
Fast and Cheap Color Image Segmentation for Interactive Robots

James Bruce Tucker Balch Manuela Veloso

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
Vision systems employing region segmentation by color are
crucial in real-time interactive mobile robot applications
such as object tracking (e.g. the ball in RoboCup soccer)
and various forms of robot/human interaction. Tradition-
ally, systems employing real-time color-based segmentation
are either implemented in hardware, or as very specific soft-
ware systems that take advantage of domain knowledge to
attain the necessary efficiency. However, we have found
that with careful attention to algorithm efficiency fast color
image segmentation can be accomplished using commodity
image capture and CPU hardware. our paper describes a
system capable of tracking several hundred regions of up to
32 colors at 30 Hertz on general purpose commodity hard-
ware. The software system is composed of three main parts;
a novel threshold classifier, a region merger to calculate
connected components, and a separation and sorting sys-
tem to gather various region features and sort them by size.
A key to the efficiency of our approach is a new method for
accomplishing color space thresholding that enables a pixel
to be classified into one or more of up to 32 colors using
only two logical AND operations. A niave approach could
require up to 192 comparisons for the same classification.
The algorithms and representations are described, as well
as descriptions of three applications in which it has been
used.

Introduction
An important first step in many color vision tasks is to clas-
sify each pixel in an image into one of a discrete number
of color classes. The leading approaches to accomplishing
this task include linear color thresholding, nearest neigh-
bor classification, color space thresholdingand probabilistic
methods.

Linear color thresholding works by partitioning the color
space with linear boundaries (e.g. planes in 3-dimensional
spaces). A particular pixel is then classified according to
which partition it lies in. This method is convenient for
learning systems such as neural networks (NNs), or multi-
variate decision trees (MDTs) (Brodley & Utgoff 1995).

A second approach is to use nearest neighbor classifica-
tion. Typically several hundred pre-classified exemplars are
employed, each having a unique location in the color space

and an associated classification. To classify a new pixel, a
list of theK nearest exemplars are found, then the pixel is
classified according to the largest proportion of classifica-
tions of the neighbors (Brown & Koplowitz 1979). Both
linear thresholding and nearest neighbor classification pro-
vide good results in terms of classificationaccuracy, but
do not provide real-time1 performance using off-the-shelf
hardware.

Another approach is to use a set of constant thresholds
defining a color class as a rectangular block in the color
space (Jain, Kasturi, & Schunck 1995). This approach of-
fers good performance, but is unable to take advantage of
potential dependencies between the color space dimensions.
A variant of the constant thresholding has been implemented
in hardware by Newton Laboratories (Laboratories 1999).
Their product provides color tracking data at real-time rates,
but is potentially more expensive than software-only ap-
proaches on general purpose hardware.

A final related approach is to store a discretized version
of the entire joint probability distribution (Silk 1999). So,
for example, to check whether a particular pixel is a mem-
ber of the color class, its individual color components are
used as indices to a multi-dimensional array. When the lo-
cation is looked up in the array the returned value indicates
probability of membership. This technique enables a mod-
eling of arbitrary distribution volumes and membership can
be checked with reasonable efficiency. The approach also
enables the user to represent unusual membership volumes
(e.g. cones or ellipsoids) and thus capture dependencies
between the dimensions of the color space. The primary
drawback to this approach is high memory cost — for speed
the entire probability matrix must be present in RAM.

The approach taken in our work is a combination of the
methods described above, but with a special focus on effi-
ciency issues. Thus we are able to provide effective clas-
sification at real-time rates. The method is best described
as constant thresholding in a projected color space. In the
next section we outline our approach. In the remaining
sections we describe the performance of a system using the
method and provide examples of the system in use in several
applications.

1We define “real-time” as full frame processing at 30 Hz or
faster.

Description of the Approach
Color Space Transformation

Our approach involves the use of thresholds in a three di-
mensional color space. Several color spaces are in wide
use, including Hue Saturation Intensity (HSI), YUV and
Red Green Blue (RGB). The choice of color space for clas-
sification depends on several factors including which is pro-
vided by the digitizinghardware and utility for the particular
application.

RGB is a familiar color space often used in image pro-
cessing, but it suffers from an important drawback for many
robotic vision applications. Consider robotic soccer for in-
stance, where features of the environment are marked with
identifying colors (e.g. the ball might be painted orange).
We would like our classification software to be robust in
the face of variations in the brightness of illumination, so
it would be useful to define “orange” in terms of a ratio of
the intensities of Red Green and Blue in the pixel. This can
be done in an RGB color space, but the volume implied by
such a relation is conical and cannot be represented with
simple thresholds.

