
Invalidation Clues for Database Scalability Services

Amit Manjhi∗, Phillip B. Gibbons‡, Anastassia Ailamaki∗, Charles Garrod∗,

Bruce M. Maggs∗†, Todd C. Mowry∗‡, Christopher Olston§∗, Anthony Tomasic∗, Haifeng Yu¶

∗Carnegie Mellon University ‡Intel Research Pittsburgh †Akamai Technologies
§Yahoo! Research ¶National University of Singapore

Abstract

For their scalability needs, data-intensive Web applica-

tions can use a Database Scalability Service (DBSS), which

caches applications’ query results and answers queries on

their behalf. One way for applications to address their se-

curity/privacy concerns when using a DBSS is to encrypt all

data that passes through the DBSS. Doing so, however, causes

the DBSS to invalidate large regions of its cache when data

updates occur. To invalidate more precisely, the DBSS needs

help in order to know which results to invalidate; such help

inevitably reveals some properties about the data. In this

paper, we present invalidation clues, a general technique that

enables applications to reveal little data to the DBSS, yet limit

the number of unnecessary invalidations. Compared with

previous approaches, invalidation clues provide applications

significantly improved tradeoffs between security/privacy and

scalability. Our experiments using three Web application

benchmarks, on a prototype DBSS we have built, confirm that

invalidation clues are indeed a low-overhead, effective, and

general technique for applications to balance their privacy

and scalability needs.

1. Introduction

Internet applications suffer from unpredictable load, espe-

cially due to events such as breaking news (e.g., Hurricane

Katrina) and sudden popularity spikes (e.g., the “Slashdot Ef-

fect”). Investing in a server farm that can accommodate such

high loads is not only expensive (particularly after factoring

in the management costs) but also risky because the expected

customers might not show up. An appealing alternative is to

contract with a scalability service that charges based on us-

age. Content Delivery Networks (CDNs) [13] provide such

service by maintaining a large, shared infrastructure to absorb

the load spikes that may occur for any individual application.

However, CDNs currently do not provide a way to scale the

database component of a Web application. Hence the CDN

solution is not sufficient when the database system is the bot-

tleneck, as in many e-commerce applications.

To overcome this key bottleneck, Database Scalability

Services (DBSS) can be used to extend the scaling benefits

provided by CDNs to the database component of Web appli-

cations [24, 28]. As in CDNs, a third party (Database Scala-

bility Service Provider) provides such service by maintaining

Figure 1: A scalable architecture for database-intensive

Web applications.

a large, shared infrastructure to offload work from and to ab-

sorb load spikes for any individual database. Figure 1 depicts

the resulting architecture, in which (1) a Web application’s

code is executed at trusted hosts (application “servers”), (2)

the code in turn fires off database updates/queries that are han-

dled by a DBSS, and (3) any updates and queries that cannot

be answered by the DBSS are sent to backend databases on

the application vendor’s “home” servers.

A key challenge in the design of a DBSS is providing this

shared scalability infrastructure while protecting each orga-

nization’s sensitive data. The goals are (1) to limit the DBSS

administrator’s ability to observe or infer an application’s sen-

sitive data, and (2) to limit an application’s ability to use the

DBSS to observe or infer another application’s sensitive data.

Such concerns have been increasing in the past few years,

as borne by well-publicized instances of database theft [31].

From the viewpoint of the home organization, these are secu-

rity concerns; from the viewpoint of an individual user whose

personal data may be revealed, these are privacy concerns.

Security and privacy concerns dictate that a DBSS should

be provided encrypted updates, queries and query results. The

home servers of applications maintain master copies of their

data and handle updates directly, and the DBSS caches read-

only (encrypted) copies of query results that are kept con-

sistent via invalidation. The trusted application “servers”

are used to encrypt queries/updates and decrypt query re-

sults, as well as run application code. These hosts could ei-

ther (1) be maintained by the application vendor—for many

data-intensive Web applications, executing application code

is not the real bottleneck and hence a modest number of hosts

suffice, (2) be maintained by the CDN—if the vendor trusts

the CDN, or (3) be users’ machines—there are on-going ef-

forts to guarantee secure execution of code on a remote ma-

chine [11, 33]. This scenario is similar to the standard secu-

rity scenario of two trusted parties communicating over an un-

trusted channel. We consider the ciphertext-only attack [30]

and the chosen-plaintext attack [30] in this scenario—details

are in Section 3.3. When a data update occurs, to main-

tain consistency, the DBSS must invalidate (at least) all the

cached query results that changed. Because the results are en-

crypted, the DBSS needs help from the application in order to

know which results to invalidate; such help inevitably reveals

some properties about the data. Thus, in providing help to the

DBSS, the application faces an important dilemma. On the

one hand, revealing less about the data means that the DBSS

will invalidate far more than needed, resulting in more queries

passed through to the home server, decreasing scalability. On

the other hand, revealing more about the data to the DBSS

raises security and privacy concerns.

