Uri Dekel
Brett Meyer

Experimental Setup

We conducted experiments to
determine sources and degree of
speedup
Randomly generated graphs
Graphs fit in L2 with fixed memory
footprint

- Minimizes impact of VM

Cache-Sensitive Optimization of
Immutable Graph Traversals

Why Optimize Graphs?

- Graphs are common data

structures in many applications

- Graphs are typically collections of

pointer-connected objects
- Traversal produces long series
of dependent cache misses

- Reduce execution time by

How Should Graphs Be
Optimized?

Optimized for traversal locality
Key technique: flatten the graph
after its topology is "fixed"
Flatten pointers into arrays

- Group edges with nodes

- Group nodes with nodes

15-745 Spring 2006

Advanced Optimizing Compilers

Optimizing DFS and BFS

- DFS recursively visits nodes,

traversing one edge at a time
- Breaks edge locality

- BFS accesses a node, then all its

edges to place nodes on worklist
- Leverages edge locality

Speedup of BFS and DFS

- Microbenchmarks and one "real-
world" application

restructuring graphs to - Detect traversal pattern, and at

- Improve locality run-time adaptively flatten b M
- Break sequences of dependent - True detection beyond scope 2 :

Effect of Code Transformation misses - We group edges with nodes

- Break spatial locality with padding o \
- Slowdown accessing just nodes Optimized Graph Implementation cors v
- Optimized graph suffers
greater number of conflict
misses Iin repeated traversals
- 1.2x speedup accessing nodes

- DFS speedup similar to
accessing objects with no locality
- As edge-node ratio increases,

Optimized

Unoptimized

- Very simple transformation
- Transform data

- Allocate an integer array for

greater temporal locality In

and edges - .
° f o each node, containing node optimized version
N ccess Performance Without Locality and a” edges _ Up tO 2_25X .Sp.eedup |
e - Nodes and edges allocated in - BFS speedup similar to accessing

Speedup
N (o)) (0] = N H

© o o o

Access Performance With Locality

- Edge locality improves
execution time significantly
- Edges are allocated sequentially, and
accessed sequentially
- Up to 3.5x speedup

Access Performance With Locality

s |/
/

o
7]
1
1.5

Edge

Conclusions

- Graph traversal is a source of

long sequences of dependent
cache misses

- Simple graph optimization leads

to significant speedup

- Improve locality

- Eliminate pointers

- Greater improvement for
heavily connected graphs

- Speedup of up to 2x

same order as in original graph

- Transform code

- Pointer dereferencing replaced
with indexing into an array

Future Work

- Compile-time traversal analysis

- Compiler can detect simple
access patterns, provide hints
for run-time reorganization

- On-line traversal profiling and

optimization
- DFS breaks "node-edge-
edge ..." locality, perhaps
reorganize to optimize for DFS

objects with locality
- As edge-node ratio increases,
greater spatial locality In
optimized version
- Up to 3x speedup

Optimizing A*

- A* search has similar access

behavior to BFS

- As edge-node ratio increases,

greater spatial locality

- Up to 2x speedup

Speedup executing ASTAR

T