In contrast, HSI and YUV have theadvantage that chromi-
nance is is coded in two of the dimensions (H and S for HSI
or U and V for YUV) while intensity is coded in the third.
Thus a particular color can be described as “column” span-
ning all intensities. These color spaces are therefore often
more useful than RGB for robotic applications.

Some digitizing hardware provides one or more appro-
priate color spaces directly (such as HSI or YUV). In other
cases, the space may require transformation from the one
provided by hardware to something more appropriate. Once
a suitable projection is selected, the resulting space can be
partitioned using constant valued thresholds, since most of
the significant correlations have been removed.

The commodity digitizer we initially used provides im-
ages coded in RGB. We found that rotating the RGB color
space provides significantly more robust tracking. Much of
the information in an RGB image varies along the intensity
axis, which is roughly the bisecting ray of the three color
axes. By calculating the intensity and subtracting this com-
ponent fromeach of the color values, a space in which the
variance lies parallel to the axes is created, allowing a more
accurate representation of the region space by a rectangular
box.

Another, more robust (but more expensive) transforma-
tion is a nonlinear fractional RGB space, where each of the
component colors is specified as a fraction of the intensity,
and the intensity is added as another dimension. This pro-
jection into a 4 dimensional space proved accurate, but with
the extra dimension to process and three divides per pixel to
calculate the fractions, it proved to be too slow for currently
available hardware.

We later moved to a system which provided YUV colors
in hardware. This combines the power of a robust color
space without the performance penalty of a software color
space transformation. Thus systems can take advantage of
hardware with good native color spaces, but even without

them, a suitable tranformation can lead to a reasonable so-
lution.

Thresholding
The thresholding method described here can be used with
general multidensional color spaces that have discrete com-
ponent color levels, but for the purposes of discussion the
YUV color space will be used as an example. In our ap-
proach, each color class is specified as a set of six threshold
values: two for each dimension in the color space, after
the tranformation if one is being used. The mechanism
used for thresholding is an important efficiency consider-
ation because the thresholding operation must be repeated
for each color at each pixel in the image. One way to check
if a pixel is a member of a particular color class is to use a
set of comparisons similar to
if ((Y >= Ylowerthresh)

AND (Y <= Yupperthresh)
AND (U >= Ulowerthresh)
AND (U <= Uupperthresh)
AND (V >= Vlowerthresh)
AND (V <= Vupperthresh))
pixel_color = color_class;

to determine if a pixel with valuesY, U, V should be
grouped in the color class. Unfortunately this approach is
rather inefficient because, once compiled, it could require as
many as 6 conditional branches to determine membership in
one color class for each pixel. This can be especially inef-
ficient on pipelined processors with speculative instruction
execution.

Instead, our implementation uses a boolean valued de-
composition of the multidimensional threshold. Such a
region can be represented as the product of three functions,
one along each of the axes in the space (Figure 1). The de-
composed representation is stored in arrays, with one array
element for each value of a color component. Thus class
membership can be computed as the bitwiseANDof the
elements of each array indicated by the color component
values:
pixel_in_class = YClass[Y]

AND UClass[U]
AND VClass[V];

The resulting boolean value ofpixel in class indicates
whether the pixel belongs to the class or not. This approach
allows the system to scale linearly with the number of pixels
and color space dimensions, and can be implemented as a
few array lookups per pixel. The operation is much faster
than the naive approach because the the bitwiseANDis a
significantly lower cost operation than an integer compare
on most modern processors.

To illustrate the approach, consider the following exam-
ple. Suppose we discretize the YUV color space to 10
levels in each each dimension. So “orange,” for example
might be represented by assigning the following values to
the elements of each array:

YClass[] = {0,1,1,1,1,1,1,1,1,1};
UClass[] = {0,0,0,0,0,0,0,1,1,1};
VClass[] = {0,0,0,0,0,0,0,1,1,1};

Thus, to check if a pixel with color values(1,8,9) is a
member of the color class “orange” all we need to do is

U

V

Y

U

Y

VVClass

UClass

YClass

Binary Signal Decomposition of Threshold

Visualization as Threshold in Full Color Space

Figure 1: A three-dimensional region of the color space for classification is represented as a combination of three binary
functions.

evaluate the expressionYClass[1] AND UClass[8]
AND VClass[9] , which in this case would resolve to 1,
or true indicating that color is in the class “orange.”