Invalidation Clues. In this paper, we present invalidation

clues, a general framework for enabling applications to re-

veal little data to the DBSS, yet prevent wholesale invalida-

tions. Invalidation clues (or clues for short) are attached by

the home server to query results returned to the DBSS. The

DBSS stores these query clues with the encrypted query re-

sult. On an update, the home server can send an update clue

to the DBSS, which uses both query and update clues to de-

cide what to invalidate. In this paper, we show how specially

designed clues can achieve three desirable goals:

(1) Limit unnecessary invalidations: Our clues provide rele-

vant information to the DBSS that enable it to rule out most

unnecessary invalidations.

(2) Limit revealed information: Our clues enable the applica-

tion to achieve a target security/privacy by hiding information

from the DBSS.

(3) Limit database overhead: Our clues do not enumerate

which cached entries to invalidate. Instead, they provide a

“hint” that enables the DBSS to rule out unnecessary inval-

idations. Thus, the home server database is freed from the

excessive overhead of having to track the exact contents of

each DBSS cache in order to enumerate invalidations.

Compared with previous approaches [4, 5, 6, 19, 21, 22,

24, 28], invalidation clues provide applications significantly

improved tradeoffs between security/privacy and scalability.

This difference is demonstrated in Figure 2 (discussed in de-

tail in Section 7), which compares prior work in database scal-

ing technology to our scheme. Only our scheme enables the

favorable tradeoffs inside the dashed box.

Our Contributions. The main contributions of this paper are

S
c
a

la
b

ili
ty

Privacy

(Code-analysis privacy,

maximum scalability)

(Maximum privacy,

read-only scalability)

clues offer

fine-grained control

F

A C

[4, 5, 6, 19, 21, 22]

[24]B D
E

Figure 2: Privacy-Scalability tradeoff in the presence of

clues. The dashed box shows the region in which an appli-

cation can operate in our scheme. The six scenarios, A–F,

are explained later in Table 2. Code-analysis privacy and

read-only scalability are explained in Section 5.1.

as follows.

• We propose invalidation clues, a general framework that

offers applications a low overhead, fine-grained control

to balance their security/privacy and scalability needs,

and provides better tradeoffs than previous approaches.

We also provide examples of several configurable inval-

idation clues.

• We show how to keep application data secure/private un-

der a more general attack model than previous work [24].

• We identify families of common query/update classes

where extra information is needed from the database in

order to perform precise invalidations. We show that

generating these “database-derived” clues in response to

an update typically requires accessing only one or two

database rows. We present a strategy that uses such clues

only when the scalability benefit from reduced invalida-

tions outweighs the cost of computing the clue.

• Finally, using experiments with three Web application

benchmarks—a bookstore (TPC-W), an auction (RU-

BiS), and a bulletin-board (RUBBoS)—running on our

prototype DBSS, we demonstrate the scalability bene-

fits of our proposed clues. We also use representative

queries from these benchmarks to show the effectiveness

of our configurable clues in providing an improved secu-

rity/privacy versus scalability tradeoff.

Road Map. Section 2 provides an overview of invalidation

clues. Section 3 and Section 4 show how different types of

clues can be used to achieve different precisions in invalida-

tions. Section 5 discusses how clues can be tailored to bal-

ance between privacy and scalability. Section 6 presents our

empirical findings. Section 7 presents related work. Finally,

Section 8 presents conclusions.

In the remainder of the paper, we will use privacy as a short

hand for both security and privacy.

SIMPLE-BBOARD

QT SELECT id, body FROM comments

WHERE story=? AND rating>=?

UT UPDATE comments SET rating=rating+?

WHERE id=?

Table 1: A simplified bulletin-board example, consist-

ing of a query template QT and an update template UT

on a base relation comments with attributes id, story,

rating, and body. The question marks indicate parame-

ters bound at execution time.

2. An Illustrative Example

This section introduces invalidation clues via an example.

