Cache-sensitive optimization of immutable graph
traversals
(CS745 Project Report)

Uri Dekel and Brett Meyer

ABSTRACT

This project strives to demonstrate the potential benefits of
improving the cache locality of programs which frequently
traverse an immutable data structure. In our approach, the
compiler generates code to fold the inherently noncontigu-
ous representation of each node in a mutable structure into a
more contiguous representation possible only for immutable
structures. For instance, a mutable graph structure in which
nodes maintain linked lists of edges could be transformed
into a structure where each node maintains its edges inter-
nally in a fixed array. Such a representation yields improved
performance due to better cache locality and a decrease in
pointer dereferencing operations. It also opens the door to
external reorganizations of the nodes.

This report presents results on potential improvements to
manually optimized programs, and discusses the feasibility
and usefulness of implementing such optimizations in com-
pilers. Our focus is limited to the example of graphs.

1. INTRODUCTION
1.1 Background

Memory access is a significant bottleneck in modern com-
puting architectures, as memory latency may be longer than
a processor cycle by orders of magnitude. To alleviate this
problem, at least one level of caching is used to bypass these
expensive accesses by retrieving the frequently accessed data
from a much faster but smaller cache memory.

The effectiveness of caching arises from the principle of lo-
cality, which implies that if a certain object is accessed, then
the probability of accessing the same object in the near fu-
ture increases. Thus, if we just accessed a variable in main
memory, then a subsequent access may be less expensive as
the variable has been placed in the cache during the first
access. If it is still there, then we have a ‘cache hit’. How-
ever, since cache space is limited, an object may be evicted
in deference to others, resulting in an eventual cache miss.

Another implication of the principle of locality is that ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cess to one object increases the probability of a subsequent
access to a related object. This implication is the basis
for prefetching, which brings the necessary object from the
long-latency medium before it is absolutely required, in an-
ticipation of its possible future need. Prefetching is practical
in many situations when the number of relevant objects is
roughly linear in the number of active objects. For instance,
modern processors assume that if an instruction is executed,
so will the next few following instructions, and prefetch ac-
cordingly. However, prefetching is less practical for optimiz-
ing specific program behaviors, since it requires hardware
and software support for recognizing these opportunities.
Unfortunately, hardware support for pre-fetching is limited
to extremely simple memory access patterns, reducing its
usefulness as a general technique for memory performance
optimization.

Nevertheless, an inherent property of cache memory im-
plementations allows programs to indirectly leverage prefetch-
ing on a small but extremely effective scale: Cache memory
is not at the granularity of a single object. Instead, it con-
sists of lines of contiguous memory space which could ac-
commodate multiple objects, and are manipulated as one
unit. Thus, a memory organization that stores an object
and its related objects contiguously increases the likelihood
that when the first object is accessed and its memory block
brought into the cache, one of the related objects will be in
the same cache line. For instance, in languages like C, arrays
are allocated as contiguous blocks of memory. A sequential
scan of the array will thus trigger many cache hits, since the
cache line containing the first member contains several of its
successors, etc.

Unfortunately, many common data structures are not lin-
ear and use pointers to connect objects scattered around
memory. This nonlinear structure precludes us from naively
benefitting from such implicit prefetching. Nevertheless, not
all is lost, since pointers offer memory transparency, in the
sense that the exact location of an object in memory is un-
known to the programmer. There is therefore nothing to
prevent the compiler or runtime system from shuffling ob-
jects in memory to achieve a similar effect. Accomplish-
ing this is difficult, and demands specialized treatment of
the program and explicit understanding of its behavior and
structure. However, optimizing the memory behavior of cer-
tain data structures can yield significant performance gain
in certain applications.

1.2 Goal and Approach

The goal of this project is to optimize the cache-hit rates
for programs which perform frequent traversals of graph

data structures. Graphs play central roles in many appli-
cations in computer science, from compilation to mapping
algorithms to games. Unlike data structures whose primary
goal is to provide efficient access to information, the essence
of a graph’s data is in its structure. Thus, whereas programs
are likely to traverse short paths in data structures like trees
or tries, graph data structures are often traversed in their
entirety, increasing the number of memory accesses.

Improving the memory behavior of graphs is extremely
challenging, because they do not have the inherent organi-
zation of structures such as binary search trees. Instead,
each node can stand by itself or be connected to an un-
limited number of nodes, making optimization choices more
difficult. Furthermore, graphs can be cyclic and their edges
are not ordered, making traversal less predictable than for
some other data structures. Nevertheless, we plan to provide
infrastructure for optimization which could be leveraged to
accommodate a variety of memory organization techniques.

Our motivation is based on the intuition that most graph
traversals take place after the graph has been created and its
structure stabilized and becomes immutable For instance,
in many compilers different optimizations passes traverse
the same control-flow graph of a program after it has been
calculated from the intermediate representation. Similarly,
once a route map has been built, many traversals may take
place to seek optimal paths. Thus, we argue that graphs are
mutable as they are being constructed, but are effectively
immutable at the time of traversal.

