rather than a class, it does not extend AbstractCollection but rather
directly extends the Collection interface. Its class documentation states:

NOTE: This interface violates the Collection contract. The behavior specified in many of
these methods is not the same as the behavior specified by Collection. The noncompliant
methods are clearly marked with "(Violation)". Exercise caution when using a bag as a
Collection. This violation resulted from the original specification of this interface. In an
ideal world, the interface would be changed to fix the problems, however it has been decided
to maintain backwards compatibility instead.

While this decision is understandable, it would not be known to users who do not explicitly choose
to investigate the interface and could have unexpected consequences. Indeed, as can be seen in Fig. 6.41,
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the containsAll method of Bag does respect cardinality. Its documentation states that if LHS is a bag
(and thus this method is activated), and RHS contains n copies of some value x, then the bag must contain
at least n copies too for containsAll to be true. Note that this is not symmetric, since if containsAll
is invoked on another type of collection and passed a Bag, the version from AbstractCollection will
be invoked. The documentation also explicitly states that this violates the description from Collection

which does respect cardinality. This is actually an error, since this is only specified in AbstractCollection.

Figure 6.41: Javadocs for the Bag.containsAll in apache-collections

The description for retainAll, shown in Fig. 6.42 is similar. Cardinality is respected once again,
meaning that if the LHS bag has more copies of an element than the RHS collection, the difference will
be eliminated.

Figure 6.42: Javadocs for the Bag.retainAll in apache-collections

The difference in treating cardinality raises the risk of program error. If the user owns a refer-
ence to a Collection object that actually contains a Bag, the results of invoking containsAll

and retainAll can therefore be unexpected.

For instance, suppose that we have a bag containing two copies of x, a list containing three copies
of x, and a set containing a single instance of x. Calls on collections that are not the bag, such as
list.containsAll(bag) or list.containsAll(set), will return true since every object in the
bag or set appears at least once in the LHS collection. Similarly, calls to retainAll would not change
the LHS collection since there is at least one instance of every value.

However, if the LHS is the bag, things are different. The call bag.containsAll(set) would
return true since the bag would have more instances of x than the set. On the other hand, the call
to bag.containsAll(list) would return false since it has fewer instances of X. Similarly, the
call bag.retainAll(set) would actually remove one copy of x from the bag since there are fewer
copies in the set.

As directives for this task, I chose the warnings about cardinality in the overriding version of containsAll
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and retainAll in Bag. This directive is difficult to classify, but can be thought of as a limitation since
it informs users that the behavior in certain cases may not conform to expectations.

6.8.2 Task Description

Unlike previous tasks in this study which used existing sample code, the code base for this task was
created from scratch with a goal of placing subjects in the situation where an awareness and exploration
of the subtype would be necessary.

Figure 6.43: Source code for first collections task

Fig. 6.43 presents the entire code file used in this task. The code defines two constants: SIZE, which
is made to be very large, and RANGE, which is meant to be smaller by an order of magnitude. The setUp
function initializes the collections array field with a group of newly created collections. It then
randomizes SIZE numbers, each within RANGE, and adds them using the add method to each collection.
Note that since the range is smaller than the size, the existence of duplicates is guaranteed.

The collections themselves are a blend of very familiar ones (HashSet and Vector) and less familiar
ones. PriorityBuffer is essentially a heap implementation from apache-collections. A TreeList

is an apache-collections list that has fast insertions and removals. A HashBag is an implementation of
the Bag interface, and uses hashing to look up specific values.
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The heart of the code is the testMutualRetainment function. This function essentially runs over
every permutation of two of the collections. In each iteration, it checks whether both contain each other.
It then calls retainAll on both in both directions, and runs the assert again. Subjects are told that this
fails, and are asked to find why without using the debugger. Note that they are only asked to demonstrate
the mechanism of failure, not to actually fix it.

Under the standard collection contract (or more correctly, under that of AbstractColllection),
cardinality is ignored. Since the same value was added to every collection and appears in it at least
one, calls to containsAll should always return true, and calls to retainAll should never change the
collections. What breaks this, however, is the presence of the bag. At some point, the bag will serve as
LHS while the set would be RHS, so there will be some value that appears more than once in the bag.
When we call retainAll, the implementation in bag would remove all but one instance of that value
from the bag, making it identical to the set. Later on, when we run containsAll of the bag as LHS and
one of the other structures as the RHS, the bag would have less instances of the value than RHS, and the
call would return false, leading to a failure of the first assertion statement.

Goals

This task is different from previous one in that we are not comparing the success rates between subjects.
I do not necessarily expect subjects to successfully solve this problem and identify the bug, since the
error mechanism is complex. Rather, my goal is mainly to observe how subjects in the control condition
would handle a situation where they observe an unexpected behavior. Specifically, I seek to determine
whether these subjects would explore possible overriding versions, and whether they would be successful
in identifying the directives for containsAll and retainAll in Bag.

Since I am only checking whether subjects became aware of these directives, I will not be analyzing
the behavior of eMoose users, as they were exposed to the directive as soon as they hovered over the calls
to containsAll and retainAll.

6.8.3 Results

Twelve subjects attempted to perform this task in the control condition: S1, S5, S6, S8, S11, S13, S15,
S16, S17, S23, S24, and S25. Of these twelve, only one subject, S6, fully succeeded in completing the
task and identifying the exact scenario of failure.

The focus, however, is not on success in the task, but rather on awareness of the directive. How many
subjects were exposed to the documentation of containsAll or retainAll in the control condition?

To answer this question and better understand the actions of the subjects, I created transcripts,
counted the time spent on different elements, and aggregated it. Unfortunately, three recordings were
corrupted: S1, S24 and S25. This leaves us with 8 unsuccessful subjects and one successful subject.

The tabulations are presented in Table. 6.14. They are organized into three groups: Elements that
are present in the setup function and whose documentation can be read through it, elements that are
present and readable via the TestMutualRetainment function, and elements that are not present in the
original source code. To assist the reader, the table highlights in bold fonts every element whose reading
required more than a simple hover in the existing code.

The first question that we have to ask is how many subjects explored the web-based documentation.
It turns out that all but subject S13 used the web based JavaDocs, even though the same information
could be accessed via the IDE.

A second question is whether those who utilized the web-based based documentation examined any
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Table 6.14: Timing data for controls in first collections task
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of the subtypes of the collections listed in the code, as this may indicate that they might have been
considering an overridden version. With the exception of subject S8, who only used the web-based doc-
umentation for the Collection interface, this was generally the case. Specifically, subject S5 spent 14
seconds on TreeBag, one of the concrete implementations of the Bag interface, to which he got almost
randomly when looking at the list of classes in the environment. He did not examine Bag. Similarly,
subject S23 spent 18 seconds exploring AbstractMapBag, which is another subtype of Bag, but did not
explore Bag. Subject S17 devoted his attention to AbstractCollection, the topmost base class for
all collections. Interestingly, this class is the only one which lists the standard policy about cardinality
in the collections framework, as the methods in the interface do not. All other subjects, S6, S11,S16
and S25, explored at least one location related to the Bag interface, although S11 merely explored the
package.

This finally brings us to the Bag interface. Only three of the nine subjects for which we have data
were exposed to either containsAll or retainAll in Bag and thus had a chance of becoming aware
of the directive. If we treat such exposure as our measure of success, then we have a 33% success rate.
Subject S6, who was the only one to actually identify the problem, spent relatively little time (about 5
seconds) on retainAll) but spent nearly 30 seconds on the introduction text for the Bag class, which
details the cardinality issue in depth.

It is interesting that not all subjects examined containsAll and retainAll on the Collection
class in the given code. Subject S13 examined retainAll but not containsAll, while subject S16
(who did explore Bag) and S23 explored containsAll but not retainAll. Most notably, subject S25
did not explore either in Collection but spent considerable time on Bag.

6.8.4 Discussion

The results above, although based on a limited sample of 9 controls, show that developers face diffi-
culties in becoming aware of directives in overridden methods. This task was built in such a way that
the subjects would essentially be examining calls on a single interface for which they know that many
implementations exist. They should therefore suspect that inconsistencies may be due to inheritance.
Nevertheless, some subjects did not appear to consider this possibility, while others faced challenges in
searching for potential conflicts. I argue that in a situation where subjects are not expected to focus on a
single call, the chances of becoming aware of a conflict might be even lower.

The fact that many subjects turned to the web based documentation and explored subtypes shows that
at least in this case they were willing to invest time in the search, although the search was not necessarily
fruitful. Since the failure was attributed to a higher type than the concrete object instantiated in the
program, subjects searched for the relevant types, and sometimes headed in the wrong directions.

The fact that subjects relied on web-based documentation suggests that current support via the IDE is
lacking when supporting the exploration of documentation that is not directly associated with code entity.
Eclipse, for example, offers a separate Java browsing perspectvie that can be used to investigate types
and methods, but that involves a significant shift of the user interface. Options are more limited from
within the standard JAVA perspective. While Eclipse offers a way to browse the type hierarchy and the
declared methods of a class, to see the documentation one must typically click a method to open its
source code.

It is important to note though that the process of using the web-based documentation was far from
efficient. Even when subjects knew exactly what they were looking for, they had to navigate several
clicks to find the relevant package or class, and then to the relevant type and eventually the function.
They frequently followed hyperlinks, which can lead to disorientation. It was extremely easy for them to
get distracted by other types and methods, and to scroll around until they found the relevant materials.
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The last task, to which we now turn, focused on the effectiveness by which developers find directives
in subtypes when they are expecting them.

Before we proceed, however, we briefly note that all subjects performing this task in the experimental
investigated either containsAll or retainAll, and were therefore exposed to the relevant directives.
However, such exposure did not always translate to success in the task. Nevertheless, it had made all
subjects aware of the fact that there is a violation in the subtype.

6.9 Second Collections Task

Our second collections task, the last task in this study, is less focused on awareness and more focused on
exploration. As we described earlier, the process of identifying all the overriding versions of a method
and specifically those that contain conflicting directives could be tedious. eMoose may have an impact
on this process thanks to the augmented JavaDoc hover, which presents directives from a variety of
overriding methods. To this end, subjects were presented with code similar to that of the first task,
in which they were made aware of the existence of conflicting overriding versions. Their role was to
identify the relevant directives that explain the errors. Controls had to cope with complex hierarchies of
inheritance and interfaces. eMoose users, on the other hand, were presented with the correct directives
but also with directives for unrelated types.

6.9.1 Directive for this task

Our directive for this task comes from the put method that is supported by collections that extend or
implement the Map interface. The documentation for this method is presented in Fig. 6.44, as it was
revealed to subjects in the study who used eMoose.

Recall that during the introduction of the study and the eMoose tutorial, subjects were reminded that
the standard TreeMap implementation can fail if the passed key does not implement the Comparable
interface. However, violations are possible in other less familiar maps, including those in apache-
collections.

Figure 6.44: Javadocs for the Map.put in the standard JAVA library

For our first overriding version, we picked the version of put from the bidirectional mapping class BidiMap.
Its documentation (Fig. 6.45) states that adding a new mapping from a key to a certain object that is al-
ready part of a different mapping (from another key), would eliminate the original mapping. We consider
this as an informative side effect directive.

We also picked a directive from DoubleOrderedMap, which manages a mapping using a red-black
tree, and requires that all keys and values be unique. Its documentation (Fig. 6.46) states that an exception
will be thrown if the key or value are already in the mapping. This is clearly a parameter directive.
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Figure 6.45: Javadocs for the BidiMap.put in the standard JAVA library

Figure 6.46: Javadocs for the DoubleOrderedMap.put in the standard JAVA library
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6.9.2 Task description

Subjects are presented with the source code of Fig. 6.47. Once again, a size constant is defined and so
is a range constant of a lower magnitude. This time, the array of collections is replaced by an array of
maps. In addition, two separate arrays are declared - one for labels, and one for numbers.

The setUp method begins by allocating six maps into the array. It then allocates SIZE slots in the
labels and numbers array. In a loop of size SIZE, a new number is randomly generated in RANGE during
every iteration and is assigned to the corresponding slot in the numbers array. A label describing the
iteration number is similarly assigned to the labels array. Thus, we have an array of distinct labels but of
values with guaranteed duplicates.

The actual method testMapPopulation iterates over all the maps in the collection, operating on
each separately. For each, it goes over the array and adds using the put method a mapping from the
corresponding label to the corresponding value. Then, a second loop iterates again over the array and
asserts that each label is mapped to the appropriate value.

Subjects are explicitly asked to identify two of the maps for whom the iteration would fail, and to
offer evidence or demonstrate why.

This program will fail for the bidirectional map since when a mapping is added to a value that already
has a key mapped to it, the first mapping is removed so that the original key is no longer mapped at that
value. The program will also fail for the double ordered map as it does not support duplicates.

6.9.3 Results

As with the previous collections class, we are only interested in the performance of controls. Subjects in
the experimental group who hover over the problematic call are presented with a hover that includes the
directives for all overriding versions of the method, including the ones that constitute the answer. The
challenge for eMoose users is therefore minimal, and all of them were unsurprisingly successful within
a relatively short time.

The behavior of controls, however, can provide valuable insight on how developers access the docu-
mentation of subtypes. Since hovering over put merely provides the general documentation of the Map
interface, they have no choice but to investigate the documentation of subtypes. They can do so via code,
web, or IDE operations, but could become entangled in the complex hierarchy of JAVA collections.

Of the 13 subjects in the control condition, 8 were able to find both the problem in DoubleOrderedMap
(“DOM”) and the one in DualTreeBidiMap (“BIDI”). Three others found only the problem in DoubleOrderedMap,
and one did not find either. The timing data for all controls is presented in Table. 6.15. For each class, the
table presents the time spent on specific methods (if any), and the time spent on everything else (labeled
as “any”). For locations that were visited multiple time, the count appears after the total time in seconds.
Note that the recording for subject S22 was corrupted.

Interestingly, while all subjects used the JavaDoc hover for investigating calls on the Map, all but
one used the web-based JavaDocs to investigate the subtypes. The only exception is S7, who explored
source code directly in the IDE, and stuck to the concrete classes instantiated in the main code, without
exploring any of their supertypes.

We also see that all subjects explored both DoubleOrderedMap, which constituted one solution to
the problem. All but two (S15, S26) examined DualTreeBidiMap, the former finding the solution
from the supertype AbstractTreeBidiMap and the latter guessing the solution and the issue from the
problem in DoubleOrderedMap without looking for confirmation.
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Figure 6.47: Source code for second collections task
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Table 6.15: Timing data for the control condition of the second collections task

While subjects could reasonably suspect that the error occurred during the call to put, quite a few of
them (S7, S10, S12, S14, S18, S26) never specifically investigated the documentation of any overriding
versions. Two more subjects (S2, S3) only explored the put method of one of the methods. Instead, a
lot of time was spent looking at classes in general and their documentation, and at other methods (such
as containsKey), Many found the solution from the very verbose class-level documentation, which
described how the underlying data structure worked and thus its limitations.