Consider the application SIMPLE-BBOARD, specified in Ta-

ble 1. In this application, queries follow the template QT

(requesting information on comments, with rating above a

threshold, made on a particular story) and updates follow

the template UT (changing a comment’s rating). The DBSS

caches the (encrypted) results of previous queries and uses

any clues at hand to decide what to invalidate on an update.

Figure 2 plots six different scenarios of clues that illustrate

the privacy-scalability tradeoff an application faces with var-

ious schemes, using SIMPLE-BBOARD as an example. It also

plots prior work in database scaling technology. Most of this

work [4, 5, 6, 19, 21, 22] does not address privacy concerns,

and as a result, can attain more scalability than our architec-

ture (e.g., by not encrypting data, cached query results may

be incrementally maintained at the caches, instead of just in-

validated). Our previous work [24] (plotted as B in the figure)

showed how to encrypt data that is not useful for invalidation.

Without the general notion of clues introduced here, however,

the previous work was unable to achieve the favorable trade-

offs in the figure’s dashed box, even under a weaker attack

model.

Table 2 summarizes the clue scenarios and what happens

when an update occurs. Scenario A depicts a scenario in

which the DBSS gets a copy of the entire database and sees

the updates (id value of 123 and rating increment of 1 in

the example update) and hence can perform precise invalida-

tion (we formalize the notion in Section 3.4). Because the in-

crease in rating by UT can never cause id=123 to drop out of

a query result, the only case where the result is invalidated is

when id=123 is not in the query result but its story matches

Q’s story and its new rating now exceeds Q’s rating

parameter. Scenario F depicts the other extreme—a scenario

with no clues; in such cases, the DBSS has no way of knowing

which (encrypted) cache result for an earlier encrypted query

is invalidated by this (encrypted) update. Hence, it must in-

validate the entire cache on an update. As Figure 2 shows,

while the former provides maximum scalability (for invali-

dation based approaches) but no privacy, the latter provides

maximum privacy but minimum scalability.

Scenario B translates the solution proposed in [24] into the

Query Clue for Q Update Clue Query Q Result

invalidated

A entire database; 123, 1 if id=123 should

Q’s story&rating be added given its

story & rating

B entire query 123, 1 if id=123 is absent

result (unencrypted) from query result

C Q’s story&rating, 123, and its as in scenario A

id values in result story&rating

D id values (only) 123 as in scenario B

in query result

E Q’s story&rating, Bloom-filter of scenario A, with

Bloom-filter of id {123}, and 123’s some false positives

values in result story&rating due to Bloom-filter

F none none if any update occurs

Table 2: Six clue scenarios A–F and their effect on what

the DBSS invalidates when an update UT with id=123

and rating=rating+1 occurs.

terminology of this paper. [24] did not have a notion of clues

and privacy was “all-or-nothing”—the different attributes in

parameters or the query results could not be encrypted in-

dependently. In this scenario, the DBSS does not know the

story and rating of id=123, so if the id is not in the un-

encrypted query result, then the DBSS does not know whether

the id should now be added and hence it must invalidate.

Because our clues can be arbitrarily fine-grained, our

scheme enables better choices than previous schemes. Sce-

nario D, for example, has the same invalidations as scenario

B, but additionally encrypts the body of comments—only the

id field is revealed, in order to enable checking for a partic-

ular id. Scenario C uses better clues than scenario A—they

reveal less information (e.g., the story, rating, result ids

but not the result bodys), yet enable precise invalidation as

in Scenario A. Including the story and rating of id=123

in the update clue is an example of a “database-derived” clue

(discussed in Section 4), because these attributes are not in

the update and hence need to be looked-up in the database.

Finally, scenario E uses Bloom-filters1 to hide even the

ids, at a cost of a small probability of an unnecessary invali-

dation. This example illustrates how clues offer fine-grained

control to an application—the size of the Bloom-filter in this

case—to choose a desired balance of privacy and scalability,

as depicted by the range of choices in the curved line for sce-

nario E.

3. Using Clues for Invalidations

In this section we describe how clues can be used for inval-

idations. We begin in Section 3.1 by describing the architec-

1A Bloom-filter [9] encodes a set as a short bit vector. Each value v in the

set is represented by setting the h1(v)’th, h2(v)’th and h3(v)’th bit in the bit

vector, for three hash functions h1, h2, and h3. A query result is invalidated

if the three bits set in the update clue Bloom-filter are all set in the query

clue Bloom-filter. A longer Bloom-filter reduces the number of unnecessary

invalidations but reveals more about the data.

ture that is the context for our work. Section 3.2 provides the

details of our basic query and update model, and introduces

the terminology and notation we use in the rest of the paper.