Mutable graphs must accommodate uncertainty and are
not memory efficient. For instance, they use non-fixed col-
lections such as linked lists to maintain the adjacencies of
each vertex. Immutable graphs, on the other hand, can be
organized more efficiently. First, the collections are now
fixed in their size, reducing indirection and allowing them
to be stored in new ways. Second, it is now possible to
reorganize the memory ordering of vertices to increase the
chances of multiple vertices being stored on the same cache
line. This would be particularly useful if nodes that are ac-
cessed close to one another in a graph traversal would be on
the same line.

A way to optimize programs that make frequent traver-
sals of the same graph would be, once the graph has been
created, to create an immutable version using a more effi-
cient representation, and then have all traversals utilize this
immutable version.

The goal of our project is to automate this optimization
(as much as possible) by having the compiler make the nec-
essary modifications to the program, with limited explicit
input from the user.

1.3 Past work

The idea of reorganizing data to improve cache-performance
is not new. For example, Chilimbri and Larus [?,?] used
structure splitting to separate ‘hot’ and ‘cold’ regions of an
object into different locations. We apply a similar strategy
to separate fields relevant for traversal from those storing ad-
ditional data, thus creating more compact traversal-specific
representations of the vertex that can be packed more effi-
ciently.

In the spring 2003 offering of the 745 course, Chen and
Nikos Hardavellas [?] worked on a similar project, packing
nodes of a binary tree structure into hypernodes. The binary
tries used small nodes that allowed entire subtrees or tree

slices to be stored.

Our project deals with graphs which are less organized,
and therefore necessitate other optimization strategies. In
particular, we fold linked lists, and use heuristics to try and
place nodes together on the same lines.

2. IMPLEMENTATION DETAILS AND LIM-
ITATIONS

The scope of this class project limits the comprehensive-
ness of our solution. It forces us to pose many limitations
on the programs that could be optimized, and in particu-
lar to require direct input from the programmer. Within
the alloted time we were not able to implement a transfor-
mation system in a working compiler. Instead, we created
programs and optimized them by hand, and carried out a se-
ries of experiments to demonstrate the potential benefits of
this approach. We describe these transformations in detail,
making future implementation efforts straightforward.

In this section we describe our approach in detail, along
with the requirements and limitations.

2.1 Requirements from the source program

First, we assume the use of a simple C-like language that
does not use a garbage collector or runtime system to orga-
nize memory, and which supports pointers to actual mem-
ory locations. For experimental purposes, we used standard
ANSI-C which could be compiled with the GCC compiler.

Second, we assume that graphs are represented using a
structure which will be described below.

Third, restrictions are in place on how vertices are ac-
cessed, and it is the responsibility of the programmer to ad-
here to them. In particular, vertices and edges should only
be accessed using appropriate pointers: one cannot maintain
a pointer to internal fields. Ideally, we would have required
all accesses to fields to occur via a set of library functions,
which could then simply be swapped to work with the op-
timized representation, with limited changes to the source
program. Unfortunately, since ANSI-C does not support
method inlining and it is common to access structures di-
rectly, we must make explicit transformations on the source
program and define certain restrictions. In addition, no
modifications may be made to the structure of an immutable
graph, although changes to key and data fields are allowed.

Fourth, after a graph has become effectively immutable,
we expect the user to issue a function call to a predefined li-
brary function, specifying the pointer to the graph, and some
details about the architecture and the expected traversal.
At compile time, the compiler will recognize this function
call as the point from which the given graph has become
immutable. It will generate the necessary code to build the
immutable graph, and then replace all subsequent opera-
tions having to do with the graph. We believe that static
analysis could help identify situations where objects have
become immutable, and thus preempt the need for explicit
guidelines from the programmer. We will elaborate on this
issue when we discuss the usefulness of the approach, but it
is outside the scope of our work.

2.2 Representation of mutable graphs

We now proceed to describe the structures of the source
mutable graph and of the optimized immutable graphs. This
discussion is general and describes our approach if it was to

VERTEX VERTEX_ | VERTEX VERTEX

KEY_1 KEY_N DATA_1 DATA_N P_EDGES

EDGE 1 EDGE 1
KEY_1 KEY_N

EDGE_2_ EDGE_2_

Figure 1: Layout of a vertex in a mutable graph

P_VERTEX_1 | P_NEXT

be implemented for actual user programs. For our concrete
experiments we used slightly simpler structures, which will
be described in the appropriate section.

Programs typically represent graphs using adjacency ma-
trices or as a network of independent referencing vertices.

as follows (Figure 2): The object begins with the vertex key
fields since these are essential for traversal. Then comes a
pointer to a separate object which contiguously maintains
the data fields. Since these fields are rarely used in traver-
sal, they are stored elsewhere with a level of indirection.
The compiler will generate the necessary code to access val-
ues in these fields. After this pointer comes a single byte
representing the number of edges associated with the ver-
tex. It is followed by the records for each incident vertex or
edge: several edge property fields followed by a pointer to
the incident vertex.

The primary advantage of this representation is that it al-
lows us to eliminate the levels of indirection associated with
obtaining the incident edges for the given vertex. Such indi-
rection in the original layout is necessary since the number
of edges is mutable; the problem is even more severe if we
use a linked list rather than a dynamically allocated array.

A second advantage of this representation is that it allows
us to move the “heavy” data fields away and maintain a
compact representation of those fields needed for traversal.

