
Cache-Sensitive Optimization of
Immutable Graph Traversals

Why Optimize Graphs?

 - Graphs are common data
 structures in many applications
 - Graphs are typically collections of
 pointer-connected objects
 - Traversal produces long series
 of dependent cache misses
 - Reduce execution time by
 restructuring graphs to
 - Improve locality
 - Break sequences of dependent
 misses

Uri Dekel
Brett Meyer

15-745 Spring 2006
Advanced Optimizing Compilers

Conclusions

 - Graph traversal is a source of
 long sequences of dependent
 cache misses
 - Simple graph optimization leads
 to significant speedup
 - Improve locality
 - Eliminate pointers
 - Greater improvement for
 heavily connected graphs
 - Speedup of up to 2x

How Should Graphs Be
Optimized?

 - Optimized for traversal locality
 - Key technique: flatten the graph
 after its topology is "fixed"
 - Flatten pointers into arrays
 - Group edges with nodes
 - Group nodes with nodes
 - Detect traversal pattern, and at
 run-time adaptively flatten
 - True detection beyond scope
 - We group edges with nodes

 - Very simple transformation
 - Transform data
 - Allocate an integer array for
 each node, containing node
 and all edges
 - Nodes and edges allocated in
 same order as in original graph
 - Transform code
 - Pointer dereferencing replaced
 with indexing into an array

Future Work

 - Compile-time traversal analysis
 - Compiler can detect simple
 access patterns, provide hints
 for run-time reorganization
 - On-line traversal profiling and
 optimization
 - DFS breaks "node-edge-
 edge ..." locality, perhaps
 reorganize to optimize for DFS

Experimental Setup

 - We conducted experiments to
 determine sources and degree of
 speedup
 - Randomly generated graphs
 - Graphs fit in L2 with fixed memory
 footprint
 - Minimizes impact of VM
 - Microbenchmarks and one "real-
 world" application

Effect of Code Transformation

 - Break spatial locality with padding
 - Slowdown accessing just nodes
 - Optimized graph suffers
 greater number of conflict
 misses in repeated traversals
 - 1.2x speedup accessing nodes
 and edges

Access Performance With Locality

 - Edge locality improves
 execution time significantly
 - Edges are allocated sequentially, and
 accessed sequentially
 - Up to 3.5x speedup

Optimizing DFS and BFS

 - DFS recursively visits nodes,
 traversing one edge at a time
 - Breaks edge locality
 - BFS accesses a node, then all its
 edges to place nodes on worklist
 - Leverages edge locality

 - DFS speedup similar to
 accessing objects with no locality
 - As edge-node ratio increases,
 greater temporal locality in
 optimized version
 - Up to 2.25x speedup
 - BFS speedup similar to accessing
 objects with locality
 - As edge-node ratio increases,
 greater spatial locality in
 optimized version
 - Up to 3x speedup

Optimizing A*

 - A* search has similar access
 behavior to BFS
 - As edge-node ratio increases,
 greater spatial locality
 - Up to 2x speedup

Access Performance Without Locality

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

Edges per Vertex

S
p

e
e
d

u
p

Nodes

Nodes+Edges

Access Performance With Locality

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

Edges per Vertex

S
p

e
e
d

u
p

Speedup of BFS and DFS

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

Edges per Vertex

S
p

e
e
d

u
p

DFS

BFS

Speedup executing ASTAR

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Edges per Vertex

S
p

e
e
d

u
p

Node Edge

Unoptimized Optimized

Optimized Graph Implementation