Section 3.3 describes the attack model of the DBSS. Then, in

Section 3.4, we formalize the notion of precise invalidations.

Finally, in Section 3.5 we present various types of clues and

provide examples of when each type is useful.

3.1 Architecture

The overall system architecture is as depicted in Figure 1

(see Section 1). The DBSS maintains a cache of encrypted

queries and encrypted query results. Along with each cache

entry, it stores query clues sent by the home server’s database

when returning the encrypted query result. On receiving an

encrypted query Q, the DBSS determines if an entry for Q is

in its cache and, if so, it returns the cached encrypted query re-

sult. Otherwise, the encrypted query is forwarded to the home

database server, which returns an encrypted query result and

any associated query clues. All encrypted updates are routed

to the home organization via the DBSS. The home organi-

zation applies the updates, and returns the encrypted updates

with associated update clues. The DBSS monitors completed

updates, and uses the query clues and update clues to invali-

date cached query results as needed to ensure consistency.

3.2 Query and Update Model

Our query and update model is based on our study of three

benchmark Web applications (details in Section 6.1). In our

model there are a fixed set of query templates and a fixed set

of update templates. A query is composed of a query template

to which parameters are attached at execution time. Like-

wise, an update is composed of an update template to which

parameters are attached at execution time. (Examples are in

Tables 1, 3, 5, and 6.) A sequence of queries and updates

issued at runtime constitutes a workload.

The query language is restricted to select-project-join

(SPJ) queries having only conjunctive selection predicates,

augmented with optional order-by and top-k constructs. SPJ

queries are relational expressions constructed from any com-

bination of project, select and join operations (except Carte-

sian product). As in previous related work [8, 24, 29], the

selection operations in the SPJ queries can only be arith-

metic predicates having one of the five comparison operators

{<,≤, >,≥,=}. The order-by construct affects tuple order-

ing in the result; and the top-k construct is equivalent to re-

turning the first k tuples from the result of the query executed

without the top-k construct. We assume multi-set semantics;

the projection operation does not eliminate duplicates.

The update language permits three kinds of updates: in-

sertions, deletions and modifications. Each insertion state-

ment fully specifies a row of values to be added to some rela-

tion. Each deletion statement specifies an arithmetic predicate

over attributes of a relation. Rows satisfying the predicate are

deleted. Each modification statement modifies non-key at-

tributes of a row selected according to an equality predicate

on the relation’s primary key.

3.3 The Attack Model of the DBSS

In this paper we use the following default “no-clue” sce-

nario. The DBSS knows the application’s database schema,

including the primary keys and foreign keys, and the applica-

tion’s query and update templates. On a query or update, the

DBSS is informed as to which template has been used, but

not the instantiated parameters. We will consider various sce-

narios where clues are added on top of this default scenario.

When considering privacy, we assume that a DBSS can

pose as a user “on top of” being honest-but-curious. An

honest-but-curious DBSS invalidates correctly as per the

query and update clues, but tries to infer the contents of the

encrypted query results, encrypted queries, and encrypted up-

dates, i.e., the DBSS is limited to ciphertext-only attacks [30].

Additionally, posing as a user enables the DBSS to issue

queries and updates, observe which clues are generated, and

correlate values in unencrypted queries and updates to clues,

i.e., the DBSS can perform chosen-plaintext attacks [30].

3.4 DatabaseInspection Strategy

We formalize the notion of precise invalidation as the in-

validation behavior of an idealized strategy that can inspect

any portion of the database to determine which cached query

results to invalidate for a given update. A cached query re-

sult for a query Q must be invalidated if and only if the

update alters the answer to Q. We call such a strategy a

Database-Inspection Strategy (DIS). A DIS invalidates the

minimal number of query results—any other (correct) inval-

idation strategy invalidates at least the query results invali-

dated by a DIS. Thus a DIS is a useful lower bound against

which we can compare how successful particular clues are in

helping the DBSS make invalidation decisions.

3.5 Types of Clues

Recall that we distinguish between query clues (attached

to encrypted query results) and update clues (attached to en-

crypted updates). We further classify query and update clues

based on what data are used to compute them. A query clue

might be a parameter query clue, a result query clue, or a

database query clue, based on whether it is computed from

the query parameters, the query result, or the database itself.