Within the latter representation, two common sub-representations This may allow us to store multiple vertices on the same

prevail: The first maintains separate collections of vertices
and edge objects, while in the second each vertex maintains
a collection of its incident edges and these are only avail-
able via that vertex. In both representations, edge objects
maintain edge properties and the identifiers or pointers to
the vertex objects, and vertex objects maintain the proper-
ties of each vertex. In this project we are going to focus on
the second sub-representation, optimizing programs where
vertices maintain their own connections to other vertices via
edges. We assume that all graphs are directed.

More specifically, we restrict ourselves to the representa-
tion which we shall now describe and which is illustrated
in Figure 1. In this representation, an object representing
a vertex with two neighbors is laid in memory as follows:
First, there are several key fields, explicitly indicated by the
user. These key fields contain data that is crucial for traver-
sal of the tree or the calculation which this traversal serves,
such as weights, markings, identifiers, etc.. Second, there
are data fields, also indicated by the user. These contain
data that is not crucial for the traversal, such as objects as-
sociated with the nodes. Third comes the data structure for
holding the adjacency list. In this project, we assume that
vertices maintain their peers using a linked list, and that
the contiguous Vertex object ends with a pointer to the first
member of that list. Each element in the peer list represents
an edge and is stored contiguously. It contains several key
fields of that edge that may be used for traversal purposes
such as weights or markings, and a pointer to the node.

2.3 Representation of optimized graph

Following our optimization, the vertex would be organized

VERTEX VERTEX EDGE 1 EDGE 1 EDGE 2 EDGE 2
KEY_1 Key N~ | P-DATA | NEDGES | “igyy Kev N~ | P-VERTEXT | Dey KEY N

fE—

VERTEX_ VERTEX_
DATA 1 DATA N

P_VERTEX 2

Figure 2: Layout of a vertex in an immutable graph

cache line and even more on the same virtual memory page.

To see why this is possible, consider graphs used for calcu-
lating shortest paths, spanning trees, and similar measures.
To accommodate a variety of such algorithms, let every ver-
tex and every edge have two key fields: one byte for a weight,
and one byte for a marking. Thus, the base vertex object
(without edges) would consist of 7 bytes (2 for keys, 4 for
the data pointer, 1 for the number of edges). Similarly, each
edge would add 6 bytes (of which, 4 are the pointer to the
edge). Thus, a vertex with two neighbors would consume
19 bytes, while one with four neighbors would consume 31.
If nodes are stored consecutively, it is thus quite possible to
store two or even three nodes on the same cache line.

We note that the layout described above is not the most
optimal possible packing of graph vertices, since each pointer
to a neighboring vertex requires 4 bytes. We could, in the-
ory, allocate all vertices as one contiguous memory block,
and then replace vertex pointers with indices into this block.
This, however, not only introduces more complexities, but
also makes it more difficult to make an immutable graph
mutable again without creating a new graph structure. We
note that our optimized structure allows the removal and
redirection of edges and the creation of new vertices, all
without a need to reallocate any object.

In summary,the performance gain of the optimized graph
structure will come from two sources: First, folding the
linked list of connected nodes reduces the levels of indirec-
tion, and the number of disparate memory regions that are
accessed as all the adjacencies of a vertex are traversed. Sec-
ond, splitting the structure and folding indirection allows us
to obtain vertex representations that occupy less than half
a cache line, and we will try to pack nodes accordingly to
increase cache hits. Performance hits originate in the one-
time creation of the optimized graph, and in the extra level
of indirection for accessing

3. REPRESENTATION FOR OUR EXPERI-
MENTS

In this section we describe in detail the representation
used for our experimental test programs. The complete
source code of these programs will be attached to this report,

however, we present important excerpts here. To simplify
the experiments, we made several assumptions or restric-
tions over the ones presented in the previous section.

1. We assume that the pointers to all nodes in the orig-
inal graph will be stored in one array, and have an
integer serial number stored in an internal field that
correspond to their index in this array. This allows us
to build the optimized graph as an array of pointers
to optimized nodes that follow the same order. With-
out this serial field, it would be difficult to determine
which node in the original graph each edge connects
to and building the new graph will take a long time.
In addition, this allows us to replace the pointer to the
target node in the mutable graph with a serial number
of the target node in the optimized graph.

2. We assumed that all fields are simple integer types;
this allows us to allocate the optimized nodes as sim-
ple arrays of integers and simplifies arithmetics; it also
ensures that our code will work on all platforms, re-
gardless of the specific size of integers (compared to
pointers).

3. Instead of supporting a variety in the number of key
and data fields as proposed above, we arbitrarily de-
termine that each node and each edge will have three
"key fields”: "key”, "data” and "mark”. We also do
not perform the optimization of moving ”data fields”
to other locations.

4. Tteration over edges takes place using the following
syntax:

Edge* edge=node->pEdges;
while (edge!=NULL)
{

edge = edge->pNext;
¥

The source code defining the unoptimized graphs is pre-
sented in Figure 3. As we can see, a node starts with four
integer fields: serial, key, data, and marking. For experi-
mental purposes, we will occasionally add dummy integer
slots as padding to control the number of cache lines that
each node occupies. A node ends with a pointer to the first
Edge object in the linked list. Every edge consists of three
integer fields: key, data, and marking. (Edges do not have
serial numbers since they are not stored in arrays). It is ter-
minated by a pointer to the target node to which the edge
connects, and a pointer to the next edge. T'wo library func-
tions are used to create nodes and to connect nodes with
edges.