One of the most significant advantages of our approach
is that it can determine a pixel’s membership in multiple
color classessimultaneously. By exploiting parallelism in
the bit-wiseANDoperation for integers we can determine
membership in several classes at once. As an example,
suppose the region of the color space occupied by “blue”
pixels were represented as follows:

YClass[] = {0,1,1,1,1,1,1,1,1,1};
UClass[] = {1,1,1,0,0,0,0,0,0,0};
VClass[] = {0,0,0,1,1,1,0,0,0,0};

Rather than build a separate set of arrays for each color,
we can combine the arrays using each bit position an ar-
ray element to represent the corresponding values foreach
color. So, for example if each element in an array were a
two-bit integer, we could combine the “orange” and “blue”
representations as follows:

YClass[] = {00,11,11,11,11,11,11,11,11,11};
UClass[] = {01,01,01,00,00,00,00,10,10,10};
VClass[] = {00,00,00,01,01,01,00,10,10,10};

Where the first (high-order) bit in each element is
used to represent “orange” and the second bit is used
to represent “blue.” Thus we can check whether
(1,8,9) is in one of the two classes by evaluating the
single expressionYClass[1] AND UClass[8] AND
VClass[9] . The result is10 , indicating the color is in
the “orange” class but not “blue.”

In our implementation, each array element is a 32-bit in-
teger. It is therefore possible to evaluate membership in
32 distinct color classes at once with twoANDoperations.
In contrast, the naive comparison approach could require
32� 6, or up to 192 comparisons for the same operation.
Additionally, due to the small size of the color class rep-
resentation, the algorithm can take advantage of memory
caching effects.

Connected Regions

After the various color samples have been classified, con-
nected regions are formed by examining the classified sam-
ples. This is typically an expensive operation that can
severely impact real-time performance. Our connected
components merging procedure is implemented in two
stages for efficiency reasons.

The first stage is to compute a run length encoded (RLE)
version for the classified image. In many robotic vision
applications significant changes in adjacent image pixels are
relatively infrequent. By grouping similar adjacent pixels
as a single “run” we have an opportunity for efficiency
because subsequent users of the data can operate on entire
runs rather than individual pixels. There is also the practical
benefit that region merging need now only look for vertical
connectivity, because the horizontal components are merged
in the transformation to the RLE image.

The merging method employs a tree-basedunion find
with path compression. This offers performance that is not
only good in practice but also provides a hard algorithmic
bound that is for all practical purposes linear (Tarjan 1983).
The merging is performed in place on the classified RLE
image. This is because each run contains a field with all
the necessary information; an identifier indicating a run’s
parent element (the upper leftmost member of the region).
Initially, each run labels itself as its parent, resulting in a
completely disjoint forest. The merging procedure scans
adjacent rows and merges runs which are of the same color
class and overlap under four-connectedness. This results in
a disjoint forest where the each run’s parent pointer points
upward toward the region’s global parent. Thus a second
pass is needed to compress all of the paths so that each run
is labeled with its the actual parent. Now each set of runs
pointing to a single parent uniquely identifies a connected
region. The process is illustrated in Figure 2).

2: Scanning adjacent lines, neighbors are merged

y

x

y

yy

x x

x

4: If overlap is detected, latter parent is updated

1: Runs start as a fully disjoint forest

3: New parent assignments are to the furthest parent

Figure 2: An example of how regions are grouped after run length encoding.

Extracting Region Information
In the final step we extract region information from the
merged RLE map. The bounding box, centroid, and size of
the region are calculated incrementally in a single pass over
the forest data structure. Because the algorithm is passing
over the image a run at a time, and not processing a region at
a time, the region labels are renumbered so that each region
label is the index of a region structure in the region table.
This facilitates a faster lookup. A number of other statistics
could easily be gathered from the data structure, including
the convex hull and edge points which could be useful for
geometric model fitting.

After the statistics have been calculated, the regions are
separated based on color into separate threaded linked lists
in the region table. Finally, they are sorted by size so that
high level processing algorithms can deal with the larger
(and presumably more important) blobs and ignore rela-
tively smaller ones which are most often the result of noise.

Results and Applications
The first implementation is a proof-of concept prototype
targeted for small inexpensive autonomous robots. These
robots will employ commodity hardware to keep the cost
low and aid in simplicity. They still require high perfor-
mance vision however because it will serve as their primary
hazard sensor. The platform uses a conventional NTSC
color camera linked to a Pentium-based PC-104 computer
and a BTTV848-based digitizer. Operating software is Red-
Hat Linux with Video for Linux drivers for video capture.
In its current form the system can process 160x120 images
at 30 Hz with 50% utilization of the 150 MHz CPU. We

Figure 3: An example image classified using the approach
presented in the paper. The image on the left is a compos-
ite of objects tracked by a soccer robot at RoboCup-99: a
position marker (top), a goal area (middle) and three soc-
cer balls (bottom). The classified image is on the right.
(Color versions of these images are available online at
http://www.coral.cs.cmu/fastvision .)

have since discovered that the digitizer can capture images
in YUV space directly. It is therefore possible to eliminate
the color space transformation step. When the transforma-
tion step is eliminated the system processes 160x120 images
at 30 Hz with a 25% utilization of the CPU.

