
Cache-Sensitive Optimization of 
Immutable Graph Traversals

Why Optimize Graphs?

  -  Graphs are common data 
     structures in many applications
  -  Graphs are typically collections of
     pointer-connected objects 
       -  Traversal produces long series
          of dependent cache misses
  -  Reduce execution time by 
     restructuring graphs to 
       -  Improve locality
       -  Break sequences of dependent
          misses
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Conclusions

  -  Graph traversal is a source of
     long sequences of dependent
     cache misses
  -  Simple graph optimization leads 
     to significant speedup
       -  Improve locality
       -  Eliminate pointers
       -  Greater improvement for 
          heavily connected graphs
  -  Speedup of up to 2x 

How Should Graphs Be 
Optimized?

  -  Optimized for traversal locality
  -  Key technique: flatten the graph
     after its topology is "fixed"
  -  Flatten pointers into arrays
       -  Group edges with nodes
       -  Group nodes with nodes
  -  Detect traversal pattern, and at
     run-time adaptively flatten
       -  True detection beyond scope
       -  We group edges with nodes

 -  Very simple transformation 
 -  Transform data
       -  Allocate an integer array for
          each node, containing node
          and all edges
       -  Nodes and edges allocated in
          same order as in original graph
  -  Transform code
       -  Pointer dereferencing replaced
          with indexing into an array

Future Work

  -  Compile-time traversal analysis
       -  Compiler can detect simple
          access patterns, provide hints
          for run-time reorganization
  -  On-line traversal profiling and
     optimization
       -  DFS breaks "node-edge-
          edge ..." locality, perhaps
          reorganize to optimize for DFS

Experimental Setup

  -  We conducted experiments to
     determine sources and degree of
     speedup
  -  Randomly generated graphs
  -  Graphs fit in L2 with fixed memory
     footprint
       -  Minimizes impact of VM
  -  Microbenchmarks and one "real-
     world" application

Effect of Code Transformation

  -  Break spatial locality with padding
  -  Slowdown accessing just nodes
       -  Optimized graph suffers
          greater number of conflict
          misses in repeated traversals
  -  1.2x speedup accessing nodes
     and edges

Access Performance With Locality

  -  Edge locality improves 
     execution time significantly
  -  Edges are allocated sequentially, and
     accessed sequentially 
  -  Up to 3.5x speedup

Optimizing DFS and BFS

  -  DFS recursively visits nodes,
     traversing one edge at a time
       -  Breaks edge locality
  -  BFS accesses a node, then all its
     edges to place nodes on worklist
       -  Leverages edge locality 

  -  DFS speedup similar to 
     accessing objects with no locality
       -  As edge-node ratio increases, 
          greater temporal locality in 
          optimized version
       -  Up to 2.25x speedup
  -  BFS speedup similar to accessing
     objects with locality
       -  As edge-node ratio increases,
          greater spatial locality in 
          optimized version
       -  Up to 3x speedup

Optimizing A*

  -  A* search has similar access 
     behavior to BFS
  -  As edge-node ratio increases, 
     greater spatial locality
  -  Up to 2x speedup

Access Performance Without Locality
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