Figure 4 shows an excerpt from the definition of opti-
mized graphs. Each node is essentially an array of integers,
allocated consecutively, so that a pointer to the node is es-
sentially a pointer to the first cell in the array. The length
of the array depends on the number of edges: following the
basic fields for the node, an integer value represents the num-
ber of edges contained in this node. The contents of each
edge make up the rest of the allocated space. We note that
pointers to target nodes have been replaced with indices of
these nodes. This allows us to maintain the optimized node

typedef struct Node_T {

int serial;

NodeKey nodeKey;

NodeData nodeData;

NodeMark nodeMark;

struct Edge_T* pEdges;
#ifdef PAD_SIMPLE_NODES

int temp[PAD_SIMPLE_NODES];
#endif

};

typedef struct Node_T Node;

typedef struct Edge_T {
EdgeKey edgeKey;

EdgeData edgeData;

EdgeMark edgeMark;

struct Node_T* pTarget;
struct Edge_T* pNext;
#ifdef PAD_SIMPLE_EDGES

int temp[PAD_SIMPLE_EDGES];
#endif

};

typedef struct Edge_T Edge;

/*

Creates a node with the given key and data
*/

Node* createNode(NodeKey key, NodeData data);

/*

Creates a directed edge from source to target.
Edge is attached to source.

Returns 0 for success, -1 otherwise

*/

int connectNodes(Node* source, Nodex target,
EdgeKey key, EdgeData data);

Figure 3: Header code for simple graphs

as an array of fixed size cells, although it actually increases
the cost of accesses: instead of immediately dereferencing
the pointer to obtain the contents of the next node, we first
consult the array of optimized nodes with the given index to
retrieve the pointer to the actual node. To access individual
fields of the optimized node and edges, a variety of prepro-
cessor macros are used for readability and consistency. Nev-
ertheless, programs can use the actual values rather than
these macros.

To convert a graph into its optimized form, the program-
mer is expected to invoke the optimize_simple_graph method
once the graph is considered immutable. In our manually-
optimized test programs, the source graph is not destroyed
and a separate immutable version is created, and the pro-
grammer can operate on either version. This allows us to
perform experiments that traverse both graphs, and com-
pare execution times. In a version that would be automat-
ically optimized by the compiler, we will want the compiler
to discover all subsequent operations on the graph, and re-
place operations involving the original graph with ones in-
volving the new graph. The compiler would generate code
to invoke this optimize_simple_graph method (which will
be imported or generated automatically), and add code to
destroy the original graph structure to conserve memory.

We now proceed to present the transformations which
would need to take place. We write these in the form of
natural text rules, which could be implemented based on
the specific semantics and grammar of the compiler. Vari-

/* ====== Paramters for the optimized graph ====== x/
#define NODE_DATA_FIELDS 3

#define EDGE_DATA_FIELDS 3

#define EDGES_OFFSET (5+0PTIMIZED_NODE_PADDING)
#define EDGE_SIZE (4+0PTIMIZED_EDGE_PADDING)
#define OFFSET_SERIAL O

#define OFFSET_NODEKEY 1

#define OFFSET_NODEDATA 2

#define OFFSET_NODEMARK 3

#define OFFSET_NUMEDGES 4

#define OFFSET_EDGEKEY (i) (EDGES_OFFSET

+ (1)*EDGE_SIZE + 0)

#define OFFSET_EDGEDATA(i) (EDGES_OFFSET

+ (i)*EDGE_SIZE + 1)

#define OFFSET_EDGEMARK(i) (EDGES_OFFSET

+ (i)*EDGE_SIZE + 2)

#define OFFSET_EDGETARGET (i) (EDGES_OFFSET

+ (i)*EDGE_SIZE + 3)

/* Optimized nodes are essentially an int array.
They have internal structure:
serial (int)

NodeKey (int)

NodeData (int)

NodeMark (int)

NumEdges (int)

[Padding]

For each edge:
EdgeKey (int)
EdgeData (int)
EdgeMark (int)
Target index

[Padding]
*/
typedef int* ONode;
/*
Optimize an existing graph
*/

ONode* optimizeSimpleGraph(Node** arOriginalGraph,
int numNodes) ;

Figure 4: Header code for optimized graphs

able names could be different, of course.

1. Given a variable or parameter declaration: Node* node,
replace it with int* node.

2. If node is a variable of type Node* which was converted
to an int*, apply the following transformations:

(a) Convert node->serial into node [OFFSET_SERIAL]
(b) Convert node->nodeKey into node [OFFSET_KEY]

(¢) Convert node->nodeData into node [OFFSET_DATA]
(d) Convert node->nodeMark into node [OFFSET_MARK]

3. The code for iterating over edges changes as follows:
(a) Convert Edge* edge = node->pEdges; into int
3=0;
(b) Convert while(edge!=NULL into
while (j<node [OFFSET_NUMEDGES])
(c) Convert edge = edge -> pNext into j++

4. The following changes take place to operations over
edges:

(a) Convert edge->edgeKey to
node [OFFSET_EDGEKEY (j)]

(b) Convert edge->edgeData to
node [OFFSET_EDGEDATA (j)]

(c) Convert edge->edgeMark to
node [OFFSET_EDGEMARK ()]

(d) Convert edge->pTarget to
node [OFFSET_EDGETARGET (j)]

(e) Convert edge->pTarget—->field to
(array0fNodes [node [OFFSET_EDGETARGET (j)11)
[OFFSET....]