It is also interesting that most subjects visited supertypes and superinterfaces of the conrete types
instantiated in the test program. For example, the BidiMap interface was explored by 4 subjects, and 4
more explored its implementing class AbstractDualBidiMap. One of these explored AbstractTreeBidiMap,
and another explored OrderedBidiMap. My impression from watching the recordings is that subjects
sometimes became disoriented, especially when a link led them to an unexpected location in an unfamil-
iar hierarchy.

Subjects also spent significant time on types of maps that did not convey the answer to the problem.
In particular, Almost everyone explored MultiHashMap for at least 30 seconds, and many explored
its supertypes including the standard HashMap that is familiar to most programmers for longer periods.
The ListOrderedMap class was explored for around a minute by many of the subjects as well.

6.9.4 Discussion

This task was fundamentally different from the previous one in that this time subjects were aware that
a problem resulted from an issue in an overriding version of a method, and only had to find the specific
version and the problem. The results from the control group suggest that while most subjects were
eventually able to do so within the allotted time, the process was tedious and risky.
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The most perplexing facet of the subjects’ behavior was the avoidance of the put method. A logical
approach to solving this problem would have been to systematically examine each of the instantiated
map types, investigate its put method, and see if it yields the answer; If necessary, supertypes could be
investigated as well. In fact, this is the strategy taken by most subjects in the experimental condition:
they hovered over put, and systematically examined the directive for every overriding version. Instead,
subjects divided their time on these classes between scrolling through method lists and occasionally
investigating specific ones, and reading the class header documentation. For many of these classes, this
header text spanned more than a page, raising the risk that the important details would not be noticed.

A more general finding, however, is that almost all subjects chose to leave the IDE and use the web-
based documentation, something they had not done much in the previous tasks. This suggests that there
are shortcomings to current IDE support for the exploration of overriding versions.

The closest mechanism in Eclipse which could have been of utility to our subjects is the context-
sensitive type hierarchy. When selecting a method, a key combination or menu selection brings a
lightweight window with a tree-view of subtypes that override that method. Subjects could have done
this for put, and then searched for the specific subtypes to open their source code, which would include
the JavaDocs. It is not clear why none of the subjects attempted to use this mechanism, even though
some were quite versed in using Eclipse. One possibility is that they wanted to avoid the source code.
After all, all but one avoided directly opening the sources of the classes instantiated in the main code. I
believe that it may be useful for the type window to provide means to examine the JavaDocs of the target
without require an opening of the source code.

My impression from watching the subjects’ work is that they also had trouble grasping the complex
hierarchy of the map types and sometimes became disoriented. They would often click on a link and end
up in a different class, without an understanding of its relation and place in the hierarchy. While JAVA

supports only single inheritance, the use of interfaces results in complex multiple-supertype hierarchies.
The HTML based presentation in a JavaDoc file and the tree-based viewers in the IDE are both designed
around single inheritance and thus a single supertype. I argue that this limits their utility in understanding
classes within complex hierarchies.

Furthermore, it also appears that the structure of web-based JavaDocs, which separates the set of
inherited methods from the set of newly declared or overridden methods leads to confusion. Developers
who wish to understand a concrete class as a single cohesive API element need to deal with a seemingly
artificial division of the methods based on an implementation detail - whether they are inherited and
overridden. This separation makes it difficult to find methods or understand what is actually supported.
In addition, the inherited methods are presented in a visually condensed form that makes a search even
more difficult.

6.10 Additional general findings

This section presents and discusses general results and behaviors that we observed in our study across
multiple tasks. We note that further studies are necessary to determine whether these occur in everyday
development.

6.10.1 Repeated readings

A common phenomenon that we observed in the behavior of most subjects across multiple tasks was the
repeated hovering over elements whose JavaDocs have been presented and presumably read one or more
times.
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While it is conceivable that this represents a memory failure or a limit on the developer’s memory, we
suspect that this is not the case. First, this behavior often involved very short JavaDocs whose contents
can be easily memorized, or that do not provide much information beyond that conveyed in the signature.
Second, these repeated readings often took place not long after a previous read of that method, making
memory loss less likely. Third, this phenomenon also applied to code elements that were not function
calls, such as fields or variables (an issue that we discuss later). Therefore, we suspect that this behavior
is often not related to a limit on knowledge absorption and memorization, but rather to another issue.

A possible interpretation is that the hover over a call or an element so that its JavaDocs are displayed
serves as visual means to support orientation. When the developer wants to make the mental shift in focus
from one element to another, he may hover over it until its documentation is presented as a reinforcement
of the explicit delay involved in the shifting. Once the documentation is open, it may be kept open while
the developer is reflecting but without necessarily being read.

We also suspect that hover actions, and in particular repeated ones, often serve a similar role to
the use of the mouse and selections to provide reinforcement and orientation, as we later discuss. In
other words, it is possible that the visual presence of the mouse pointer over the call serves to orient the
developer to the current point of focus. The appearance of the hover then frees the mouse to travel to
another location, with the hover staying open for a few seconds as reinforcement.

In the case of longer JavaDocs, developers did seem to often read materials they have previously read,
as evidenced by mouse motions, selections and vocalization within the text. We suspect that such repeat
readings may not simply be a result of a subject forgetting previously-read text, but rather represent a re-
sult of a shift in focus. Our impression was that subjects often followed a theory-driven exploration [75]:
they read a particular JavaDoc or a sentence within it with a particular theory in mind. Even though they
may have absorbed the entire text, they may have been thinking about it in terms of their theory at the
time, leading them to pay less attention and not notice other clauses. This behavior may have caused
them to miss certain directives in early readings. However, as their theories and goals changed, they
might have conducted a repeat visit in which everything was reinterpreted. This reinterpretation, or just
random chance or a lack of specific goal would have lead to an eventual discovery of the directive.

6.10.2 Hovering over non-call elements

A related behavior which we found surprising and which consumed significant amount of time for
most subjects in most tasks was the use of the hover mechanism for elements that do not have asso-
ciated JavaDocs. Specifically, subjects often examined variables and fields, and often did so repeatedly.
Outside the debug mode, which was only permitted in the SWING task, such actions carry very little
reward. They only present the type of the object, which can often be determined from the signature,
rather than any actual value or useful information.

One possibility is that this behavior serves purposes of orientation as described above. After all, if
the subject is aware from previous visits that no information at all will be displayed, then repeated visits
would be indicative of a completely different goal that does not involve information consumption, such
as orientation.

Nevertheless, since such unproductive behavior is so frequent, and seemed to increase when subjects
were becoming “desperate”, we suspect that it may also be indicative of a serious need for certain infor-
mation on these data members and variables. In situations where a failing execution was demonstrated,
subjects may have sought the values of these variables at run time, to understand the data flow in the
program. This could have been made more severe by the lack of access to the debugger, although such
behavior was also present in the SWING task in which debugger use was prevalent.
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A particularly interesting possibility is that rather than seeking the value of the variable or the field,
what the subjects were actually trying to do is to find information about the role and purpose of the
variable. Such details are rarely documented in detail, and especially not with the commenting con-
vention that is reflected as JavaDocs. This may indicate a greater need for developers to provide more
information about the variables and data flow as comments in their code.

6.10.3 Use of the autocomplete mechanism

Another common behavior that we have encountered was the use of the autocomplete mechanism to
identify all the methods supported by a given object. To accomplish this, developers would create a
separate line with the variable, add a dot, and obtain the list, or they would eliminate the dot in an
existing call and add it again, so that the text is presented.

Clearly, subjects often faced the need to explore all the methods supported by a class, and in particular
alternatives to the existing calls. Unfortunately, the autocomplete list is a poor mechanism as it requires a
lot of scrolling, is always sorted alphabetically, and requires actual keystrokes before the documentation
of the alternative targets are presented.

We note that the use of the web-based documentation offers more screen real estate and a summary
documentation for each method, but it has its faults. First, it requires a costly transition to the web
browser, with costs of reorientation on return to the IDE. Many subjects appeared reluctant to make this
transition frequently. Second, the web-based documentation is organized by class, making it difficult
to see the signatures of inherited and implemented methods. The autocomplete list, on the other hand,
displays all methods supported by the class regardless of their origins.

While the exploration of alternatives was unproductive in most tasks and often lead to distraction, it
was of course the core of the SWING task. It appears that some subjects thought that they needed to add
or change calls and so began exploring alternatives. They particularly focused on overloaded versions of
the original method or on ones with similar names, such as receiveNoWait instead of receive.

I believe that the documentation of a method that has strongly-related overloads or alternatives should
list these alternatives in its own documentation, so that developers can recognize and understand the
differences and make an informed decision. More generally, I suspect that there may be a benefit to
organizing the methods of a class in a semantically meaningful way such as the involved parts of the
state [27]

In general tasks and when learning APIS, however, the ability to understand the “recipes” to ac-
complish specific goals is important, and various approaches exist to support this [31, 35]. Recent re-
search [81] suggests that developers may need “placeholders” to aim them at specific ways to accomplish
certain goals.

6.10.4 Use of mouse for highlighting

An almost universal behavior in our study was the use of the mouse pointer, text selection, or subvocal-
ization to indicate the current location in code or documentation. These activities seemed to help subjects
reinforce their short term memory. When they had to temporarily switch to another artifact, it took them
some time to become reoriented.

Present IDE support [47] uses activity history to identify recently visited files and methods. However,
if the above behaviors are universal, it may also be beneficial to track activity and present cues within
the editor and JavaDoc hover. For example, selected or explored code or JavaDoc text would be shaded
differently from the rest of the text, and would gradually return to its original shade as time passed.

225



Developers may also benefit from the ability to create short term annotations to indicate, for example,
that a certain artifact has been explored or that a clause has been eliminated. Some sort of “instant replay”
mechanism may also help facilitate reorientation.

6.10.5 Ordering and learning effects

One of the goals in designing the study was to minimize the potential for a “learning effect”, where real-
izing the importance of directives in an early task would lead to a more careful scrutiny in the subsequent
tasks. To achieve this, we had all subjects carry out the tasks in the same order. We also placed the
three debugging tasks at the beginning of the study, to minimize the effect that could build up, as the
later tasks exposed subjects to completely different problems. In addition, the second task require sub-
stantially different methods than the first - a careful reading of a long text over making the right reading
choices.

Nevertheless, one place where learning effects could have potentially taken place was between the
first and third tasks. Both tasks required identifying a directive in the second sentence of a short JavaDoc,
and were also always carried out in the same mode - with or without eMoose. The low success rates
among controls in the third task suggests that being aware of the importance of careful reading is not
necessarily sufficient for success. A large number of potential exploration targets still appears to wear
down developers and lead them to miss directives.

6.11 Exit Survey

After completing all tasks, subjects were asked to fill an exit questionnaire covering topics such: their im-
pressions of eMoose, opinions about possible extensions, and their programming practices. The anony-
mous questionnaire involved ranking 27 statements on an integer Likert scale between −3 (strongly
disagree) and +3 (strongly agree), though no textual labels were provided for the interim values.

The goal of this survey was to obtain some measurement of how the subjects perceived the problem
of directive awareness, whether they considered the approach of eMoose to be effective, and whether it
could fit into their everyday practices.

The survey has several inherent limitations: First, subjects only had limited opportunities to work
with eMoose and form an informed opinion on its strengths and weaknesses. Second, their impression
of eMoose may be affected by their performance in the study and by the fact that the tasks were specifi-
cally designed to evaluate the strengths and weaknesses of the tool. Third, many subjects were students
and may attempt to leave a positive impression. Nevertheless, differences between answers to specific
questions may be telling.

The presentation that follows maintains the division of the statements into four groups, and keeps the
original phrasing. For each question, we present the distribution of scores in tabular and graph form, and
briefly discuss these results.

6.11.1 Statements on “Marked calls”

The first set of statements is concerned with the primary feature of eMoose- call decoration. Note that
throughout the study, we used the term “marking calls” rather than “decorating calls”, so the same ter-
minology appears in these statements.
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Statement 1A: eMoose sometimes offered significant help in identifying interesting calls

The goal of this question and the one which follows was to understand whether developers perceived
benefits from the contextual features of eMoose. The use of the term “interesting” was deliberate, as
only one call yielded the solution, but subjects may have perceived a value from investigating the others.
The term sometimes was used to check if there were any cases where it was helpful: each subject only
had a few chances to use the tool. If subjects asked about the semantics of this term, they were told to
interpret it as “there were cases”.

All subjects provided a positive answer which leaned towards the strong agreement, suggesting that
value was perceived in at least some cases.

Statement 1B: eMoose usually offered significant help in identifying interesting calls

The main goal of this statement was to qualify answers to the previous statement, as the differences may
be telling. Indeed, subjects tended to agree less with this statement, including several who were neutral
or negated it. Thus, the perceived benefit is only in some cases, which is realistic and is in line with the
goals of our approach.

Statement 1C: eMoose sometimes distracted me by making me look at the wrong calls

The benefits of eMoose come at a risk of distraction, and our tasks offered several opportunities for
decorations to attract readers to irrelevant calls. Nevertheless, only a small portion of subjects felt that
they were distracted.

227



Statement 1D: eMoose usually distracted me by making me look at the wrong calls

This statement is similar to the one that precedes it, but inquires whether distraction was frequent. None
of the subjects appeared to think so.

Statement 1E: eMoose marked too many calls

Even if subjects did not actually explore calls which ended up not being relevant to their needs, the sheer
number of decorated methods could be distracting. Subjects were split as to whether this was the case,
although the majority did not agree.

Statement 1F: I tended to look at marked calls first

One of the mechanisms by which eMoose can help but also distract callers is by making them pay more
attention to the decorated calls. This may interfere with whatever process a developer uses to understand
a given code fragment. The strong agreement of most subjects indicates a potential risk of using eMoose
which should be further investigated.

Statement 1G: I ignored some calls because they were not marked

Another risk of using eMoose is that a method which is not decorated would be perceived as not impor-
tant, even though the presence or lack of decoration is not directly related to the relevancy of the method
to the developer’s current needs. If developers ignore calls, they may miss important details that are not
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directives. In addition, with the present implementation, they may mistake methods in APIS that have
not been annotated with directives as less important.

Again, the results indicate that this is indeed a risk, further motivating the need to better educate
users about the meaning of a presence or lack of decoration.

6.11.2 The JavaDoc Hover

We now turn to statements focused on the second feature of eMoose, the augmented JavaDoc hover.
These questions are preceded by the following note: “These questions are concerned with the window
that appear when you hover over a call. With eMoose, the top contained the JavaDoc while the bottom
contained directives.”

Statement 2A: eMoose sometimes offered significant help with the lower pane

Again, we start by asking whether this feature was useful in some cases. The results are positive in
almost all cases, although not as strong as for method decoration.