Similarly, an update clue might be a parameter update clue

or a database update clue based on whether it is computed

from the update parameters or the database itself. Note that

the contents of different types of clues may overlap.

Consider the SIMPLE-AUCTION application shown in Ta-

ble 3. For each of its query/update template pairs, Table 4 lists

the different kind of clues required to implement a DIS. In the

first row, it suffices to have result query clues and parameter

update clues, in order to implement a DIS. In other words,

the set of item id values in the query result together with

SIMPLE-AUCTION

QT

1 SELECT item id, category, end date

FROM items WHERE seller=?

QT

2 SELECT user id FROM users WHERE region=?

QT

3 SELECT item id FROM items, users

WHERE items.seller=users.user id

AND items.category=?

AND items.end date>=?

AND users.region=?

UT

1 UPDATE items SET end date=end date+? DAYS

WHERE item id=?

UT

2 INSERT INTO users (user id, region)

VALUES (?, ?)

Table 3: A simple auction example, consisting of three

query templates, two update templates, and two base

relations: (1) items with attributes item id, seller,

category, and end date, and (2) users with attributes

user id and region. Attribute items.seller is a for-

eign key into the users relation. The question marks in-

dicate parameters bound at execution time.

Pair 〈Query clue, Update clue〉

〈QT
1 , UT

1 〉 〈 result, parameter 〉

〈QT
1 , UT

2 〉 〈 , 〉 (never invalidates: different relations)

〈QT
2 , UT

1 〉 〈 , 〉 (never invalidates: different relations)

〈QT
2 , UT

2 〉 〈 parameter, parameter 〉

〈QT
3 , UT

1 〉 〈 database, parameter 〉 or

〈 parameter, database 〉

〈QT
3 , UT

2 〉 〈 , 〉 (never invalidates: foreign key constraint)

Table 4: Types of clues required to implement a DIS for

template-pairs of the SIMPLE-AUCTION example in Ta-

ble 3.

the item id from the update statement suffice. Invalidation

is ruled out in the second and third rows simply by examining

the templates. It is also ruled out in the last row because of the

foreign key relationship. In the fourth row, only the region

attributes need to be matched for a DIS—so the query and

updates clues are just a function of their instantiated param-

eters. For the fifth row, invalidation of cached results of any

instance of the query template QT
3 in response to an update

template UT
1 cannot be ruled out just by inspecting the query

result, query parameters, or update parameters. For example,

increasing the end date may mean that the item in UT
1 now

satisfies the cached QT
3 query—but only if the item has the ap-

propriate category and region (information available only

in the database). So parameter and result clues are insufficient

to prevent wholesale invalidation. Database clues are needed.

4. Database Clues

The previous section motivated the use of database clues

using the SIMPLE-AUCTION example. In the full version of

this paper [23], we provide a complete list of query and up-

date template classes for which database clues are required

for precise invalidation. Section 4.1 discusses the problems

with achieving precise invalidations using database query

clues, and then presents our solution using database update

clues. Finally, while database clues enable precise invalida-

tion, for some workloads the overhead of computing them can

be higher than their savings. Section 4.2 presents practical

techniques that further reduce overheads and/or increase pri-

vacy by relaxing the precise invalidation requirement.

4.1 Implementing Database Clues

We now discuss how to implement database clues, so as to

achieve as precise invalidations as a DIS, while minimizing

both the overheads and the amount revealed about the data.

Problems with Using Database Query Clues. One way

to achieve a DIS is to use database query clues. The goal

for a database query clue is to provide all the data from the

database that could potentially help in deciding if a future

update would affect the given query result. Self-maintaining

view techniques [29], adapted for Web applications, can be

used to identify the minimal such data (details in [23]). For

example, for query template QT
3 in Table 3, the adapted tech-

nique would suggest the DBSS caches all item ids that sat-

isfy all but the end date predicate of the instantiated QT
3

query; these are the only rows that can possibly become part

of the query result as a result of UT
1 updating the end date

for some item.

In general, given many cached queries and a richer col-

lection of update templates than in the SIMPLE-AUCTION ex-

ample, the amount of auxiliary data stored to maintain the

views can be quite large. As a result, this approach suffers

from two significant problems. First, the cached portions of

the database must themselves be maintained, resulting in ad-

ditional overhead and additional clues to enable the mainte-

nance. For example, maintaining the region information

would mean that instances of update UT
2 , which could pre-

viously be ignored for QT
3 (because attribute items.seller

is a foreign key into the users relation), can no longer be ig-

nored. Second, because the approach potentially reveals large

portions of the database, it does not offer any reasonable pri-

vacy.