4. EXPERIMENTAL RESULTS

To demonstrate the benefits of our technique and try to
accurately attribute performance differences to the appro-
priate factors, we carried a series of experiments.

4.1 Settings

We created a test program which could be controlled by
multiple parameters, such as the number of nodes and edges,
amount of padding to add to some data structures, and
whether to execute various algorithms.

Our test program first creates a simple graph with the
specified number of nodes. Then, based on a specified edges-
to-nodes-ratio, it randomly connects nodes using edges. These
connections are random, so that the number of edges con-
nected to each node is not set. However, we ensure that
every node has at least one outgoing edge. After this graph
is created, the test program runs the code to create an op-
timized graph. It then proceeds to run the test section,
first for the unoptimized graph, and then for the optimized
graph. It produces timing information for the time it takes
to pass through each. To compensate for the low granu-
larity of the timing mechanism in C, and to ensure that
performance is not affected by the original contents of the
cache, the tests inside the test section are encapsulated in a
loop (of a specified length), so that a test would involve, for
example, running the same code a hundred times.

We devised several test functions which could be invoked
by a test session. These test functions we transformed man-
ually.

The first test is called setAllMarks and its purpose is
to test access time to the data structure without running
any actual algorithm. In these functions, an external loop
iterates over all nodes in the graph (remember that they are
stored in an array), and sets their mark field to a specified
value. This allows us to measure access time to nodes, which
is dependent on their memory organizations. Depending on
a specific precompiler flag, the function also marks all the
edges: an internal loop iterates over all the edges for the
given node and marks them. An important property of this
test program is that it does not make any function calls,
thus reducing their effects on program behavior. For this
reason, we expect to to be able to be able to strictly measure
and compare the impact of locality in the unoptimized and
optimized representations.

In addition to the setAl1Marks function, we implemented
versions of the BFS and DFS algorithms, allowing them
to be started from specific nodes in the structure. The
setAllMarks function is always used before BFS and DF'S to
set the mark fields. We will discuss these algorithms later.

A potential factor which could confound the effects of our
transformation involves memory allocation: Our test pro-
gram creates the simple graph by creating all the nodes,
and then creating all the edges. Since memory is relatively
free at that point and each object is relatively small, it is
quite possible that several objects would be placed so close
together that they would reside on the same cache line. A
similar scenario could happen for the combined nodes in the
optimized graph (although that may be beneficial). How-
ever, since we want to measure the effects of our transforma-
tions independent of memory allocation effects, we devised
a way to minimize the number of accidental collocations by
padding objects to the size of a cache line.

Following are some of the parameters which our program
supports:

NUMNODES Specifies the number of nodes to be ran-
domized in the graph.

ENRATIO The edge-node ratio determines how many edges
we would have per node in the graph. Our test pro-
gram is structured so that there has to be at least one
edge leaving every node. Additional edges are random-
ized. The ratio must therefore be at least 1.

NUM_RUNS The number of times to run each test func-
tion.

PAD_SIMPLE_NODES A number of integers added to
simple (unoptimized) nodes to ensure that no other
object will occupy the same cache line.

PAD _SIMPLE_EDGES A number of integers added to
simple edges to ensure that no other object will occupy
the same cache line.

OPTIMIZED NODE_PADDING A number added to
the start index of the edges in optimized nodes, ef-
fectively creating a padding. This allows us to ensure
that the edges begin on a different cache line.

OPTIMIZED _EDGE_PADDING A number added to
the start index of the next (not first) edge in optimized
nodes, effectively creating a padding. This allows us
to ensure that each edge lies on a different cache line.

The last four parameters allow us to control potential lo-
cality. We say that an experiment is carried in locality mode
if we do not explicitly prevent two memory allocations from
sharing on the same cache line, though this does not im-
ply that we take any special measures to ensure that they
would. We say than an experiment is carried in no-locality
mode if we ensured, via padding that no two objects (or
relevant part of the objects) would lie on the same cache
line. In other words, in non-locality mode each access to a
previously-unaccessed object will generate a cache miss (at
least in L1), whereas we cannot be sure of that in locality
mode.

We conducted our experiments on an Apple Macintosh
G4 running OS X. One of the reasons for choosing this ar-
chitecture is its consistency in cache line size, which is 32
bytes (or 8 ints/pointers) for both the L1 and L2 caches. In
addition, the G4, being an older, simpler, processor, does
not perform hyperthreading or other behaviors that could
affect our results, and there is less variance between proces-
sor steppings. To ensure that padding is sufficient and that

we are not fighting a fetching unit that may fetch more than
one cache line at a time, we pad each memory object with
an additional cache line, or 32 bytes.