Statement 2B: eMoose usually offered significant help with the lower pane

We also asked the same question with “usually”. Surprisingly, the results are nearly identical.
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Statement 2C: The redundancy of information in the lower pane was distracting

eMoose creates a redundancy between the text in the upper pane and the directives in the lower pane.
However, most subjects were not distracted by this redundancy.

Statement 2D: I tended to read the information in the lower pane before reading upper pane

As intended, most subjects read the directives first.

Statement 2E: I decided whether to read the upper pane based on the lower pane

One of the goals of listing directives explicitly is to offer a lower-cost way to explore the method and
decide whether to invest more attention, without having to read all its documentation. This, however,
raises the risk that import text would be ignored if it was not tagged as a directive.

Indeed, subjects reported that they based their decision on the lower pane. Examining mouse motions
and scrolling actions in the recordings seems to support these reports, as attention was often initially
focused on the lower pane. It would be interesting to study whether directives that are not tagged would
indeed be missed by designing such a task in a future study.
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Statement 2F: I avoided reading the upper pane when there was information in the lower pane

This statement complements the previous two statements and uses slightly stronger terms. The results
were consistent with these statements.

Statement 2G: It was straightforward to correlate observations to documentation sentences

If developers find the directives relevant and read the entire method text to learn more, they do not
receive any help from eMoose in connecting the directives to the text. The disagreement among some
subjects with the statement that correlation was straightforward suggests that mapping assistance would
be a useful feature.

Statement 2H: It would be better to mark sentences in the JavaDoc than to have the separate pane

A possible alternative design to the redundant listing of directives in the lower pane is to highlight text
within the JavaDoc. The downside is that this would require scrolling, and would not allow text to be
summarized. However, most subjects disliked this idea.

Statement 2I: I occasionally missed something important when reading the documentation

The main reason for explicitly listing directives in their own pane is the fear that they would be missed
in the documentation narrative, as was the case in our second JMS task. Indeed, all subjects indicated
that they occasionally missed something in the text.
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Statement 2J: I would have liked to see all directives overlaid on the source code instead of having
to explicitly hover over calls surrounded by boxes.

In the current implementation of eMoose, an extra step is required if a developer wishes to investigate a
decorated method and understand what directives are associated. A hidden feature of eMoose allows all
the directives to “float” in semitransparent bubbles near the calls. However, this raises the risk of clutter,
and was rejected by most subjects. Nevertheless, agreement among some subjects suggests that there
may be a benefit to this if it can be made less intrusive.

6.11.3 Polymorphism

The third set of statements deals with polymorphism and the support of eMoose. Before the statements
in this set, the clarification text reads:

“Dynamic type is the type of an object during runtime which can be a subtype of the declared (static)
type. For example: Set mySet = new TreeSet() and Set mySet = new HashSet();”

Statement 3A: eMoose helped in finding information in dynamic types

eMoose supports polymorphic code in two ways: first, it highlights calls to targets where a directive is
present in a possible overriding version, making readers aware of the polymorphism. Second, it presents
the overriding versions in the JavaDoc hover, making it easier to identify the associated directives once
the polymorphism is already known. While we did not distinguish between the two mechanisms in this
statement, most subjects agreed that the support was useful.
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Statement 3B: eMoose distracted me by showing too many possible dynamic types

The main downside of eMoose’s polymorphic support is its conservative approach to subtype analysis -
Namely, every present subtype in the project is considered to be a potential dynamic type, even if static
analysis would reveal that it cannot. Subjects were equally distributed on whether this was a problem,
though some mentioned vocally during the study that they would have liked to see this change.

Statement 3C: I have encountered similar situations with differences in dynamic types before

This statement tried to explore how applicable such support can be to the subject’s everyday development
work. About half the subjects indicated that they have indeed encountered such situations in the past.
However, it is important to remember that subjects varied significantly in their development experience.

6.11.4 General questions

Finally, the last set presents a variety of statements about the study and the subjects’ everyday experience.

Statement 4A: The tasks were challenging

Subjects were asked for a subjective estimate of the challenge in the study tasks. Most felt that the tasks
were challenging, although not extremely so.
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Statement 4B: The activities were similar to what I often do in my everyday use.

Again, we attempted to glean information about the potential applicability of eMoose to everyday use.
Subjects were split as to whether these activities were similar to programming behavior.

Statement 4C: To accomplish tasks I had to read documentation significantly more carefully than
I am used to in everyday use

Because of the artificiality of the lab setting, the alloted time for small code sections, and the knowledge
that this is a limited study, it is possible that subjects paid closer attention to the documentation. The vast
majority of subjects agreed, suggesting that the potential for problems in real-world situations may be
greater.

Statement 4D: I prefer to read JavaDocs in HTML form

Any support within Eclipse would be less useful if subjects preferred the traditional way of reading JavaDocs
over the convenience of using IDE features. However, only a few subjects preferred the HTML.
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Statement 4E: I prefer command line tools and editors like emacs to IDEs like Eclipse

There is a well known divide between developers who prefer integrated IDEs and may be more open to
additional tools and additional presented information, and “purists” who prefer simple text-based tools
with minimal additional information. eMoose is designed with the first group in mind, so it made sense
to check the preferences of our subjects. The vast majority of subjects preferred IDEs. However, this
likely results from characteristics of the subject population: JAVA programmers in their early 20s who
are comfortable with Windows. One subject noted during the study that as a C++ programmer on Linux,
he dislikes IDEs.

Statement 4F: eMoose may be useful in my everyday use

Finally, we asked whether the subjects could potentially see a use for a tool like eMoose in their everyday
development. While answers were uniformly positive, the reliability of this question is inherently limited.

6.12 Limitations

This study demonstrated the reality of the directive awareness problem in code, and of the significant
impact that eMoose may have on this problem. The detailed analysis of the transcripts also allowed
us to develop theories to explain the mechanisms behind these problems and the impact of eMoose.
Nevertheless, one must be careful when attempting to generalize these results to real-world development,
as the study has several limitations, which we now discuss.
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6.12.1 Artificial nature of tasks

The biggest limitation of this study is that most if its tasks3 were specifically designed to test for certain
pitfalls that are related to directive awareness, and to evaluate the effectiveness of eMoose when its
potential returns are highest. This was done under a premise that if controls had no problems or eMoose
had no impact in such extreme and custom-designed cases, it is unlikely that these phenomena would be
manifested in real-world scenarios. However, getting the expected results does not necessary imply that
the effects are as significant in real world conditions. Subsequent research and deployment by users is
needed to validate this question.

In thinking about the tasks of the study and their potential for generalization, it may be beneficial
to distinguish between the control condition and the experimental condition. Even if the results for
the experimental condition could be dismissed solely as an artifact of the specific task design which
is favorable to eMoose, the difficulties of subjects in the control condition are still concerning. In my
industrial development experience, scenarios like the ones in the study tasks are quite common and
have resulted in actual bugs. There are often important details in an unexpected or incorrect location,
deep inside a detailed specification, or in a conflicting overriding version. As a result, I believe that the
same awareness problems likely generalize to larger scenarios although they are perhaps less frequent.
Nevertheless, even if a developer encounters a problem of this sort once every few hours, the expense in
subsequent debugging due to errors that might have been prevented is still significant.

The impact of eMoose in real-world scenarios is likely to be smaller in magnitude than in the study
tasks for several reasons: First, the incidence of problems for controls may be less frequent. Second, the
developers may be more familiar with the API, as in this study I have specifically chosen unfamiliar ones,
so there may be less of a need for eMoose. Third, the directive may not be as clear and straightforward
to tie to problems as the ones chosen for the task. Fourth, there may be more distractions.

Nevertheless, I believe that eMoose could still be quite effective in real settings, especially when
developers use my corpuses of directives for popular APIS. The hundreds of directives I have identified
in commonly used packages and classes (and thousands in the entire library) makes it likely that at least
some directives would not be immediately familiar to the users. In addition, we have seen from the
third task that distraction by directives may not be a concern. Finally, the effectiveness of eMoose in
the polymorphism tasks suggests that it may be of particularly high value in the cases of unexpected
conformance violations which are infrequent but still common.

6.12.2 Debugging nature of tasks

Another major limitation of this study is that it did not focus on the prevention of errors, which is the
main goal of eMoose, but rather on debugging. The use of debugging tasks ensured that subjects needed
to identify the directive and that they were exposed to the same codebase. My attempt to evaluate the
prevention of errors, in the second SWING task, proved impractical and the task had to be cancelled.

The errors in the study tasks were designed to be plausible in nature. Since controls did not become
aware of the directives in a focused debugging effort, it is unlikely that they would have become aware
of them had they copied code, reversed statement order, or picked the wrong call. An early awareness of
the directives may have lead to the prevention of errors.

A related problem is that task scopes and fragment sizes were smaller to ensure that code and doc-
umentation examination was the primary activity. In everyday use, where there are other competing
activities such as design and testing, the tool will only be applicable during a smaller portion of the time.

3The first SWING task also attempted to distract eMoose users
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At those times, however, it may potentially be more effective than in the study, because developers would
likely be reading documentation less carefully.

6.12.3 Subject background

A major limitation of this study was that most subjects were relative novices rather than experienced
developers. While further study is necessary with experienced developers, I suspect that these subjects
actually represent a major portion of industrial developers. They were graduate students in an IT ori-
ented program in a major school, all had prior internship experience, and most go to the industry upon
graduation.

I believe that by choosing such APIS or parts of them that none of the subjects were familiar with,
I slightly “evened” the playing field by reducing the risk that some subject’s prior familiarity with a
specific call would obfuscate the results in either condition.

Though more experienced developers are more familiar with more APIS, they are unlikely to be
familiar with all of its intricacies. For example, experienced subjects were familiar with SWING and the
collections framework, but none were familiar with JLayeredPane or Bag and their directives.

Because subjects were relatively similar in their academic background and industrial experience,
it is difficult to objectively quantify their true experience level in order to correlate it to performance.
Informally, I subjectively assessed experience based on the background sheet and a conversation with
the subject prior to beginning the session. There were subjects who primarily developed software in an
academic capacity, and some that developed as a hobby since their teens. My impression is that the least
experienced subjects struggled more, made more dubious reading choices, formed incorrect theories,
etc. The most experienced subjects, on the other hand, sometimes were extremely focused and able to
quickly identify the relevant call, focusing on it and immediately spotting the directive. The majority of
developers likely fall between these two extremes and are therefore likely to have awareness difficulties
and to benefit from eMoose. Note that even the experienced and most educated subjects occasionally
failed tasks without eMoose.

6.12.4 Set of directives

A possible threat to the validity of this study is that calls were decorated or left undecorated based on
a corpus of directives that I have created prior to creating the tasks for this study. A major concern is
whether other developers would come up with a similar set. In Chap. 7, I present results from a study
showing consistency between my decisions for these methods and those of several other independent
developers.
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Chapter 7

Consistency in identifying directives

7.1 Introduction

In Chap. 4 I presented my definition of directives, and suggested a taxonomy of directive types. Then, in
Chap. 6, I presented empirical evidence that directives can convey information that may affect developer
performance on certain maintenance tasks. I created the set of directives used in that study by applying
my judgement to the above definition. An important question, however, is whether my own judgement
could have biased this set, or whether other developers would have come up with a similar set.

A more general question, with important consequences for this dissertation, is whether developers
are generally in agreement about whether a particular documentation clause constitutes a directive. This
question is important because the premise behind identifying and increasing awareness of directives is
that they are likely to provide value to the majority of developers. If a clause designated as a directive by
the set creator is only useful to a minority of developers, then it could prove distracting to the others.

Furthermore, since the creation of directive sets for a particular API is a lengthy process, its prospects
of being carried out depend on the ability to “split the work” and to collaboratively refine this set. If de-
velopers are not consistent in tagging the directives, then one section of the annotated library would omit
directives that other developers may consider useful, while another section would highlight information
that others do not benefit from. If the sets can be edited by everyone, then this could result in a permanent
state of flux.

The question of consistency can be considered at five levels of granularity, described below:

1. Method-level - Are developers in agreement on which methods convey at least one directive and
which do not? I argue that this is the most important question for eMoose because it directly affects its
main feature - the decoration of methods. Inconsistency would severely reduce the utility of the decora-
tions for two reasons: First, if many decorations lead users to read the JavaDocs only to find irrelevant
information, they might start ignoring them. Second, if many important directives are omitted, users may
have to investigate undecorated methods to be on the safe side. Agreement between developers, on the
other hand, would further motivates the support for directive ratings.

2. Clause level - Are developers in agreement on which clauses within the documentation of a
method constitute directives? This question is also important because the JavaDoc hover explicitly lists
the directives in the lower pane, so a lack of agreement would reduce the utility of this pane. Users would
have to read the full JavaDoc to see if it contains information that is useful and not tagged. One difficulty
in establishing consistency here is that there may be disagreement as to the division of the documentation
text into clauses, which can result in overlaps.
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3. Typing - Are developers in agreement on the types assigned to each directive? Answers to this
question determine presentation and filtering. However, certain directives could belong to multiple types
or to no types.

4. Rating - Are developers consistent in the ratings assigned to each directive? The choices by the
creator of the directives set have a significant impact on presentation and filtering. In the client-server
implementation, the ratings provided by multiple individuals are averaged out.

5. Phrasing - eMoose allows the phrasing of a directive in the lower pane of the JavaDoc hover to
be different from its text in the original documentation (and the upper pane). This allows set creators to
shorten or clean up the description. It is important that developers are consistent in their rephrasing of
directives to avoid misleading future users who would only read the lower pane, but measurements of
natural text similarity may be more difficult to obtain.

Thoroughly investigating all these questions is outside the scope of this dissertation. Nevertheless,
I conducted a small study focused on the first level of granularity, attempting to answer the question:
“is there consistency between developers in identifying methods with directives?” In particular, I was
interested in whether there is consistency on the methods that appeared in the eMoose study. To this end,
a small set of subjects were presented with printouts of the JavaDocs of several classes from the JMS
and SWING APIS, and asked to tag all clauses that they considered a directive. Measures of reliability
were then calculated based on which methods had at least one directive tagged.

7.2 Study design and materials

I recruited 6 subjects who did not participate in the lab study of Chap. 6. The first five subjects were all
experienced developers currently studying towards a doctoral degree in various specialities of computer
science. The sixth was an experienced developer currently working in industry, who holds an undergrad-
uate degree.

All subjects received a study booklet with instructions that will be summarized here; the full text
is reproduced in Appendix A. The instructions are intentionally short, in an attempt to see how devel-
opers would naturally comprehend the concept of directives, without training to bring them towards
consistency. In particular, subjects are intentionally not exposed to an existing corpus of directives with
ratings. To avoid biasing results, no additional explanations were given and no questions were allowed
about the concept of directives during the study; subjects were only allowed to ask clarification questions
about the API itself.