Our Solution. Instead, our approach is to achieve a DIS

by generating the relevant database information at runtime

as database update clues. Because all updates are centrally

handled by our system, such clues are computed at the home

organization. Database update clues make sense in our set-

ting where the query templates are known. For example, for

the update template UT
1 in Table 3, knowing the query tem-

plates enables the clue to be computed from just four values:

the category of the specific item being updated, the old and

new end dates of the item, and the region of the specific

seller of the item. Together with parameter query clues stored

with an instantiated query Q, these enable a DBSS to achieve

a DIS, by checking whether these four values now satisfy Q

as a result of the update.

With database update clues, there is no overhead of keep-

ing them consistent because the clue is generated on-the-

fly with every update. However, generating them each time

places extra load on the home server’s organization. Hence, it

is not obvious whether the increase in scalability from precise

invalidation outweighs the decrease in scalability from gener-

ating the clues. Fortunately, for the templates in the three re-

alistic benchmarks we study, the work to generate a database

update clue is rather minimal. In particular, out of the over

1000 〈 query template, update template 〉 pairs, only 21 re-

quire database clues (details are in Section 6.1). Of these 21,

almost all of them require fetching a single row from a table

and perhaps a single associated row from a joining table, as

in the 〈QT
3 , UT

1 〉 example above. Moreover, for these same

reasons, database update clues achieve better privacy.

Most of the work in determining clues can be precom-

puted, and much of this process can be automated without

difficulty. We provide more details of this aspect of our work

in the full version of this paper [23].

4.2 Beyond Precise Invalidations

Thus far, we have focused on the goal of matching DIS’s

optimal number of invalidations. However, because of the

minimal invalidations requirement, we have sacrificed oppor-

tunities to further minimize overheads and maximize privacy.

In this section, we present several simple techniques that fur-

ther reduce overheads and/or increase privacy by relaxing the

precise invalidation requirement.

Opportunistic Database Clues. Although the overheads

of computing database clues are minimal, depending on the

workload, their overheads can still be higher than their sav-

ings in some cases. In the three benchmarks we study, there

are cases where most of the invalidation savings arise from a

small subset of the database update clues. While generating

these clues is worthwhile, generating the other clues (where

the savings is small) costs more than the savings. To address

such concerns, we use a simple OPPORTUNISTIC strategy that

monitors the workload for invalidation savings and then gen-

erates database update clues only when the savings exceeds

an estimated threshold of the (appropriately normalized) cost

to generate the clue. Although more wholesale invalidations

are needed whenever we do not generate a database update

clue, the overall effect is an increase in scalability, as shown

in Section 6.

Increasing Privacy through Hashing and Bloom-filters.

As argued above, for most updates the amount of revealed

data is small (e.g., four values in the update clue for the

〈QT
3 , UT

1 〉 example). However, even revealing four values per

update may be more than desired if there are thousands to

millions of updates. Fortunately, in many cases, the revealed

values are used solely for equality tests with query parame-

ters, e.g., the category and region values in the 〈QT
3 , UT

1 〉
clue. In such cases, the actual values can be obscured by us-

ing a one-way hash function. The equality test is assumed to

succeed if the hashed values match. Such an approach will

always invalidate when required for correctness, but it intro-

duces a very small probability of an unnecessary invalidation

due to a hash collision. Thus, for all practical purposes, it is

as good as a DIS strategy, but with better privacy.

In other common cases, the revealed values are used for

order comparisons with query parameters, e.g., the end date

value in the 〈QT
3 , UT

1 〉 clue. In such cases, the actual values

can be hidden to varying degrees as a tradeoff against invali-

dation precision, as will be discussed in Section 5.

Finally, another common case involves testing whether a

particular value in an update clue is in a set of values in a re-

sult query clue. For example, consider the SIMPLE-BBOARD

example in Table 1 and the corresponding result query clue

and parameter update clue in Scenario C of Table 2. These

clues enable exact matching of ids but reveal all the id values

in the query result. Instead, as shown in Scenario E of Table 2,

we can obscure these id values by using Bloom-filters [9], as

discussed in Section 2. Although Bloom-filters introduce a

small probability of unnecessary invalidations (the probabil-

ity is tunable by the number of hash functions used in the filter

and the size of the bit vector), for all practical purposes, it is

as good as exact matching, but with better privacy.