Our test program allows us to set the number of nodes
and edges. We chose such numbers that allow us to run so-
phisticated enough graphs, without running out of physical
memory, which could result in confounding effects from the
virtual memory manager. Furthermore, we chose numbers
small enough to ensure that each graph representation could
be stored completely within the L2 cache. Performance dif-
ference due to locality would then be due to the fact that the
processor can reduce accesses to its L2 cache, retrieving the
same information from L1. For bigger graphs that do not fit
in L2 cache, we expect to see similar effects as access to reg-
ular memory is necessary. However, measurements for such
situations would be more difficult due to effects of paging
and multi-level caching.

Because our graph optimization approach involves the re-
allocation of nodes and edges, it is natural to suppose that
the ratio of edges to nodes, and hence the distance in mem-
ory of various allocated objects, is important. As a result,
to isolate the impact of a variable edge-to-node ratio from
variation in other system properties, each experiment en-
sures that the memory footprint is fixed; as the number of
edges in the graph increases, the number of nodes in the
graph decreases accordingly.

4.2 Experiments: Single access to each object

Hypothesis 1: In non-locality mode, programs that op-
erate exactly once on each node and do not operate on edges
should have similar relative running times for both unopti-
mized and optimized representations.

The rationale behind this hypothesis is that programs that
do not operate on nodes will not be affected by the signifi-
cant improvements we expect for edges due to the reduction
in levels of indirection. In addition, the non-locality mode
would reduce cases in which nodes (especially in the unopti-
mized graph) are allocated to the same cache line. The code
traversing nodes in the optimized graph differs slightly from
the code traversing the unoptimized graph. Since there is no
access locality, any difference in performance should be due
to the code transformation. Note that by operating ‘exactly
once’ we mean once per test iteration.

Hypothesis 2: In non-locality mode, programs that op-
erate once on every node and edge should have similar rela-
tive running times for both unoptimized and optimized rep-
resentations.

Since every node and every edge are accessed exactly once,
we expect the same number of overall accesses regardless of
the exact ratio between edges and nodes.'. Having padded
each memory object, there should not be two accesses to
the same cache line. As in Hypothesis 1, any performance
difference between operations on the optimized and unopti-
mized graphs should be due to the code transformation.

Hyptothesis 3: If locality is not prevented, programs
that operate once on every node and edge should run faster
on the optimized version, with the performance advantage
increasing as the edge-to-node ratio increases.

The primary benefit of our optimization is that all the
incident edges of a node are stored together, and as a result
are more likely to fall within the same cache line if locality is

'Remember that we adjust the number of nodes as we in-
crease the ratio of edges

Access Performance Without Locality

| ressassrenrrns |

I
iS

=
N

-

o
©

Nodes
—— Nodes+Edges

Speedup
o
o

I
IS

o
]

o

10 15 20
Edges per Vertex

o
5}

Figure 5: Experimental results for node and edge
markings with locality disabled

not prevented. As a result, we expect that sequential access
to the edges would cause less cache misses and thus improve
performance. In the unoptimized version, each edge is likely
to reside in a different location in memory, or at least on
a different cache line. On the other hand, if locality is not
prevented, the nodes of the original graph are more likely to
be allocated on the same cache lines since at the time the
memory is relatively empty and the nodes may be allocated
contiguously.? Though these two factors conflict, we expect
performance of the optimized version to improve as the edge-
to-node ratio increases.

We proceeded to test the first two hypotheses using the
setAllMarks function, once iterating only over nodes, and
again iterating over both nodes and edges. We ran the pro-
gram for each edge ratio from 1 to 16, and adjusted the
number of nodes such that the total number of nodes and
edges is always 12000, small enough to fit in L2 cache.?
For the nodes-only test, we used a NUM_RUNS of 10000, and
used 2500 for the nodes-and-edges test. We ran many of the
trials multiple times and averaged the results, to accommo-
date execution time variation, which was pronounced in the
nodes-only test. We present the speedup of the optimized
version with respect to the unoptimized version for these
tests in Fig. 5.

As we can see, they are quite different from our expecta-
tions for the first hypothesis, but fall in line with the second
one.

For the programs iterating only over nodes, performance
of the optimized version is slower for the optimized version
than for the unoptimized version. It gets progressively worse
as the edge-to-node ratio increases, bottoming at a stagger-
ing 90% performance hit as the ratio goes above 7. How can
we explain this discrepancy? We believe that these results
may be due to the nature of the test program in nodes-only
mode, which utilizes the entire L2 cache to store the graph
structure, but only traverses a small portion of this data.
We apply a uniform amount of padding (at the granularity
of entire cache lines) to each node and edge in both rep-

2Edges are also allocated sequentially in memory, but we
randomize the edges so the edges of each node are not stored
contiguously.

3Since we run each test multiple times, we expect all the
contents to be moved to the L2 cache after the first test
iteration.

resentations of the graphs. As a result, the portion of the
graph accessed is likely to be mapped to a small subset of
L1 cache lines. For instance, every node and edge is followed
by an empty cache line, so that only "even” lines are used.

This underutilization of the L1 cache results in the signif-
icant performance hit on both implementations. However,
whereas in the unoptimized graph all nodes could be al-
located one after the other, this does not happen in the
optimized graph, where at least one edge follows each node.
Thus, the nodes of the optimized graph share an even smaller
subset of L1 cache lines than do the nodes of the unopti-
mized graph. This explanation is supported by our obser-
vation that when the padding of the unoptimized graph is
increased the traversal time also increases. When node ob-
jects in the unoptimized graph are so large that they are
spaced one from the next by the same distance that sepa-
rates nodes in the optimized graph, the unoptimized graph
actually takes longer to traverse than the optimized graph.
We argue that since this performance problem is due to the
artificial strategy we chose in order to eliminate locality for
experimental purposes, it should not be of great concern.