The booklet begins by explaining the purpose of the study and providing a general description of
directives:

Directives (as we later explain) convey information that is particularly important for the function’s
users to become aware of, as they are imperative for the proper use of the function. This is different
from specifications, which constitute the majority of JavaDoc text, and which provide sufficient
details for those interested in understanding everything about the function or in ensuring that the
contract is used correctly. Both definitions, however, are somewhat amorphous, which is why we are
trying to determine how different individuals approach them.

This is followed by two examples: First, Math.random() and the fact that multithreaded code can
be made more efficient by giving each thread its own Random instance.Second, the String.replaceAll()
example that we have seen before, where newer versions of the documentation warn against using spe-
cific characters in the replacement string. The text then continues:
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There are many cases where directives are a lot more obvious and carry more significant implications.
For example, a method’s documentation may instruct the user to call another method first, to not
invoke it from a certain thread, or to be responsible for releasing a handle that it obtains from the
platform. Note that if something appears trivial or common it may not be a directive or may be a
directive of marginal importance. For example, all JavaDocs list all the parameters and often require
that parameters not be null. Since this is fairly standard, and users are expected to check for this
anyway, this is not a directive. However, if there is a restriction on the concepts of a parameter, for
example, then this is a directive.

Now, the booklet turns to procedures.

In this study your role will be to identify directives in the printouts of the JavaDocs for several classes.
You will receive a booklet consisting of some background material about the API, followed by the
actual printout. Please go systematically over the text of each method. When you find something
that could possibly be a directive (even if you are not sure), use a highlighter to mark the entire text
fragment that would correspond to a directive. This text could potentially be rewritten as a more
concise and direct instruction, but you do not have to do so. If at doubt as to whether something is a
directive or not, mark it anyway.

Note that the same method documentation may contain multiple directives, so please mark all of
them. Markings should only be applied to the detailed JavaDocs of public methods and constructors,
and not to the documentation of the class, its fields, or nonprivate methods. In addition, you should
only be concerned with directives aimed at users of an instance of a class (or subclasses) rather than
directives aimed at users who will subclass the current class or override its methods.

Note that subjects are instructed to mark anything that they initially suspect to be a directive, even if
they eventually decide that it is not. The goal behind this instruction was to gain an insight at the kinds
of clauses that are being considered.

Next, subjects are asked to rate each highlighted clause on a scale from 0 to 7, with a “standard”
confidence of 4. A value of zero is reserved for clauses that are determined to not be a directive. Note
that this range is wider than that used in eMoose. However, our goal is not to compute the consistency of
these ratings but just to have an idea of the confidence of the raters.

Subjects are then asked to also attempt to classify all directives with one or two types from a given
list of mnemonics with short descriptions, but are also allowed to skip this if that would allow them to
finish tagging a larger portion of the class. Again, the goal is not to actually calculate consistency but
rather to have some idea of whether there is potential for it.

Finally, the instructions also state: “We realize that the task as a whole is mundane and tiring, but
please try to remain attentive. Feel free to take breaks at any point.” Indeed, my impression was that
subject performance degraded over time, and they tended to skim the JavaDocs more and miss more
details.

7.2.1 APIs used in the study

Since the lab study described in Chap. 6 was based on sets of directives that I created for specific APIS,
these APIS became a natural candidate for an investigation of tagging consistency. The first part of the re-
liability study involves several interfaces and classes from JMS which were featured in the eMoose study.
Since there is no natural ordering for these types, I arbitrarily chose one that allowed some subtypes to
immediately follow their supertypes, and that placed the hierarchy of “topic” types after that of the
“queue” types. Since the two hierarchies are similar, we can check for consistency after time has passed.
The selected order is: QueueConnectionFactory, Connection, QueueConnection, Session,
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QueueSession, Queue, MessageConsumer, QueueReceiver, TopicConnectionFactory, TopicConnection,
TopicSession, Topic, TopicSubscriber

The second part of the study, involving SWING, takes the inheritance chain starting at JLayeredPane
and heading upwards through: JComponent and Component to Container. However, due to time
constraints subjects were only expected to work their way up to the end of JLayeredPane. In practice,
within the allotted time, all of them made it at least half-way through the JComponent class, with some
reaching its end.

Note that the printouts were created using default settings, so some methods were split across pages.
For SWING, we used the documentation version from JAVA 6 and for JMS from version 5 of the J2EE.

7.3 Results for methods used in the eMoose study

Before we investigate consistency for the entire set of methods, let us first examine only the results
for methods that appeared in the eMoose study. Methods will be presented in the order in which they
appeared in the printouts, though many unrelated methods appeared between them.

createQueueConnection(): The first class in the booklet is QueueConnectionFactory, whose
only method is createQueueConnection. This method was decorated in our first JMS task and con-
veyed the solution to the bug - it mentioned that start should be invoked before messages can be
received. Since this is the first method that subjects encountered in the booklet, it is not surprising that
all six identified this clause as a protocol directive. All subjects except S6 rated it as at least 4.

setClientId(): The next class is Connection. One of its methods, setClientId, is inherited
by TopicConnection and is the decorated method at the core of our second JMS task. The relevant
directive in that task was the prohibition on invoking any other methods on the object prior to calling that
method. All subjects rated at least one clause in its documentation, though ratings varied from 1 to 7.

start(): The next relevant method in Connection is start, which was the method that subjects
needed to add in the first JMS task and which was presented in undecorated form in the second task.
The documentation of the method mentions that repeated calls are ignored, which has led subject S2
to consider it as a protocol directive with a rating of 1 (very low). None of the others highlighted this
method.

createQueueSession(): After Connection comes the QueueConnection subclass, with its createQueueSession
method which was undecorated in the study. The documentation mentions an issue with the AcknowledgeMode
parameter of this method, leading subjects S3 and S2 to identify a parameter directive (rated 4 and 2 re-
spectively) while the three others did not.

close(): Next comes the major Session class. Its close method appeared decorated in the
cleanup code of both JMS tasks and has been explored by some subjects. The documentation of this
method is quite lengthy. It discusses different protocol and threading issues; and provides several perfor-
mance recommendations. All subjects highlighted at least one clause in this method with a rating of at
least 3, though the exact clauses differed and in some cases overlapped.

createQueue(): The next class is QueueSession, and it declares the createQueue method
which appeared decorated in the core area of the first task. The documentation is lengthy and mentions
various issues such as portability limitations, purpose, etc. All subjects identified a directive with a rating
of at least 2.

receive(): Later on, we get to MessageConsumer and its receive method. This method, which
was decorated in the first JMS task, is where execution had blocked. The documentation mentions two
reasons for why the call would become blocked, though not the issue of calling start. Surprisingly,
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only subjects S3–S6 highlighted this threading clause. This is interesting because S1 and S2 did tag
the createQueueConnection method which mentions the need to call start. It is not clear if the
difference was due to fatigue, or whether the need to call start seemed more relevant and surprising
while the fact that message reception blocks until messages are produced seemed trivial.

createTopicConnection(): The next set of classes are the Topic analogues of the Queue

classes seen earlier. Once again, we get TopicConnectionFactorywith its createTopicConnection
which is highlighted by everyone. The ratings given by all subjects except S5 are consistent with the
ones previously given to the Queue version

createTopicSession(): Also in Topic, the parameter clause in createTopicSession is tagged
by subjects S2 and S3 with the exact same rating as for the queue analogue createQueueSession,
though it is not clear if this similarity results from consistency or from a memory effect.

createTopic(): Similarly, the decorated createTopic in TopicSession is decorated by ev-
eryone with a range of ratings and a pattern that is similar to the earlier createQueue. Again, it is not
clear if this is memory or consistency.

We now turn to SWING and the JLayeredPane class which was investigated by all subjects. We
are going to only examine the methods which were invoked in the actionPerformed method of our
first SWING task.

putLayer(): The decorated method putLayer and the critical directive instruction to use setLayer
instead was highlighted by everyone as an alternative-directive with a rating of between 3 and 7.

setLayer(): The replacement method setLayer which instructs callers to invoke it before adding
the element to the parent container also received a consistent protocol tag from everyone.

moveToFront() and moveToBack(): Next, the undecorated moveToFront and moveToBack

methods were not marked by anyone.

setPosition(): Finally, setPosition which was decorated was tagged by all subjects but S5,
who considered it but eventually gave it a rating of zero. This method indicates that position numbering
(a parameter) is defined by the container rather than the layer. However, only subject S3 listed this as a
parameter directive, while the others did not pick a type.

Overall, when limited to the set of methods that appeared in the eMoose study, we see fairly high
agreement between subjects with regards to whether a method contains directives or not. The main
exception is createQueueSession and createTopicSession, where two subjects believed that the
parameter clause constitutes a directive. Therefore, the decorations on the source code would generally
be the same had these subjects collaboratively created the directive set.

Within the methods, however, the story is very different, as subjects differed in the clauses that they
decorated, the types that they chose, and the rating. It is possible that more consistency can be achieved
with additional training, and perhaps with encouragement to reexamine methods where at least one clause
has been tagged. In particular, the ratings are very inconsistent among subjects. It is very likely that some
of this inconsistency is due to the lack of training, since subjects did not have a common corpus of rated
directives to which they could relate.

7.4 Consistency over the entire set

In the scope of this dissertation, I am only focused on method-level agreement: whether developers are
consistent in identifying methods that convey directives and will therefore be decorated.

To this end, I took the raw tables listing the clauses tagged by each subject, and distilled them into
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a matrix of binary-valued cells whose rows represent methods and whose columns represent subjects. A
particular cell is “checked” if and only if the subject identified at least one directive with a rating of at
least 1 in the documentation of that method. The first part of the table, covering the JMS methods, is
presented in Table 7.4, The second part, which appears in Table 7.5, covers up to the point in the middle
of JComponent which was reached by all subjects. The third part, in Table 7.6, includes methods
of JComponent which were only reached by some of the subjects. In the columns for each subject, cells
contain the highest rating given by that subject to any clause in the directive, and are empty otherwise.
The inclusion of the numeric rating here is for informational purposes only, as our calculation will not
take them into account.

7.4.1 Number of subjects identifying tagging a directive in each method

To help us better understand the decorations in Tables 7.4–7.6, Fig. 7.1 presents the distribution of
the 105 “votes” for the methods up to the end of JLayeredPane. Each column represents the num-
ber of methods that were tagged with directives by the corresponding number of subjects. Columns
towards the edges represent consistency while those in the middle represent inconsistencies. As we can
see, 44 of the methods are unanimously considered by all subjects to not convey any directives, while 20
are unanimously considered to convey a directive. If we decided the status of a method based on a simple
majority, we would have 35 methods with directives and 64 without. If we allow a single “dissenting
vote” and join the two edge columns on each side, we would get 25 methods that convey directives, 55
that do not, and 25 where there is disagreement.

Figure 7.1: Number of methods tagged as having directives by number of subjects (up to end
of JLayeredPane

We note that while the number of methods with directives may appear quite high, the impact on
invoking source code can be curbed by rating the directives and filtering decorations by rating. Since the
given ratings highly varied between subjects, the level of agreement can instead be used to produce the
rating.

If we add a portion of the methods of JComponent up to the point where subjects S1 and S3 dropped
off due to the time limit, the picture changes somewhat. As can be seen in Fig. 7.2, subjects encountered
many methods with no directives, and consistency between subjects dropped. While this may be due to a
substantial difference in the API, it may also represent the effects of fatigue or time pressure on subjects.
For instance, subject S1 barely marked 7 methods in all of JComponent before running out of time.
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Figure 7.2: Number of methods tagged as having directives by number of subjects (up to middle
of JComponent

7.4.2 Number of methods with directives identified by each subject

One way to understand the inconsistency between subjects in the charts above is to examine how many
methods were tagged as having directives by each subject. It turns out that in the methods of JMS,
subjects S1 and S6 tagged just 19 and 27 methods respectively, while subjects S2–S5 respectively
tagged 39, 40, 36 and 40. If we further examine the methods of SWING up to the point reached by
everyone in JComponent, the total number of tagged methods for S1 and S6 is 30 and 44 respectively,
while for the rest it is between 60 and 70. Such a difference in proportions clearly contributes to the
inconsistency.

When asked after the study, subject S1 indicated that when considering whether a clause was a
directive, he tried to take into account how frequently the method or relevant situation would be valid, and
eliminated those that seemed less important. This subject was familiar with the premise of the eMoose
tool, and felt that the set needs to be trimmed to reduce the potential number of decorations.

7.4.3 Reliability between subjects

In order to better understand the consistency between subjects or lack thereof, we calculated Cohen’s
Kappa [17] for each pair of subjects. Cohen’s Kappa is a quantitative measurement of the similarity
in how two observers assign a set of items into categories. It aims to measure the degree to which the
similarity between the assignments is greater than what would result if each observer made the same
number of assignments in each category, but distributed them randomly across items.

While there is no universal way to interpret Kappa values, the most common division of its values is
as follows [52]: A value of 0 represents a complete lack of agreement, equivalent to a random assignment.
Values up to 0.20 represent slight agreement. Values from 0.21 to 0.40 represent “fair agreement”. The
range of 0.41 to 0.60 is “moderate agreement”. Kappas between 0.61 and 0.80 represent “substantial
agreement”, with values up to 1.00 representing an “almost perfect agreement”. Values of 1 occur only
with perfect agreement.

To calculate Kappas for our subjects, I took every combination of two columns from the tables
presented above. For each method, the identification of a directive (nonempty cell) was considered to be
the first category, while the lack of a directive (an empty cell) was considered to be the other category.
The Kappas were then calculated in the standard way.

For the methods up to the end of JLayeredPane, the last class that all subjects finished, the matrix
of Kappa values is presented in Table 7.1. As we can see, all kappas are at least within the “moderate

245



Table 7.1: Cohen’s Kappa values for methods up to end of JLayeredPane

Table 7.2: Cohen’s Kappa values for methods up to middle of JComponent

agreement” range. There is very substantial agreement between subjects S3, S4, S5, with the highest
agreement between S3 and S5 bordering on the “almost perfect” category. There is also substantial
agreement between subject S1 and S6; both tagged the smallest portion of methods, but there appears to
be significant similarity in this portion. The average of all Kappas is 0.60, just in the “substantial” range.

Table 7.2 presents the Kappa values for the methods up to the point of separation in JComponentPane.
We can see that values are significantly lower, though resembling the ones from the previous table in their
magnitudes. Even as subjects were getting tired and less careful, in all but one case there is at least mod-
erate agreement, and in some cases substantial. The average of all Kappas is 0.565, in the upper end of
the “moderate” range.

Finally, we also calculated Kappas between the four subjects who made it to the end of JComponentPane.
As can be seen in Table 7.3, there is still substantial agreement between S4, S5 and S6, and moderate to
substantial agreement between this group and S2.