5. Privacy-Scalability Tradeoffs

In this section we study privacy-scalability tradeoffs in the

DBSS setting, considering the attack model of Section 3.3.

5.1 The Limit Cases

Recall the dashed box in Figure 2 from Section 1, which

illustrates the privacy-scalability tradeoff that an application

faces in our DBSS setting, where (a) the DBSS has an attack

model as described in Section 3.3 and (b) the home server

does not track the state of the DBSS’s cache. We denote as

code-analysis privacy the level of privacy that an application

can attain by encrypting the data not useful for invalidation

(determined statically by analyzing the application code as

in [24]). On the other hand, minimal scalability is achieved

when the DBSS invalidates all its cache entries on any update,

i.e., queries can only be answered from the cache as long as

the workload remains read-only. We call this level of minimal

scalability read-only scalability.

We show in [23] that if an application achieves the maxi-

mum scalability, it gets code-analysis privacy (the upper left

corner of the dashed box in Figure 2), and if it achieves

the maximum privacy, it gets read-only scalability (the lower

right corner of the dashed box in Figure 2). Thus, applications

cannot hope for both good scalability and good privacy.

QT SELECT i stock FROM item WHERE i id=?

UT UPDATE item SET i stock=? WHERE i id=?

Table 5: A query-update template pair from the BOOK-

STORE benchmark.

5.2 Trading Off Scalability for Privacy

In order to increase privacy, applications have to sacrifice

scalability—by allowing needless invalidations. Through rep-

resentative query and update template pairs from our appli-

cations, we next show how clues provide applications with

a convenient knob to balance their privacy and scalability

needs. We consider two cases, depending on whether invali-

dations involve equality comparisons or order comparisons.

Equality Comparisons. Table 5, from the BOOKSTORE

benchmark (details in Section 6.1), shows an example tem-

plate pair where the invalidation decision involves an equality

comparison. A natural way for applications to control pri-

vacy and scalability is to map the values of the parameters in-

volved in the equality comparison to some place-holders. Let

{a1, . . . , an} be the parameter values and {e1, . . . , em} be

the place-holders. Let f be the function that determines the

mapping. Note that f may map multiple values to the same

place-holder. An example is the hash function discussed in

Section 4.2. The number of distinct place-holders then pro-

vides a natural way for an application to manage the privacy-

scalability tradeoff.

Next, we show that an application can use knowledge of

the frequency distribution of parameters to further choose

clues that maximize its scalability for a given privacy value.

Let pj denote the probability with which an update with

parameter aj is issued. Formally,
∑

j pj = 1. For each of

the place-holder values ei, let domain-size ni and cumulative

probability Pi denote the number of parameter values mapped

to a place-holder ei and the sum of their probabilities, respec-

tively. Formally, for i ∈ {1, . . . ,m}, ni = |{aj |f(aj) =
ei}|, and Pi =

∑
j:f(aj)=ei

pj . Also
∑m

i=1 ni = n, and
∑m

i=1 Pi = 1.

If the application knows the pj values, for a given fixed pri-

vacy value m, we show how it can choose a mapping that min-

imizes the total number of invalidations (the term
∑m

i=1 niPi

represents the total number of invalidations). Formally, the

constrained optimization problem is to find the EQUALITY-

OPTIMAL mapping that minimizes
∑m

i=1 niPi given the con-

straints
∑m

i=1 ni = n and
∑m

i=1 Pi = 1. Given this formu-

lation, we can find an EQUALITY-OPTIMAL mapping using

standard techniques. The key insight is that for a given pri-

vacy value, the minimum number of invalidations is achieved

when for any two place-holders ei and ej with ni < nj , we

have Pi ≥ Pj [23].

In our experiments using a subset of the standard work-

load for the BOOKSTORE benchmark (details in Section 6.4)

EQUALITY-OPTIMAL mapping reduces the number of invali-

QT SELECT * FROM items WHERE end date>=?

UT INSERT INTO items VALUES (?, . . ., ?)

Table 6: A simplified query-update template pair from the

AUCTION benchmark.

dations by around 20% when compared to a simplistic map-

ping that maps an equal number of parameter values to each

place-holder.

Order Comparisons. Consider the template pair shown in

Table 6. This pair is from the AUCTION benchmark (details

in Section 6.1), and the invalidation decision involves an or-

der comparison on the end date of an item being auctioned.

For precise invalidations, the DBSS needs the attribute value

end date in the query and the update. However, the appli-

cation may not want to reveal the exact end date value.