The results for the nodes-and-edges run match our hy-
pothesis, and for ratios of more than 1, we see the optimized
version consistently performing faster by about 20%. This
difference is likely due to differences in the code, and in par-
ticular the fact that there is less indirection. Nevertheless,
the difference is held constant as there is no benefit to lo-
cality. One may ask why we are not seeing a performance
problem related to the L1 cache line issue described above.
The reason is likely to be that the performance hit is equiva-
lent for both implementations, since we now access all nodes
and all edges.

We therefore test the third hypothesis, running the exper-
iment for the nodes-and-edges version of setAl1Marks. As
we can see in Fig. 6, performance is significantly better for
the optimized version, starting with a speedup of 1.75x for
a ratio of 1, and leveling off at speedup of 3.5x as the ratio
approaches 15. Our third hypothesis is therefore confirmed:
as the ratio of edges to nodes increases, the locality in the
optimized representation also increases, thereby increasing
the execution time improvement possible. As there is no
computation occurring per access, and edges are accessed in
the optimal order, 3.5x is an excellent approximation of the
maximum performance benefit possible with the optimized
graph representation. Further improvement may be possible
when the representation enables greater temporal locality;
specifically examining this side-effect of the optimized rep-
resentation is beyond the scope of this project.

4.3 Experiments: Actual graph algorithms

A method like setAl1Marks is useful for demonstrating
the limits of improvement possible with the optimized rep-
resentation. However, because it traverses the entire data
structure once and in a predictable way, it does not demon-
strate the benefits of our approach to real world applications.

One of the potential uses we forsee for our optimization
of graphs is in search-intensive programs. For instance, con-
sider a system that must answer a large number of search
queries on a relatively stable graph structure, such as a map-
ping system, ambulance routing systems, and the like. To
demonstrate the potential benefit for such applications, we
implemented several common search algorithms: breadth-
first search (BFS), depth-first search (DFS), and A*.

Access Performance With Locality

P = d

3.5 /_,_/V
3

Speedup
N
0

1.5

0 5 10 15 20
Edges per Vertex

Figure 6: Experimental results for node and edge
markings with locality enabled

BFS and DFS can be implemented using recursion or a
worklist. The choice of implementation may have significant
performance impact, especially under our optimization. In
the worklist version, more natural for BFS, as each node is
explored, we iterate over all its the edges and push their tar-
get nodes into the worklist. Since our optimization reduces
cache misses for accessing the edges of the same node, we
expect to see a significant performance improvement. In the
recursive version, more natural for DF'S, we make a recursive
call after exploring each edge. As a result, more time may
pass between the traversals of two edges of the same node,
during which relevant cache lines may be evicted. In addi-
tion, a performance hit can be expected due to the heavy
use of function calls. The results of executing a worklist
version of BFS and a recursive version of DFS for a variety
of edge-to-node ratios are presented in Fig. 7. Note that to
prevent graphs from being too sparse, we used graphs with
a minimum of 4 edges per node.

As we can see from the results of Fig. 7, both algorithms
exhibit a significant performance improvement for the op-
timized version. This improvement increases as the edge-
to-node ratio increases, further supporting the usefulness of
our edge-oriented optimization.

Speedup of BFS and DFS

3.5

N
3] w
.

\l

N
|

DFS
—#— BFS

Speedup
-
o

-

o
o

o

T T
0 5 10 15 20
Edges per Vertex

Figure 7: Experimental results for DFS and BFS

Speedup executing ASTAR

2.5

2 —

g

0.5

0 5 10 15 20
Edges per Vertex

Figure 8: Experimental results for the A* search
algortihm

DFS exhibits performance improvements similar to that
when there is no locality (Fig. 5), because DFS does not
do a good job of taking advantage of edge locality: in the
worst-case, only one edge per node is accessed before local-
ity is broken by eviction. As the edge-vertex ratio increases,
DFS does a better job of taking advantage of locality since
the depth of the search decreases, meaning there is a higher
probability that a yet untouched edge will still be in cache
when the search returns to it. The optimized graph repre-
sentation speeds up DFS by 1.5x to 2.1x.

BFS on the other hand, exhibits performance improve-
ments closer to the maximum possible with spatial locality
(Fig 6). As opposed to DFS, BFS visits all edges belong-
ing to a node, taking advantage of edge locality. The per-
formance advantage of the optimized graph increase as the
edge-to-node ratio increases, as expected. The optimized
graph representation speeds up BFS by 2.3x to 5x.

In addition to implementing the deterministic BFS and
DFS algorithms, we implemented the more sophisticated A*
search algorithm. A* is a heuristic for optimal graph search,
and is commonly used in computer-aided design placement
and route algorithms. The algorithm is more computation-
ally heavy than either BF'S or DF'S, and uses a priority queue
which introduces additional computational complexity and
memory accesses for every node or edge accessed. As a re-
sult, we would expect A* to not benefit from the optimized
representation as much as the simpler algorithms presented
above. The results of executing this algorithm for the unop-
timized and optimized versions of the graph are presented
in Fig. 8.