7.5 Discussion and threats to validity

The study presented in this chapter represents an initial exploratory attempt to determine the degree to
which developers agree in the identification of directives. The ability to identify information useful to
the majority of prospective developers underlies our approach of making directives more salient. Our
results offer initial evidence to support this premise, at least when it comes to identifying methods with
directives as these would become decorated. Subjects were remarkably consistent with regard to the
methods which appeared decorated and undecorated in the earlier lab study. This helps dismiss a serious
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Table 7.3: Cohen’s Kappa values for methods up to end of JComponent

threat to the validity of that study. Subjects were also substantially consistent at identifying methods with
directives across the whole API. Significant inconsistencies, however, were found in the exact clauses
marked by each subject, and in the given ratings.

As previously indicated, I suspect that many of these inconsistencies are due to the lack of training.
Since subjects were not presented with any examples of a rated directives, they had no frame of reference
by which to calibrate their perceptions of ratings. Furthermore, since subjects generally performed only
a single pass over the documentation, they had little chance to go back and correct earlier ratings based
on later decisions. Further study is needed to determine if training can indeed help achieve consistency
in rating.

Another factor that likely played a significant effect was fatigue. Developers are not used to reading
large amounts of JavaDoc this carefully, and having to do so under time constraints for two hours was
likely unsettling. It was very clear that subjects did not enjoy the task, and many were visibly fatigued
by the end of the first hour. This limited the care paid to each method, as was exemplified by subject S1
who started skipping large ranges of methods with only an occasional glimpse into their text. Having
annotated the JDK and other libraries, I can certainly attest to a similar experience, though I carried this
annotation over a long time. While these issues likely affected the study, I believe that their impact on
the feasibility of large library annotation is not significant. I do not intend that entire libraries would be
tagged by a handful of individuals in one stretch. Rather, as typical in Wiki based efforts, the tagging of
directives should take place over time by many individuals as they notice something important and leave
a mark to assist future readers. Nevertheless, a shorter follow-up study with more subjects and adequate
training may be useful.

Note that fatigue may have also contributed to the inconsistencies in identifying the exact intervals
constituting directives. As they made their way through the documentation booklet, subjects became
careless about marking specific sentences, often marking an entire paragraph or a single word. Since
the focus of this study was at the method level rather than the clause-level, I was not stringent when
subjects exhibited this behavior. In a shorter study, however, it may be possible to obtain more accurate
measurements about this issue.

Finally, note that there was not enough data to formally analyze consistency in typing. My impression
was that for many methods these was agreement between subjects that explicitly indicated a type, but
that in these cases the wording was typically very clear. When there were inconsistencies, they were
typically between two or three types. Again, this would require a more formal follow-up study.
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Table 7.4: Presence of directives in JMS queue methods
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Table 7.5: Presence of directives in SWING methods (annotated by everyone)

249



Table 7.6: Presence of directives in SWING methods (annotated by some subjects)
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Chapter 8

Conclusions and Future Work

In this concluding chapter, Sec.8.1 recaps the evolution of this work and the connection between its
chapters. Sec. 8.2 summarizes the contributions and implications. Sec. 8.3 presents open questions and
directions for further research.

8.1 Retrospection

Because the focus of my research has evolved over time, this dissertation was divided into two distinct
parts, one focused on the design and the other on APIS and code. This section briefly recaps the previous
chapters and how each lays a foundation for the following one.

The initial goal of my research was to identify new ways to support software design in distributed
settings. Since successful examples are rare, I chose to study collocated design sessions, and identify
behaviors that would be difficult to translate to a distributed medium without additional tool support. To
this end I conducted an initial observational study of design exercises (Chap. 2), focused on the physical
design environment and the use of artifacts. At that point, direct observation and frequently taking
snapshots of the environment seemed adequate.

In the settings in which this study took place, designers had access to a large variety of drawing
surfaces (“canvases”). I found that designers given this freedom tended to scatter their work across
many canvases all around the environment, and used spatial and visual cues to locate them. Many
canvases were also arranged into complex and ever-shifting containment hierarchies. I also observed the
continuous formation and disbanding of ad-hoc teams which used gestures and gaze to establish common
ground. Interestingly, much design information was never captured in permanent drawing activities, and
diagrams were frequently recreated with different contents.

Many of these findings presented potential problems for the transition to distributed settings, where
constraints of the electronic medium and the difficulty of establishing common ground would restrict
this freedom. However, I began suspecting that these findings have broader implications for the support
of design in general, even in collocated settings. The constant shifting of canvases, the dependency on
contextual information, and the loss of much design knowledge due to the use of ephemeral gestures,
all present a threat to the eventual use and interpretation of the design products. Indeed, looking at the
photographs it was often difficult to piece together the design and its evolution. As a result, I shifted
my attention to the problem of preserving context and coping with a large number of canvases and their
contents.

To investigate these problems, I conducted a second and more elaborate study using video record-
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ings (Chap. 3) that focused on the actual drawing activities and the representations used. Multiple teams
working on similar problems were used as a baseline for comparison. The study offered many valuable
insights into the representational choices that further emphasized the need to preserve traceability of
the design activities. For instance, developers deliberately diverged from standard notations, combining
representations and creating ad-hoc notations that evolved over time but presented interpretation chal-
lenges. They also concurrently used multiple representations to explore certain ideas, forming implicit
contextual dependencies that are not evident when artifacts are examined separately.

A related finding from this study, however, was the risk of delocalization due to the use of multiple
representations. Namely, as teams captured design information about an entity or concept in one artifact,
they later failed to recall this information when dealing with another instance of that entity in another
artifact. For instance, previously captured assumptions or decisions that were collected together were
often not recalled. I suspected that this problem, which I termed “neighbor knowledge awareness”,
could be generalized to other domains.

After initially exploring means to improve traceability, I shifted my focus to the knowledge aware-
ness problem. Since collaborative design using software tools (where interventions could easily be ex-
plored) is not common, I focused my attention and the second part of this dissertation on the domain of
software implementation. The artifacts were now source code fragments which either defined and doc-
umented API methods, or made use of such methods and depended on knowledge conveyed by specific
clauses of the documentation. In a detailed examination of a major API, I identified many important
and potentially surprising knowledge elements which I termed “directives”, and proposed a taxonomy of
their types (Chap. 4).

I developed the eMoose tool to “push” awareness of the presence of directives in invoked methods
(Chap. 5). I then conducted a detailed lab study (Chap. 6) to investigate whether developers become
aware of directives, and whether they benefit or suffer from the novel technique proposed by this dis-
sertation - of providing visual indications on the presence of directives. I found that directive awareness
presents serious problems, and that the approach has potential - if a reliable set of directives can be iden-
tified. I took one step in this direction with an exploratory study which suggested that such a set could
consistently be identified by multiple individuals (Chap. 7).

I have been using the tool successfully in my work in industry and have encountered several bugs that
likely resulted from a developer’s lack of awareness of an important detail in the documentation of an
invoked method. Unfortunately, during my doctoral studies I did not have the opportunity to polish the
tool sufficiently for distribution that would have enabled field evaluation. I hope to do so in the future.

8.2 Contributions

8.2.1 Improving the understanding of representation choices in software design

The findings from the studies of software design in the first part of this dissertation make significant
contributions to our understanding of the representations used in design. One important finding was that
given the freedom, designers may deliberately choose to diverge from standard notations and violate
their restrictions. They may also deliberately choose to concurrently use multiple delocalized diagrams
and representations to explore the same part of the design, rather than try and come up with a single
representation. Designers appear to do so for the immediate benefits to creativity from working with
their preferred levels of structure and abstraction. In doing so, they appear willing to sacrifice both the
communicative value of a shared notation and the long-term readability and simplicity of implementation
of their products.
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What appears to compensate for these behaviors in the short term is that designers share context,
allowing them to understand the notations and implicit connections between artifacts during the session.
As a consequence of these findings, I argued that it is critical to preserve contextual and historical trace-
ability information on the work of design teams in order to facilitate long term interpretation. In other
words, rather than merely support design teams by helping them draw more effectively, as proposed by
prior research, I argue that we can help them focus on immediate goals by offloading the responsibility
of preserving traceability knowledge.

My findings in these studies also led me to identify the neighbor knowledge awareness problem,
which I then applied to code, leading to the other contributions of this work, described below.

8.2.2 Identifying and demonstrating the neighbor knowledge awareness problem in code

The importance of APIS and their documentation rises significantly as software development becomes
accessible to wider audiences. Since documentation is often the only medium of communication between
the authors of an API and their users, there is a near-consensus that it should be complete and thorough.
There appears to be an underlying assumption that if an issue is documented, callers are likely to become
aware of it.

The first novel contribution of this work in this domain is in demonstrating that such awareness is
not guaranteed in typical development scenarios, and in highlighting that this can be a potential cause for
major software errors. Awareness is particularly problematic in polymorphic situations, where overriding
versions of a method present additional awareness concerns.

It is well known that developers do not read the documentation of every method invoked by the code
they write or maintain. However, little was previously known on whether this leads to errors and on how
reading decisions are made. To the best of my knowledge, this work is the first attempt to investigate
the documentation reading choices made in typical development scenarios and the first to show a lack of
awareness of a wide variety of important clauses.

These findings are critical because they highlight a very serious disconnect between API authors and
users. If authors design their API under the premise that their users are familiar with its documentation,
they may choose to avoid the seemingly redundant checks for correct use. If users then violate the
contract, the resulting failures may be very difficult to trace. Function authors need to understand that
users may incorrectly assume that they perfectly understand the function just based on its signature, and
develop defensively against these scenarios. Meanwhile, users may be surprised to learn that that they
have incorrectly used methods that they had assumed they were perfectly familiar with.

My lab study also suggests that developers apply discretion in deciding which call targets to explore.
The first three tasks suggested that the theory of information foraging [56] may explain the developers’
behavior, and this model also fits the polymorphic situations in later tasks. Based on their experience
and various cues (“scents”), developers form an estimate of the relevancy of the method, the prospects
for learning new information, and its potential impact. In other words, the author of the API currently
has very little impact on whether the documentation would be read. In fact, by providing an intuitive
name and signature to the method, the author may make callers believe that they understand everything
about the method, and reduce the prospects that its documentation be read. A key to overcoming these
problems may be to provide additional “scents” via an external tool, which is the approach advocated by
this dissertation and the eMoose tool.
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8.2.3 Providing a technique to increase awareness of directives

The main and novel contribution of this dissertation is in proposing the decoration of calls in the source
code as cues that their targets should be investigated, and in demonstrating the effectiveness and limited
distraction from using this technique. In my lab study, decorations appeared to tilt the balance towards
the exploration of methods containing important information, which were not explored by controls. The
tool has also been effective at making developers aware of the presence of directives in subtypes. The
technique was implemented within the eMoose tool which is freely available, although not tested in the
field.

A major concern with any technique that adds visual cues to the already busy code editor is the risk
of overload and distraction. While in some cases developers in our study did follow certain decorated
calls and read documentation that ultimately did not provide value, this behavior was not common. The
presence of a decoration did not lead developers to immediately explore the call’s target, but rather
merely added another “scent” into the decision whether to explore. Overall, subjects in our study did not
spend much time on unrelated decorated methods and did not report feeling distracted. Furthermore, the
costs of unfruitful exploration of certain decorated methods may not be higher than the cost of unfruitful
explorations in the absence of any decorations - controls in our study spent much time on a variety of
methods.

My findings also demonstrate that there is a benefit to presenting particular clauses within a method’s
documentation in a visually distinct way, such as highlighting or listing them separately. While recent
works have proposed adding materials to JavaDocs [81], my findings show a need to change the format-
ting of the existing text. This conclusion receives support from my directive identification study, which
suggests that developers can be consistent at determining which methods contain particularly important
clauses and in many cases what these clauses are.

8.3 Open questions and future research directions

This dissertation demonstrated that not all documentation clauses are equal in their importance. Under
certain conditions, awareness of certain clauses, which we named “directives”, is more critical for the
correct use of the function than awareness of other clauses. Furthermore, it also highlighted the potential
of decorating calls as a way to increase awareness of directives and avoid serious errors. It is possi-
ble that more generally, decorating references can be effective for increasing awareness of delocalized
information.

This section presents several important research problems that must be addressed in order to allow
the proposed approach to provide significant everyday value to developers. First, there is the problem of
building the directive set. Second, there is a need to filter directives based on the users’ needs. Third, we
need to address other types of knowledge, elements, and activities.

8.3.1 Building directive collections

Since the primary function of eMoose is to make callers aware of the presence of directives in invoked
methods, its utility is directly related to the completeness and the quality of the set of directives provided
to users.
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Manual annotation

In the course of my work, I spent a significant amount of time thoroughly going over the documentation
of the JAVA standard library and of Eclipse, and identifying directives in order to distribute eMoose with
built-in sets of directives for these APIS. The effort was protracted and error prone; there are likely
things that I did not notice, and things that I tagged that are not as important as I initially perceived. I
believe that having a single individual annotate an entire API for directives in one concentrated effort is
not practical, unless that person annotates his own API in the course of developing it.

For this reason, I consider it very significant that even without training and under significant time
pressure, multiple developers in our tagging study were able to significantly agree on which methods
contained directives. It shows that the tagging effort can be split across multiple individuals, who may
be able to produce a relatively consistent set of directives. Such consistency is important for several
reasons: First, it suggests that clauses that are likely perceived as valuable are indeed tagged. Second,
it suggests that developers would not be generating much “noise” for one another. Third, it suggests
that a collaborative tagging effort may eventually reach a “fixpoint” and that the annotating developers
would not revert each other’s work. Nevertheless, I found that my subjects could not maintain sufficient
concentration during tagging sessions lasting longer than an hour.

For these reasons, my vision for the tagging of directives in APIS is one of a slow evolution at
multiple focal points rather than of a concentrated linear effort. This is similar to social tagging and
content creation on the web. When a developer identifies a clause in the documentation that he deems
important, perhaps because he had been negatively affected by a lack of awareness of it, he would tag
the clause as a directive. This tagged directive would join a slowly growing community-generated set.
Errors and vandalism would be mitigated by the use of the rating mechanism, as described earlier, and
as is often done in the Wiki world. The ability of communities to create these sets must still be evaluated
in the field.

Automatic detection

Suppose that project teams could collaboratively annotate directives in project artifact as they worked,
and that there was a growing set of annotated third-party APIS as I envisioned. Even under these fa-
vorable conditions, at least initially, many of the methods encountered by developers would still refer
to APIS or project classes that have not yet been annotated. In order to make the tool more appealing
and practical for users, we need a way to automatically or heuristically recognize documentation clauses
that are likely to be directives, or at least to identify methods that are likely to contain directives and de-
serve attention from human annotators. Such automatically generated tag sets could be used to initially
present some tentative decorations. As users explore these decorated methods and rate their directives,
the tags would be fine-tuned and join the manually generated sets.