The second successful application was for Carnegie Mel-
lon’s entry into the RoboCup-99 legged-robot league. These
robots, provided by Sony, arequadrupeds similar to thecom-
mercially available Aibo entertainment robot. The robots
play a game of three versus three soccer against other teams
in a tournament. To play effectively, several objects must
be recognized and processed, including the ball, teammates
and opponents, two goals, and 6 location markers placed
around the field. The hardware includes a camera produc-
ing 88x60 frames in the YUV color space at about 15Hz.
In this application color classification is done in hardware,
removing the need for this step in the software system. Even
with one step of the algorithm handled in software however,
limited computational resources require an optimized algo-
rithm in order to leave time for higher-level processes like
motion control, team behaviors, and localization. The sys-
tem was modified slightly to include density based region
merging to overcome excessively noisy images that simple
connectivity could not handle. The system proved to be
robust at the RoboCup-99 competition, enabling our team
to finish 3rd in the international competition.

The third application of the system is as part of an entry
for the RoboCup small-size league (F180). This domain
involves a static camera tracking remotely controlled robots
playing soccer on a small field. It is currently being incorpo-
rated into a system under development for the competition
in 2000. Due to recent developments in mechanical plat-
forms the level of competition in this league has increased
significantly. To compete with current state-of-the-art sys-
tems vision must be able to track 11 objects moving at up
to 2 meters/second at full frame rates. Our system is able
to process 320x240 color frames at 30Hz on a 200 MHz
Pentium II. In this mode the vision system uses approxi-
mately 45% of the available CPU resources. 160x120 pixel
images can be processed at 30 Hz using only 12% of the
CPU. These results indicate that the system will operate
with lower processor utilization than previous implementa-
tions, providing more resources for higher level operations.
These should both contribute to the robustness of the overall
tracking system.

Conclusion
We have presented a new system for real-time segmentation
of color images. It can classify each pixel in a320x240
color image, find and merge blobs of up to 32 colors, and
report their centroid, bounding box and area at 30 Hz. The
primary contribution of this system is that it is a software-
only approach implemented on general purpose, inexpen-
sive, hardware (in our case a Pentium II 200 MHz processor
with a $200 image digitizer). This provides a significant
advantage over more expensive hardware-only solutions, or
other, slower software approaches.

The system operates on the image in several steps:

1. Rotate the color space.

2. Classify each pixel as one of up to 32 colors.

3. Run length encode each scanline according to color.

4. Group runs of the same color into blobs.

5. Sort blobs by color and size.

6. Return blob statistics.

The speed of our approach is due to a focus on efficient
algorithms at each step. Step 1 is accomplished with a linear
transformation. In Step 2 we discard a naive approach that
would require up to 192 comparisons per pixel in favor of a
faster calculation using two bit-wiseANDoperations. Step
3 is linear in the number of pixels. Step 4 is accomplished
using an efficientunion findalgorithm. The sorting in Step
5 is accomplished with radix sort, while Step 6 is completed
in a single pass over the resulting data structure.

The approach is intended primarily to accelerate low level
vision for use in real-time applications where hardware ac-
celeration is either too expensive or unavailable. Function-
ality is appropriate to provide input to higher level routines
which encode geometric and/or domain-specific processing.
This tool enables formerly offline processes to run as a part
of a real-time intelligent vision system. The current sys-
tem and its variants have been demonstrated successfully
on three hardware platforms.

References
Brodley, C., and Utgoff, P. 1995. Multivariate decision
trees.Machine Learning.
Brown, T., and Koplowitz, J. 1979. The weighted nearest
neighbor rule for class dependent sample sizes.IEEE
Transactions on Information Theory617–619.
Jain, R.; Kasturi, R.; and Schunck, B. 1995.Machine
Vision. McGraw-Hill.
Laboratories, N. 1999. Cognachrome image capture de-
vice. http://www.newtonlabs.com .
Silk, E. 1999. Human detection and recognition for an
hors d’oeuvres serving robot.
http://www.cs.swarthmore.edu/ silk/robot/ .
Tarjan, R. 1983. Data structures and network algorithms.
In Data Structures and Network Algorithms.