In spite of the additional overhead of the A* search, the
optimized graph algorithm provides substantial speedup, from
1-2x, compared to the original representation. Like BFS, A*
expands the search from a single node to its neighbors, tak-
ing advantage of the edge locality present in the optimized
graph representation. As the number of edges in the graph
increases, this locality, and thus the speedup of the opti-
mized version relative to the unoptimized version, increases.

S. FUTURE WORK

Though the above experimentation demonstrates the ben-

efit of reorganizing graphs, compilers must be extended to
minimally recognize the point at which a graph is intended
to be immutable, and insert code to transform the graph,
and transform all subsequent code that accesses the graph.
Given a more flexible graph representation than the opti-
mized representation presented here, a more sophisticated
compilers could, go further and either perform compile-time,
or static analysis, or insert instrumentation to perform run-
time profiling, or dynamic analysis. Reallocating graphs
for locality provides significant speedup, even when the al-
location scheme (e.g., grouping edges with nodes) doesn’t
match the access pattern of a program (e.g., DFS). Further
customizing the reallocation to the specific access patterns
should yield even greater, performance, as evidenced by the
difference in performance between BFS and DFS above.

5.1 Static Analysis

Static analysis must, at compile-time, determine how best
to reorganize the graph in question. Structured access to
graph elements, or strong typing in a high-level language,
could be used to identify points in the program where graph
elements are being accessed. Identifying the order in which
node and edge operations occur could be leveraged at compile-

time to provide hints to the run-time reallocator about whether

or not nodes should be allocated together, nodes allocated
with their edges, or some combination. Because of the na-
ture of graph algorithms (which iteratively traverse graphs,
making it nearly impossible to distinguish accesses between
elements), static analysis can yield little other information
than what the relationship is between node and edge ac-
cesses. For example, unrolling the worklist loop in our BFS
implementation would reveal that for each node that is ac-
cessed, edges are accessed in a loop, indicating that edge
locality may benefit the algorithm. Alternatively, unrolling
a series of recursive DFS calls would reveal that for each
node that is accessed, there is one edge access before nodes
are accessed again.

5.2 Dynamic Analysis

Graph traversal can also be analyzed through the process
of run-time profiling. As demonstrated above, the precise
manner in which graphs are traversed significantly impacts
the performance benefit of a particular graph representa-
tion. Because profiling could monitor and record the pre-
cise order in which individual graph elements are accessed,
dynamic analysis theoretically could provide greater addi-
tional speedup than static analysis techniques alone. Dy-
namic analysis requires that the compile be able to reallo-
cate an optimized graph after the optimized graph has al-
ready been created, since as we’ve suggested graphs typically
aren’t traversed until they are fully constructed. Dynamic
analysis, then, would provide additional run-time informa-
tion about how an already optimized graph should be re-
allocated again to further improve graph traversal latency.
This clearly raises the issue of how frequently graphs should
be reallocated; discussion of this issue is beyond the scope
of this project.

The most straight-forward approach to run-time profiling
would be to monitor the pattern of edge and node accesses,
as in static analysis. Dynamic analysis, however, can pre-
cisely measure the sequence of node and edge accesses, pos-
sibly providing a more accurate picture of how the graph is
being traversed. As in static analysis, this information could

be used to determine how nodes and edges are allocated:
whether nodes are allocated with nodes, edges with edges,
nodes with edges, or any hybrid of these possibilities. Such
an approach to determining how to allocate graph objects
would require a more flexible representation than presented
here, e.g., one that supported multiple modes of object ac-
cess based on how the graph is organized in memory.

The next logical step in dynamic analysis would be to
monitor and record the order in which individual graph ele-
ments are accessed, and allocate them closer to each other in
memory. This is particularly useful if search algorithms tend
to begin from a small subset of nodes or if a graph is sparsely
connected (with little branching from node to node). Nodes
and edges that are frequently accessed in a fixed order can be
allocated next to each other in memory, further increasing
access locality. It is obvious that this approach would also
significantly improve the traversal of very large graphs that
might not fit in cache. Ensuring that nodes and edges that
are accessed at approximately at the same time are all avail-
able in the same page of virtual memory could significantly
improve traversal latency by reducing page faults.

6. CONCLUSIONS

Graph traversal is common in many applications. Tradi-
tional graph organization is not conducive to high-performance
execution, however, as traversing disparately allocated nodes
and edges leads to long sequences of dependent cache misses.
We have shown that graph traversal execution time can
be greatly reduced through a transformation that flattens
(and fixes) the data structure, removing indirection and in-
creasing locality. Our proposed transformation reallocates a
graph when the programmer indicates that it will no longer
change. At this time, the graph is reallocated, nodes and
edges rearranged in memory so that each node and its edges
are organized as an array of integer an accessed directly.
These transformations were shown to speed up the execu-
tion time of DFS, BFS, and A* by up to 2.1x, 3x, and 2x
respectively. The proposed representation could be easily in-
tegrated with a compiler, but extending the representation
to more flexibly select the placement of nodes and edges
could improve graph traversal latency with the support of
static, compile-time analysis or dynamic, run-time analysis
of application-specific graph traversals.