I do not believe that in the foreseeable future, automated detection could be used for all directives.
As seen in our tagging study, there are subjective differences and calls based on experience and opinion.
Moreover, in my survey of APIS, some of the clauses which I determined to contain important informa-
tion worthy of tagging as directives were often stated in long and convoluted sentences, or fragmented
within a complex paragraph. For now, only human readers will be able to detect these.

However, it was my impression that a significant portion of directives were stated as fairly straight-
forward imperative sentences. For certain types, such as restrictions, many instances fit into a pattern or
used a recurring phrase, such as “for debugging purposes only”. Such a subset may be more amenable
to automatic recognition. Recent works [84, 83] that involved the automated analysis of specific types
of comments in specific domains, such as locking in operating systems, show the potential merits of an
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approach that would handle each of the types described in our taxonomy separately. These works also
showed that distribution of comment types varies across APIS and the domains they are concerned with.
It is possible that this fact can be further leveraged to fine-tune and automated recognition engine, for
example by increasing confidence if a certain directive type is more likely in that API.

If type-based recognition could indeed be followed for many of the directives, the remaining problem
would be to handle comments that do not fit any or single type. It is likely that much human intervention
would be needed. However, certain patterns and phrases can help detect candidate clauses and draw these
human annotators. For example, phrases like “note that” or “the caller must” are often cues that some
directive will be presented.

As indicated earlier, the use of automated technique will likely result in a set of tentative directives,
for which human confirmation would be necessary. Whereas an organized review process could be
applied for entire APIS prior to packaging and distributing a directive set, on-the-fly recognition in
project and proprietary artifacts presents more challenges. The eMoose tool would have to be modified to
present easily recognizable decorations when these tentative directives are referenced, and mechanisms
for accepting or rejecting some of these proposals. User decisions will have to globally affect other
decorations of the same methods, as we now discuss.

8.3.2 Filtering directives and decorations

In the study presented in this dissertation, subjects worked for relatively short times with relatively short
and unfamiliar code fragments. With few exceptions, each method was invoked exactly once and was
previously unfamiliar. Therefore, with each method exploration, subjects could potentially learn some-
thing new. In real day-to-day development scenarios, developers are exposed to much more code and visit
the same locations multiple times. They are likely to encounter many invocations of the same method in
different contexts. One of the greatest challenges to making our knowledge pushing technique applicable
for real world use is to find ways to minimize or fine tune the set of decorated methods. While in my
experience of using eMoose only a minority of invoked methods are decorated, and there is no obligation
to explore them, the numbers are still too high and can lead to too much wasted exploration efforts.

Taking past reading actions into account

One potential source of distraction in the current implementation of eMoose is that methods are decorated
regardless of reading activity or changes in their informational value over time. Suppose that a method is
decorated and leads to an important and unfamiliar directive. A first exploration would yield significant
value. However, the call remains decorated. As a result, the reader would have to remember its location
and ignore it. In addition, as the number of explored calls increases, spotting the few that has not been
explored becomes harder, reducing the informational value of the decorations.

Eventually, however, the caller will return to the same location or encounter a call to the same method
in another location. If the user did not forget the information, the call could be distracting. If the user
remembers the information but not the call it was associated with, a wasteful exploration might take
place.

A seemingly straightforward solution to this problem, suggested by some users who examined the
tool, is to stop decorating methods once they have been explored, so that they won’t distract the user in
the future. One variation of this approach is to do so only locally (for a specific call or viewport) rather
than for all instances of the method. Another variation is to explicitly require users to take another action
to make a decoration disappear.
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While this approach will clearly reduce the number of decorations, it is based on three assumptions
that may not always be valid: First, that the information is appropriately consumed as soon as it is
first read. Second, that once consumed, the information is not forgotten. Third, that the method and
information would be recalled in other contexts.

In our lab study, subjects often explored the same method multiple times, and often did not realize the
importance of the information the first time they had encountered it. It is even possible that they would
have initially marked the method as read, and that this would have prevented the subsequent reading
where they had realized its importance. Even if information is remembered in the short term, it is not
clear that it can recalled effectively in the longer run, as we have seen with assumptions in the design
session. The developers’ recollection may also be based on contextual or visual cues, so it is not clear
that recollection would take place when a call is seen in another context.

A delicate balance must be maintained between wastefully presenting information that is still fresh in
memory and reinforcing information that is likely fading. This work merely explored whether developers
become aware of information in the first place. An important research question is for how long newly
learned knowledge about methods can be effectively recalled, and how this memory can be reinforced.
While the findings may help fine-tune eMoose, especially given the ability to adjust the contrast of
method decorations, they are important to provide a better understanding of software errors and ways to
avoid them.

By examining the records of which decorated methods were eventually explored by a developer,
it might be possible to fine tune the saliency of other decorations. For instance, if a developer rarely
examines decorations on constructors, it might be preferable to reduce the contrast of decorators on
other constructions that he may encounter. This more generally relates to the behavior of the developer
and the context in which exploration decisions are made, as described below.

Using code context to filter presented directives

One of the questions raised in the above discussion is whether information learned in one context would
be recalled in another. A related and more general question is whether we can identify what information
would be more relevant in specific contexts, and appropriately adjust our presentation.

When I tagged directives in my survey and when others did so in my tagging study, we did so in a
context-free manner. That is, we used our experience as developers to evaluate whether there are likely
to be situations where a particular clause could be important. The current implementation of eMoose
is also “context-free”. The algorithm merely checks that the target of a method call has an associated
directive, rather than considering the semantics of the call or the context of invocation.

Calling context clearly has an impact on relevance, as at the extreme certain directives are completely
irrelevant in specific contexts where the code has certain characteristics. For example, in code that is
single-threaded, locking or threading directives may not be relevant. The writer of a unit test or of some
internal mechanism may not care about directives warning users that a method is only for internal use.
The directive itself may convey certain conditions which may not match the calling context. In our study,
many of the directives in JMS referred to a form of administrative configuration that was not relevant,
causing distraction. In some cases, relevancy may depend on the goals and attitudes of the developer.
For instance, performance related directives may not be relevant when writing tests or prototype code,
but may be extremely critical in time-sensitive applications.

In most cases, context likely affects the relative importance of a directive rather than whether it should
be decorated at all. Our ability to change the contrast of the decorations based on calculated ratings can
be used to emphasize specific calls in specific contexts. For this purpose, however, it is not sufficient
to rely on collaborative filtering and user-provided ratings, as users would have rated the directives in
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the context that they had deemed important. Rather, we need some way of automatically calculating
relevance in a specific context.

Accomplishing this feat promises great rewards but presents very serious challenges. First, there is
a need to recognize and model the semantics of the directives and their qualifications. This goes beyond
simple natural text recognition to detect the directive in the first place. There is a need to understand the
purpose of the directive and identify terms related to the context, such as “administrative configuration”
in the JMS API. Second, there is a need to model the current context, both in terms of local static code
properties such as threading characteristics and more so in terms of the program and likely invocation
scenarios. Moreover, there is need to identify and model the characteristics of the software and current
goals of the developer. For instance, is this mission critical code or testing code? Is performance or
security currently a priority? Third, there is a need to associate the information from the model of the
directives with the model of the user and the code context.

While these challenges are significant, recent advances show some promise. Several researchers
have been modeling the activities of developers, identifying specific forms of activities and mindsets.
Meanwhile, development processes and tools such as Mylar have enabled a workflow where tasks and
intents are stated before work is begun rather than after it is completed at the point of committing the
check in. I believe that task activation could provide one important cue that could be used for identifying
the current goals and perhaps some context properties.

Finally, one noteworthy property of a code context is whether the instruction conveyed by a directive
is followed or violated in the context of a specific call. For instance, if the documentation of bar()
requires that foo() be invoked first, there is little value to decorating the call to bar() if it is indeed
preceded by a call to foo(). The ability to model protocols and other invocation rules and then statically
check them against the program is a very active research field. It is therefore worth investigating whether
some directives can automatically be converted into existing formalisms for which a checking tools
exist. Nevertheless, it is important to remember that directives are inherently natural text elements and
are therefore easier for users to create than some formal specification.

8.3.3 Pushing other types of knowledge and working in other domains

This work has demonstrated that developers may fail to become aware of important information in the
documentation of invoked methods, and that decorating references can be effective. However, I believe
that these findings can be generalized, and there is other information which may be worth “pushing”,
both in the current domain of JAVA source code and in other domains.

Other knowledge in methods

Methods are the core building blocks of JAVA programs. The focus of this dissertation had been on “pub-
lic” information - the header documentation of API methods and the directives they conveys. However,
methods can be associated with other important knowledge fragments of which callers should be aware,
including private internal ones and public and delocalized ones.

One of the characteristics of mature and widely available APIS is quality documentation that conveys
complete specifications in which directives may be present. While in projects that are actively being
developed many classes may serve as APIS for other parts of the program, the quantity and quality of
header documentation is generally lower. These methods may fail to convey all the relevant invocation
knowledge, thus presenting less opportunities for our technique to be useful.

However, these methods are also more likely to be incomplete or not sufficiently robust compared to
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methods of published APIS. For instance, they may be inefficient or unsafe, not handle certain cases,
or impose certain restrictions or assumptions that may be eliminated in the final version. Since these
limitations are not part of their intended behavior, this information will likely not appear in the header.
It may, however, be documented internally as comments near the offending code. In my experience I
have frequently encountered internal documentation that describes limitations of specific constructs. In
many cases, this serves as a reminder to that developer or to other maintainers that more work is needed,.
Since it may be indicative of a surprisingly incomplete implementation, this information may be critical
for clients who are invoking the method and would not otherwise think of reading its source code.

Similarly, studies [79] show that many methods contain task comments such as to-do reminders that
persist for long periods of time. Some developers prefer these to the more significant and visible external
bug reports. Unless a systematic survey of the open task comments is carried out, however, they may not
be noticed or addressed until the code is inspected or until a failure occurs. Again, callers may benefit
from knowing that a method contains an open action item, and this may even prompt them to address it
earlier.

The studies also show that some task comments serve as a form of communication between devel-
opers. A comment may direct a specific question at specific developers, but may not be noticed until
the code is inspected. Developers may benefit from knowing that a method they invoke requires their
attention.

The above forms of information can be considered internal or private as they are not part of the
published interface of the method. A natural direction for research is to evaluate the extent and severity
of awareness problems related to such knowledge. If this problem is significant, we can then explore
whether knowledge pushing can be effective. Recall that directives are just one form of knowledge item
which eMoose is design to push. The existing implementation already recognizes to-do comments and
decorates referencing calls. Similarly, tagged comments inside the source code can be used to form KIs,
and invoking methods would be decorated to attract attention.

While this dissertation has focused on information in the source code, information on program ele-
ments may also be located in other mediums. First, many project support tools, such as bug databases,
may convey important information about a method, such as a known fault or remaining action item. In
open-source projects and APIS, much information may also be present on the web, such as a community-
maintained list of caveats or best practices. This information is, of course, delocalized when the method
or a reference to it examined. With tools such as HipiKat, one could actively search for this informa-
tion. An important question is whether we can draw in relevant information and filter it effectively, in
order to provide callers with awareness of the most important information.

Other program elements, languages, and paradigms

In the scope of this dissertation I have only addressed JAVA methods. These are the building blocks of
all JAVA programs, and calls to these methods constitute clear references and contexts in which informa-
tion may be needed. Based on my examination of APIS and my development experience, I believe that
other program elements in JAVA do not present the same kind of delocalization problem. Fields are rarely
accessed directly in JAVA, as they are typically encapsulated by accessor methods. Constants are some-
times documented, but in general I have not seen many cases where detailed and surprising information
was associated.

Classes, however, present a unique challenge. While the documentation of most classes is merely
descriptive, I have encountered classes that convey critical and surprising information. In many cases,
however, this information was global in nature, and could apply to many methods. For instance, the class
documentation could describe threading requirements or performance caveats of a group of methods. In
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other cases, the documentation describes the correct protocol for carrying out certain actions, citing a
sequence of multiple methods. The problem with classes is that they are referenced many times: first by
name in the declaration, and then indirectly via the object on which methods are invoked. The points at
which we could present a decoration, such as the parameter listing of a method, could be distant from the
point where the information is relevant. Furthermore, suppose that a class describes the correct way to
carry out a certain action: how would we determine if this action is even attempted in a code fragment?
In my opinion, most relevant knowledge could be manually attached as a knowledge item to existing
methods of the class.

A more interesting avenue of exploration, in my opinion, is how to apply this technique to other
paradigms. Many new object oriented languages, such as Python and Ruby, are dynamically typed.
Objects are not declared with a type, so the target of a call and its legality may change over time. This
presents two significant challenges. First, when examining source code, the call may have multiple and
unrelated targets. Second, it would be a lot more difficult to heuristically determine the possible types of
the object. The popularity of the web also brought on new forms of APIS, such as RESTful and XML
based APIS. These are not documented or invoked in the traditional way, presenting new challenges to
our knowledge pushing technique.

Other domains

This dissertation has begun with the intent of supporting collaborative design, and we have now come full
circle. We have seen anecdotal evidence that awareness of delocalized knowledge may be important in
design. We have also seen clear evidence that it presents a challenge in implementation. Though outside
our scope, the next step to completing this circle would be to evaluate the severity of this problem in the
domain of design, and identify ways to support it. Electronic design tools present many ways to visually
indicate the presence of delocalized knowledge. There are, however, two challenges. First, we must
identify a way to automatically tie instances of the same entity, even if different names or notations are
being used. Second, whereas method calls typically refer to a single target, the identity relation can tie
many different instances of the same entity in different artifacts. We must identify ways to determine
what information should be pushed, and how to combine information from multiple sources to facilitate
its consumption.
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Appendix A

Reproductions of booklets used in our
studies

A.1 Materials from the eMoose lab study

A.1.1 Introduction booklet

Documentation Use Study – Preliminaries, Uri Dekel, CMU 

Preliminaries 
 
Welcome and thank you for participating in this study! 
 
The goal of this study is learn about the way in which documentation is used in software maintenance, 
and the impact of certain modifications to the standard JavaDoc mechanism on these practices. 
 
The plan is for the study to take up to 2.5 hours 

• Various preliminaries (About 15 minutes) 
o Reading this form 
o A short test of Eclipse familiarity (prerequisite for participation) 
o Reading and filling the consent forms 
o Tutorial on the eMoose tool 

• Six maintenance tasks (15 minutes + 5min for reading for each task) 
• Debriefing questionnaire (about 15 minutes) 

 
You will be paid 25$ for your participation in the study. 
You will also participate in a prize raffle based on your performance: you will receive a number of 
raffle tickets equivalent to the number of tasks you solve on time. Please keep the tickets until the end 
of the study (Sep 08).  
 
Please note: Some of the tasks in this study will be repeated by multiple subjects. You are asked not to 
discuss the nature or solution to these tasks with anyone else to avoid contaminating our subject 
pool. Since compensation will not depend on performance, there is no benefit to others in knowing the 
solutions in advance. 
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Documentation Use Study – Preliminaries, Uri Dekel, CMU 

Eclipse Usage Test 
 
The study compares the influence of certain additions to the standard Java tooling of the Eclipse IDE 
and therefore depends on the subject’s prior familiarity with these features certain concepts of object-
oriented programming. To continue with the study, you will be asked to successfully complete the 
following test within five minutes. 
 
Failure to pass this test will prevent you from participating in the study. You will receive a 
compensation of 3$ for your time. 
 
Below is a sequence of steps that you must carry out. Answer questions verbally. Note that some 
activities can be carried out with keyboard shortcuts or via menus; both are ok. 

o Open the project edu.cmu.contextstudy.tutorial 
o Go to package edu.cmu.contextstudy.tutorial 
o Open the source code editor for Driver.java 
o Reveal all the methods defined in Driver without leaving the editor 
o Reveal all the methods defined or inherited into Driver without leaving the editor 
o Move the insertion point to the run() method WITHOUT manually scrolling. 
o Reveal the type hierarchy for B without leaving the code editor 
o For the variable o in Driver.run() and each of the classes A,B,C,D,E, are they a 

supertype, a static type, or a possible dynamic type? [Let the experimenter know if you are not 
familiar with these terms] 

o Reveal the JavaDoc for the call to foo in method run without leaving the method. 
o Open the source code of foo in the static type of o without leaving the editor. 
o Open the source code of foo in class C without leaving the editor. 
o Find all references to class C without leaving the editor. 
o Close all editor windows and the tutorial project 
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JavaDoc and eMoose tutorial 
 

Standard JavaDoc mechanisms in Eclipse 
The only documentation with which this study is concerned is JavaDoc documentation, with which you 
should be familiar from Java experience. Throughout the study, you will have access to the web-based 
versions of the JavaDocs of the APIs you will be using. However, all the information you need is 
available using the JavaDoc support in Eclipse, which we shall now cover. 
 

o Open again the edu.cmu.contextstudy.tutorial project 
o Open the source code editor for Driver.java and scroll to method main. 
o Spot the call to Math.random and hover over the class and then over the call, revealing the 

JavaDoc for each. 
o Repeat the last action, but press F2 to receive a resizable window with all the details. Note that 

you can now scroll and reveal missing text. 
o Look at the JavaDoc view (unhide it if necessary) and see that it reflects the last item you 

clicked on or the last movement of the insertion point. 
o Click on the calls to foo and bar in run() and note the JavaDoc that appears with the tooltip 

and with the JavaDoc view: it refers only to the static type. 
o Add a second call to bar(); note how a tooltip briefly appears as you are making the selection 

using the completion suggestion. 
 
 
 
Tagged JavaDocs 
 
In each of the six tasks you will be performing, you will be assigned to one of three conditions: 
standard, tags, and eMoose. In the standard condition, you will be encountering standard JavaDoc using 
the Eclipse mechanisms described above. 
 
In the other two conditions, you will be using “tagged JavaDocs”. These are JavaDocs that for some 
methods have been manually annotated by the experimenters. The annotations consist of one of more 
line at the end of the JavaDoc block, each with the form “@tag TYPE.SUBTYPE: TEXT”. In most 
cases, the type is “usage” to indicate that these are instructions to the client. The subtype can vary, but 
examples include: 

o Restriction – When (and when not) to call the method 
o Protocol – Indicate some sequence of actions in which this call must or must not take place 
o Parameter and Return – Restrictions or guidelines about the parameters or returned items. 
o Limitation – Some way in which the method will not perform. 
o Sideeffect – Some unexpected potential behavior 

 
In most cases, these tags would be based on text in the method’s JavaDoc, often verbatim or with minor 
changes. The original text is often highlighted in the original with prefixes like “note that”. However, 
you should not assume that all important information has been tagged. To understand the context of a 
tag, you may want to read the original JavaDoc text.  
 
It is also important to note that the tags were created for entire APIs prior to the selection of tasks for 
the study. Therefore, the tags are not necessarily relevant to your current task; they may help you spot 
something you may miss otherwise, or they may distract you.  
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Finally, note that the tags will not appear in the web version of the JavaDocs. 
 
 
 
Using eMoose 
 
In certain tasks, some functionality from the eMoose tool will be activated. When that is the case, the 
tool will continuously scan the source code currently shown in the viewer and identify method calls. If 
the JavaDoc of a potential target of a call has a tagged comment (as described earlier), a box will 
surround that call. You can then use the hover mechanism to reveal an eMoose tooltip. The upper half 
of the tooltip consists of the original JavaDoc (with tags). The lower half consists of a “tree” showing 
the class name, invoked method, and the associated tagged comments; you can use F2 to zoom.  
 
Note that as with tagged comments, the tagging took place before the tasks were created, so not all 
boxes and not all the tagged comments within them are going to be relevant to your current needs. 
 
Finally, note that eMoose will create a box even if just a possible dynamic type contains a tagged 
comment, and the tree will reveal all these comments. For example, after activating eMoose (ask the 
experimenter to do so), hover over foo() and bar(). Note that eMoose does not try to identify which 
subtypes are likely to be dynamic types in the situation; it includes all the subtypes. However, the tree 
hides branches with no tagged comments. This can create a disparity between the upper and the lower 
half of the tooltips: the upper part only shows the JavaDoc of the static type, while the lower part shows 
observations from dynamic types as well. 
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More procedures 
 
During the study, you will perform a series of code maintenance tasks. For each task, you will be shown a 
codebase, some background information, and requirements of something to accomplish, typically with a 
starting point and time limit. You will be given time to explore other parts of the code, and when you are 
ready you will be moved to the starting point. You may be asked to “Think aloud” and describe your 
activities to the experimenter.  
 
Note that some of the code may use libraries and APIs with which you are not likely to be fully familiar. 
This is part of the study, so please let the experimenter know if you have used any of them before. 
 
In some tasks you will be given access to the eMoose tool, while in others you will use the only standard 
facilities of the environment. You are not required to use the tool’s recommendations, and you must be 
aware that in some cases they may be helpful while in others they may not. You will be given access to 
eMoose in half of the tasks; do not use it in others. 
 
You will be allowed to use a web browser located on the second monitor, although it is not necessary for 
the study: all the information you seek can be found within the IDE. 
 
Unless specified otherwise, you will not be allowed to execute the code or run the debugger. The study is 
focused on the understanding of code, and the instructions will typically point you to the appropriate code 
section, making the use of the debugger superfluous. 
 
After the study, you will be asked to answer a questionnaire.  
 
Note that to enable analysis of your strategy and tool use, the screen will be recorded along with voice 
using the microphone on the table.  
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Introduction to the JMS API 
 
 
What is JMS? 
 
The two tasks which will be described below are concerned with the Java Messaging 
Service (JMS) API, which is published by Sun as part of J2EE to allow applications to 
create, send, receive, and read messages across processes and machines, while hiding 
underlying networking details.  
 
JMS defines a common set of interfaces and associated semantics that allow programs 
written in the Java programming language to communicate with various messaging 
implementations. JMS is reliable, ensuring that messages are delivered once and only 
once. Note that Sun only publishes the JMS API, while multiple vendors or (“providers”) 
publish implementations (e.g., Apache ActiveMQ). 
 
JMS can operate in a point-to-point (P2P) manner through a Queue, where each message 
has only one Consumer and there is support for acknowledgements. The Queue 
ensures that there are no timing dependencies: the Sender can send before the 
Receiver is running, and the receiver can receive after the sender is done running; 
material is deposited in a queue.  
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JMS can also operate in publish/subscribe mode through topics, in which one client posts 
messages to a Topic, which multiple subscribing clients can receive. Unlike P2P, the 
same Message can have multiple consumers. There are, however, timing dependencies, 
as a client only receives messages posted after its subscription, and stops receiving them 
when the subscription is terminated. In other words, unlike P2P, subscribing to a topic to 
which messages have previous been sent does not deliver the messages. 
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Programming model 
 
JMS uses a broker, a process located on port 61616 on a certain machine which keeps 
tracks of queues and topics and manages the messages in them. That process will already 
be active during the study.  Client programs will use abstractions of these entities using 
names, so a queue or a topic is actually physically maintained in the broker. 
 
The core use of JMS involves several objects described below: 
 
Both Sender and Receiver use a ConnectionFactory to create a Connection 
object that corresponds to the selected JMS implementation.  
 
Connections are used to create a Session (different types for queues and for topics) 
that represent an atomic unit of work; sessions are responsible for creating message 
producers, consumers, destinations, and the messages themselves. 
 
The Destination represents a Queue or a Topic from the point of view of a 
Session; it is “created” in each session. The actual implementation and storage of these 
structures is in the broker process.  
 
The producers and the consumers are associated with specific destinations and used to 
time sending and receiving. 
 
There are many types of messages, which can receive various metadata; they are created 
by the sender.  
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Preparation for the JMS tasks 
 
Begin by opening the project edu.cmu.contextstudy.jms, and open the 
jmssamples and testsuite packages.  The former contain a variety of sample 
programs that use JMS, while the latter contains some of the JUnit tests you will be 
using in this study.  
 
To simplify execution and support JUnit, we wrapped some of the example programs 
(which have mains) with a TestHarness thread that runs each method main in a 
separate thread, and fails the JUnit test if the underlying sample program quits 
unsuccessfully or if it hangs. If you wish, feel free to examine 
TestHarnessRunnable in the testsuite package to see how it is implemented, 
although this is not necessary to your task. 
 
The three tasks you will carry out simulate the last phase of a debugging scenarios: you 
have already investigated potential causes for a problem, narrowing it down to a specific 
code section, which you will have to inspect to determine what the problem is. You are 
asked to show proof for the fix, by pinpointing why it occurs and demonstrating that 
making certain changes will solve the problem. 
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First JMS task 
 
[Make sure eMoose is DEACTIVATED] 
 
Open the SynchSenderAndReceiverTest  class in the testsuite package. As 
you can see, the test involves executing two threads, a sender and a receiver. Both are 
started with the same queue name, and the sender is started with a parameter of 20, 
indicating that it should send 20 messages to the receiver. 
 
Running the test shows you that the sender thread sends 20 text messages (announcing 
each); it then sends one nontextual message (to indicate that sending is complete) and 
terminates successfully. The receiver thread, however, is silent and does not terminate. 
Feel free to examine the sender if you wish. However, the problem is in the receiver side. 
 
[ACTIVATE eMoose if asked] 
 
Now open the file SynchQueueReceiver in the jmssamples package. It contains 
only the main method. If you ran the debugger, you would find that the thread blocks at 
the call to receive in line 110. Find out why and fix this; your time starts when you scroll 
to that line. 
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Second JMS task 
[Make sure eMoose is DEACTIVATED] 
 
Open the DurableSubscriberTest, and see that this time we only have one thread, 
which invokes DurableSubscriberExample with a certain topic name. 
 
Recall that unlike P2P, in standard publish/subscribe a subscribing client only receives 
messages posted while it is active. If a subscription is stopped and then restarted, all 
interim messages are lost. This is sometimes a problem, so JMS also supports durable 
subscriptions; these are named, and the JMS provider stores the messages even if the 
subscriber is currently closed. The TopicSession can then be used to create a durable 
topic subscriber, which receives any pending messages whenever it is started. 
 
This concept is demonstrated by the DurableSubscriberExample, which defines 
internal classes named DurableSubscriber and MultiplePublisher. The main 
program looks like this: 
 
public void run_program() { 
        DurableSubscriber  durableSubscriber = new DurableSubscriber(); 
        MultiplePublisher  multiplePublisher = new MultiplePublisher(); 
        durableSubscriber.startSubscriber(); 
        multiplePublisher.publishMessages(); 
        durableSubscriber.closeSubscriber(); 
        multiplePublisher.publishMessages(); 
        durableSubscriber.startSubscriber(); 
        durableSubscriber.closeSubscriber(); 
        multiplePublisher.finish(); 
        durableSubscriber.finish(); 
    } 

 
Running the program should produce the following output: 
 
Starting subscriber 
PUBLISHER: Publishing message: Here is a message 1 
PUBLISHER: Publishing message: Here is a message 2 
SUBSCRIBER: Reading message: Here is a message 1 
SUBSCRIBER: Reading message: Here is a message 2 
PUBLISHER: Publishing message: Here is a message 3 
SUBSCRIBER: Reading message: Here is a message 3 
Closing subscriber 
PUBLISHER: Publishing message: Here is a message 4 
PUBLISHER: Publishing message: Here is a message 5 
PUBLISHER: Publishing message: Here is a message 6 
Starting subscriber 
SUBSCRIBER: Reading message: Here is a message 4 
SUBSCRIBER: Reading message: Here is a message 5 
SUBSCRIBER: Reading message: Here is a message 6 
Closing subscriber 
 
[ACTIVATE eMoose if necessary] 
Unfortunately, there is some problem in the constructor of DurableConstructor 
which starts at line 119 that will cause it to crash. Identify what the problem is and fix. 
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 Introduction to the Swing LayeredPane 
 
The standard java library provides two different toolkits for creating user interfaces. 
 
The Abstract Window Toolkit (AWT) was the first, and provides a basic set of UI 
components. These components are often implemented with the native widgets of the 
platform, so look-and-feel may be different across programs. 
 
The Swing library is a later toolkit built, in part, on top of the AWT. Swing offers a richer 
set of widgets, and allows components to have the same consistent look-and-feel across 
platforms.  
 
Dialog and windows in AWT and SWING consist of a hierarchy of components that 
contain additional components and so on. All containers in AWT are subtypes of 
Container, and containers in Swing are also remote subtypes, often via JPanel (a 
lightweight container) or JLayeredPane. In Swing, components can be added or 
removed to the container, and they are then laid-out automatically by a layout manager. 
 
The two tasks that follow make use of JLayeredPane, a swing container that not only 
accepts internal components, but allows them to be arranged in “layers” so that objects in 
one layer are occluded by objects in higher layers. For example, in the picture below, 
each colored box is in a different layer within the layered pane titled “Move the 
Mouse to Move Duke”. Duke the Java mascot is currently in the second layer. 
When moved around, he will appear in front of the yellow and magenta layers, but be 
hidden behind the red and green layers.  
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Note that components in a layer have an int position in the range -1..N-1 where N is the 
number of components in that component’s layer. -1 always represents the lowest 
(bottom) position while 0 represents the highest (i.e., N-1). In the picture above, duke is 
in position 0 and is therefore visible above the cyan box. If the checkbox is ticked, his 
position will change to -1, and he will appear behind the cyan box, though still in its layer 
and above the magenta and yellow. Ticking it again will reverse the effect. 
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First LayeredPane task 
 
[DEACTIVATE eMoose] 
 
Open the edu.cmu.contextstudy.jdk project and the corresponding package, 
then open the LayeredPaneDemo.java file. 
 
Run the program; the window that opens should correspond to the picture you saw 
earlier. Start by moving Duke around and see that the behavior corresponds to 
expectations. Uncheck the checkbox, and see that Duke is now behind the cyan. Check if 
again and see that things are back to normal.  
 
 
Now use the listbox to shift to a higher layer and see the impact. Now switch to a lower 
layer and move duke around; unfortunately, he did not move back to the lower layer. 
Things are only fixed if you check and uncheck the on-top checkbox, after which things 
work as expected. Clearly, something is wrong. 
 
[ACTIVATE eMoose if necessary] 
 
Your task: identify the source of the problem, and fix it. The time starts when you first 
see the program.  
 
Note that if you do not find the problem within a certain timeframe (not disclosed), the 
experimenter will narrow your focus to a specific method. 
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Second LayeredPane task 
 
[DEACTIVATE eMoose] 
 
Open and run LayeredPaneExampleDual 
 
To better demonstrate the idea of position and make the example more customizable, the 
LayeredPaneDemo class has been reworked. It now includes two layered panes, one 
in which Duke will appear on top, and one in which he will appear on the bottom 
(moving the mouse in one box moves a Duke in the second one as well). Instead of the 
original checkbox, two new checkboxes now appear, controlling whether each of the two 
panes appears in the window. An additional checkbox controls whether the control panel 
appears at the top or at the bottom of the window.  
 
All changes to any of the three checkboxes are now routed to the empty method at the 
end of the program. Please implement it so that all components are shown and arranged 
as necessary based on the checkbox states, which you can check with isSelected on 
the objects controlPanelOnTop, useOnTopPane, and useOnBottomPane; 
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Apache Commons Introduction 
 
Even though the standard Java library is quite extensive, it does not offer many of the 
reusable abstractions that many larger projects need. To this end, the Apache foundation 
which operates many java based projects created a project called Apache-commons to 
provide such components to its own projects and the community. There are multiple 
subprojects, such as digester (which reads XML straight into Java), beanutils for utilities 
to beans, collections, etc. 
 
Our focus here will be in the collection frameworks that provides additional types of 
collections not provided by the standard library. 
 
Important note: As of Java 5, much of the Java collections library has been converted to 
using generics (templates). Apache commons has not. In this study, you will see 
collections used without specifying a type. This may cause some warnings but has 
nothing to do with the study or the problems you will be facing. You should also ignore 
any warnings about deprecations. 
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First collections task 
 
[DEACTIVATE eMoose] 
 
Open the project edu.cmu.contextstudy.apachecommons and open the 
package edu.cmu.contextstudy.apachecommons.testsuite.  
 
You will be working on the StandardCollectionsTest class (don’t open it yet) 
which contains a JUnit test. 
 
The test setup operates as follows: 

• It creates an array of Collections containing the following collections: 
o HashSet – The standard Set implementation from the JDK 
o PriorityBuffer – An apache-collections collection that offers unique 

element retrieval order 
o TreeList – An apache-collections list implementation using a tree 
o HashBag – An apache-collections implementation of a Bag interface 

(counts instances of each value) 
o Vector – The standard JDK vector implementation 

• It runs a loop 200 times, in which it randomizes a number in the range of 0 to 30, 
and then adds it to each of the collections with their “add” method. 

 
[ACTIVATE eMoose] 
 
Now open the file and examine the testMutualRetainment method that runs after 
the setup. When the program is run, the first assert statement fails.  
 
Without making changes to the program or running the debugger, identify the cause of 
the problem, though you are not asked to fix it. You have to show a reliable proof for the 
cause. 
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Second collections task 
 
[DEACTIVATE eMoose] 
 
Open the project edu.cmu.contextstudy.apachecommons and open the 
package edu.cmu.contextstudy.apachecommons.testsuite.  
 
You will be working on the StandardMapsTest class (don’t open it yet) which 
contains a JUnit test. 
 
The test setup operates as follows: 

• It creates an array of Map objects containing the following maps: 
o HashMap – Standard java map, implemented via Set 
o TreeMap – Standard java map, operates on comparable keys 
o DualTreeBidiMap – An implementation of the BidiMap interface 

defined by apache collections, maintains bidirectional mappings (i.e., one 
can ask for a map in the other direction) 

o MultiHashMap – An implementation of Map defined in Apache 
collections that allows multiple values for a key by having each key map 
to a list of values rather than the value itself. 

o DoubleOrderedMap() – An implementation of Map in apache-
commons that implements the standard Map interface using a red-black 
tree, which allows keys and values to be stored sorted, facilitating access 
to both. 

o ListOrderedMap – An implementation of Map in Apache collections 
that also retains the order of additions. 

• It creates two arrays of size 200, a labels array and a numbers array. 
• It run a loop 200 times, in which it randomizes a number in the range of 0 to 30. 

The number is placed in the corresponding place in the numbers array, while the 
corresponding labels array simply contains “label #x” where x is the iteration 
number. In other words, labels do not repeat themselves, but numbers do. 

 
 
Now open the file and examine the testMapPopulation method that runs after the 
setup. When the program is run, the loop would fail (assertion or exception) at two 
iterations.  
 
Without running the debugger, identify which ones and why, and show proof. 
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Documentation Use in Software Maintenance 
Recap Survey (ver. 2) 

 
Subject number: [          ] 
 
In order for us to better understand the strengths and the weaknesses of the eMoose tool, 
please answer the questionnaire, which consists of 27 closed questions and 5 open ones. 
For the closed questions, please state your agreement or disagreement (-3 for strongly 
disagree, +3 for strongly agree, 0 for neutral; skip if no opinion).  
 
Note that “sometimes” means “occasionally” or “I can think of a few instances”, whereas 
“usually” can be interpreted as “occasionally not”, or “I can only think of a few instances 
where not…” 
 
Marking Calls (7 questions) 
 
(1a) eMoose sometimes offered significant help in identifying interesting calls 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(1b) eMoose usually offered significant help in identifying interesting calls 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(1c) eMoose sometimes distracted me by making me look at the wrong calls 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(1d) eMoose usually distracted me by making me look at the wrong calls 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(1e) eMoose marked too many calls 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(1f) I tended to look at marked calls first 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(1g) I ignored some calls because they weren’t marked 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
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JavaDoc Hover (10 questions) 
 
(2a) eMoose sometimes offered significant help with the lower pane 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2b) eMoose usually offered significant help with the lower pane  
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2c) The redundancy of information in the lower pane was distracting 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2d) I tended to read the information in the lower pane before reading upper pane 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2e) I decided whether to read the upper pane based on the lower pane 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2f) I avoided reading the upper pane when there was information in the lower pane 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2g) It was straightforward to correlate observations to documentation sentences 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2h) It would be better to mark sentences in the JavaDoc than to have the separate pane 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2i) I occasionally missed something important when reading the documentation narrative 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
(2j) I would have liked to see all observations overlaid on the source code instead of 
having to explicitly hover over calls surrounded by boxes.  
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
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Dynamic types (3 questions) 
Dynamic type = The type of an object during runtime which can be a subtype of the 
declared (static) type. E.g., Set mySet = new TreeSet() and Set mySet = 
new HashSet(); 
 
3a. eMoose helped in finding information in dynamic types  
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
3b. eMoose distracted me by showing too many possible dynamic types 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
3c. I have encountered similar situations with differences in dynamic types before 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
General (7 questions) 
 
4a. The tasks were challenging 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
4b. The activities were similar to what I often do in my everyday use. 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
4c. To accomplish tasks I had to read documentation significantly more carefully than I 
am used to in everyday use 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
4d. I prefer to read JavaDocs in HTML form 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
4e. I prefer to read JavaDocs in HTML form 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
4f. I prefer command line tools and editors like emacs to IDEs like Eclipse 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
 
4g. eMoose may be useful in my everyday use 
 
Strong disagree   -3    -2    -1    0    +1    +2    +3    Strong agree 
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Open questions about eMoose 
Please answer the following questions briefly: 
 
1a. How did you decide which calls to look at if several calls were marked? 
 
 
 
 
 
 
 
What was the most useful thing you got from eMoose? 
 
 
 
 
 
 
 
What was the most serious distraction that eMoose has caused? 
 
 
 
 
 
 
What did you like about the tool? 
 
 
 
 
 
 
What did you dislike about the tool? 
 
 
 
 
 
 
May we contact you in the future for additional questions about this study, and how?   
 
 
 
Thank you for your participation !  
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Introduction 
 
Welcome and thank you for participating in this study! 
 
The goal of this study is to determine the level of consistency among individuals in 
tagging certain clauses, which we call directives, within the documentation of Java-based 
API methods. This is necessary in order to determine whether a community of developers 
can effectively tag directives in large libraries.  
 
Directives (as we later explain) convey information that is particularly important for the 
function’s users to become aware is as they are imperative for the proper use of the 
function. This is different from specifications, which constitute the majority of JavaDoc 
text, and which provide sufficient details for those interested in understanding everything 
about the function or in ensuring that the contract is used correctly. Both definitions, 
however, are somewhat amorphous, which is why we are trying to determine how 
different individuals approach them. 
 
For example, consider the following documentation of Math.random(): 

 
 
Most Java programmers are well familiar with this method and with its return value 
range, and with the fact that values are chosen according to a uniform distribution. 
However, this documentation also contains two clauses that may surprise and have an 
impact on clients. One states a side effect of the call: the creation of a random generator 
on the first call. The second states that to improve performance when many threads need 
to generate numbers, one may want to have a separate generator in each thread. Both of 
these clauses are candidates for directives, although their importance is limited, and their 
informative nature means that ignoring them causes no serious ill effects. 
 
There are cases, however, when such surprises could lead to serious effects. For example, 
consider the documentation for String.replaceAll: 
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According to this text, the replacement string is also treated as a regular expression, and 
must not contain dollar signs or backslashes. This may come as a surprise to someone 
who is used to String.replace. Some of those users may not even be aware that replaceAll 
works with regular expressions. 
 
There are many cases where directives are a lot more obvious and carry more significant 
implications. For example, a method’s documentation may instruct the user to call 
another method first, to not invoke it from a certain thread, or to be responsible for 
releasing a handle that it obtains from the platform. 
 
Note that if something appears trivial or common it may not be a directive or may be a 
directive of marginal importance. For example, all JavaDocs in Java list all the 
parameters and often require that parameters not be null. Since this is fairly standard, and 
users are expected to check for this anyway, this is not a directive. However, if there is a 
restriction on the concepts of a parameter, for example, then this is a directive. 
 

 Procedures 
 
In this study your role will be to identify directives in the printouts of the JavaDocs for 
several classes. You will receive a booklet consisting of some background material about 
the API, followed by the actual printout.  
 
Please go systematically over the text for methods. When you find something that could 
possibly be a directive (even if you are not sure), in your opinion, use a highlighting pen 
to mark the entire text fragment that would correspond to a directive. This text could 
potentially be rewritten as a more concise and direct instruction, but you do not have to 
do so. If at doubt as to whether something is a directive or not, mark it anyway.  
 
Note that the same method documentation may contain multiple directives, so please 
mark all of them. Markings should only be applied to the detailed Javadocs of public 
methods and constructors, and not to the documentation of the class, its fields, or 
nonprivate methods. In addition, you should only be concerned with directives aimed at 
users of an instance of a class (or subclasses) rather than directives aimed at users who 
will subclass the current class or override its methods.   
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You are requested to highlight every clause which you consider to be a possible directive, 
even if you ultimately decide that it is not. Once you added the highlight, you are also 
asked to pick a rating between 0 and 7 in a regular pen next to the highlight. The rating 
should represent your opinion on this directive, and should factor in your confidence, 
how surprising or nontrivial it is, the importance of developers becoming aware of it or 
the consequences if they do not, and the situations in which it could be relevant. The 
“standard” confidence should be 4, with lower numbers indicating much lower rating. For 
example, “call X first” or “don’t invoke from UI thread” would likely be rated 7, while 
the directives we saw earlier for Random would likely be rated closer to 1. If you decide 
that something is, ultimately, not worthy of being a directive, mark it as 0. 
 
In addition, you are asked to classify each highlighted directive with a rating of above 0, 
by annotating it with one (or at most, two) of the mnemonics for directive types that will 
be listed at the end of this document. Make sure you understand the distinction between 
types before you start working.   
 
The markings you make will be compared to the markings created by several other 
subjects, to see how similar they are. The most important factor is whether a clause is 
marked or not, with the rating and typing supporting some information. Therefore, if you 
are not sure, mark the text as low rating rather than not mark at all.  
 
In some cases, a very similar clause will repeat almost identically in several methods. 
Please mark all cases. We realize that the task as a whole is mundane and tiring, but 
please try to remain attentive. Feel free to take breaks at any point. 
 
You may ask the experimenter questions, if necessary, about API concepts or 
terminology. 
 
The first class you will look at will serve as a pilot and practice, and you will interact 
with the experimenter after you have finished tagging it. 
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Directive Types 
 
Please keep this page open for reference during the study 
 
GEN – General – Please use this if nothing else is appropriate 
 
RES – Restriction - Forbids the use of the method from certain contexts (e.g., "don't 
invoke from the UI thread") or defines the entities allowed to make the invocation (e.g., 
"To be called only from debug infrastructure") 
 
LIM - Limitation - Alerts the user to some (unexpected) limitation in how the method 
works. For example, "does not announce changes to listeners" 
 
PROT – Protocol - Conveys some invocation sequence. For example "don't invoke this 
before you invoked X" or "remember to notify Y after calling this". 
 
THRD – Threading - Conveys some issues relating to threading, such as requiring the 
use of a system thread or indicating that execution may block. 
 
LOCK – Locking - Conveys specific locking requirements 
 
PARA – Parameters - Conveys specific instructions about the parameter, that are far 
from being trivial (and thus covered just by the @param tag). For example, the parameter 
value should not include certain content.  
 
RET – Return value - Conveys specific instructions about the return value that are far 
from being trivial (and thus covered just by the @param tag). For example, deallocation 
responsibilities. 
 
PERF - Performance - Conveys to the client that there is some performance issue with 
using this method. For example, that it takes a lot of time 
 
SIDE – Side effect - Alerts the user to some sideeffect associated with invoking this 
method 
 
SEC – Security - Alerts the user to some security implications or requirements 
associated with invoking this method. 
 
ALT – Alternative - Conveys to the users that they may want to use a different method. 
For example, "to cause a refresh, call X instead". 
 
REC – Recommendation - conveys to the users that they may want to perform 
additional operations. For example, "you may want to validate the URL first", but that 
not doing so is not an error 
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