As with equality comparisons, we can apply an approach

based on mapping parameter values to some space of place-

holders and then revealing only place-holders in the clues.

Assume parameter values {a1, . . . , an} with a1 < a2 <

. . . < an and place-holders {e1, . . . , em} with e1 < e2 <

. . . < em. Let f be the function that determines the mapping.

The application can use an Order-Preserving-Encryption-

Scheme (OPES) [2] to map the parameter values to place-

holders such that the order is preserved. Use of an OPES

(while doing correct invalidations) ensures that if ai < aj

then f(ai) < f(aj). This approach provides little privacy

with our attack model. The DBSS by posing as a user can ini-

tiate queries with known parameter values, observe the clues

generated, and correlate place-holders to the parameter val-

ues. It can learn a total ordering on the place-holders by ob-

serving which results are invalidated. Thus, it can use binary

search to quickly find the parameter value(s) corresponding

to a place-holder.

To defeat binary search, our key observation is that for

correct invalidations, the order has to be preserved only be-

tween parameters of queries and parameters of updates, and

not across the parameters of queries and updates. Formally,

for two query (or update) parameter values ai and aj with

ai < aj and mapping f , f(ai) < f(aj) need not be true. This

flexibility enables us to use two mapping functions fq (to map

query parameters) and fu (to map update parameters) so that

if ai is a query parameter and aj is an update parameter with

ai < aj , then fq(ai) < fu(aj).
One family of such mappings is where a non-negative

number is subtracted from each query parameter and a non-

negative number is added to each update parameter. Formally,

fq(ai) = ai − rq(ai) and fu(aj) = aj + ru(aj), where

rq(ai) and ru(aj) are always non-negative, but can even be

randomly generated. With such a mapping, the DBSS can no

longer use binary search to quickly find the parameters corre-

sponding to a place-holder because even if ai < aj , neither

fq(ai) < fq(aj) nor fu(ai) < fu(aj) may be true.

With a workload based on the template pair in Table 6,

we find that the two mapping approach enables significantly

greater privacy compared to a (one-mapping) OPES [23].

5.3 Discussion

For our query and update model, any invalidation decision

in an application fundamentally involves either an equality

comparison (or its generalization to a set membership test)

or an order comparison. Thus, our above results can be ap-

plied to the entire application. Note, however, that care must

be taken in treating queries or updates with conjunctions be-

tween arithmetic predicates that share attributes (e.g., WHERE

end date > ? AND end date < ? + 30 DAYS).

6. Evaluation

We evaluated our proposed clues by implementing them

in our prototype DBSS and then measuring the scalabil-

ity advantages of using various types of invalidation clues.

In this section, we describe our benchmark applications

(Section 6.1), our experimental methodology (Section 6.2),

and our scalability results (Section 6.3). In addition, we

present results for one of our techniques, the effectiveness of

the EQUALITY-OPTIMAL mapping, in helping an application

manage its privacy-scalability tradeoff (Section 6.4).

6.1 Benchmark Applications

We used three publicly available Web benchmark applica-

tions that extensively use a database and represent real-world

applications: RUBiS [26], an auction system modeled after

ebay.com, RUBBoS [27], a simple bulletin-board-like sys-

tem inspired by slashdot.org, and TPC-W [32], a trans-

actional e-Commerce application that captures the behavior

of clients accessing an online book store. We used Java imple-

mentations of these applications. We will henceforth refer to

these applications as AUCTION, BBOARD, and BOOKSTORE,

respectively.

There were a few queries in these benchmarks (12 out of

94 templates) that did not conform to our query model (Sec-

tion 3.2), e.g., aggregate queries. For these queries, we use

parameter and result clues but not database clues. Across all

three benchmarks, only 21 (out of the over 1000) template

pairs require database clues for precise invalidation. We pro-

vide the details in [23].

6.2 Experimental Methodology

We use the same methodology that we used in [24]. We

report results for a simple two-node configuration—a home

server that runs MySQL4 [25] as its database management

system, and a DBSS node that provides answers to database

queries using its store of the cached query results, running

on Emulab [34]. (To keep the configuration simple, the

DBSS node also provided the functionality of an application

“server”, i.e., the ability to run Web applications and to inter-

act with a user running a Web browser. We used Tomcat [7]

to provide both functionalities.) Cached query results were

kept consistent with the home server’s database using non-

transactional invalidation of cached query results.

The home server machine had an Intel P-III 850 MHz pro-

cessor with 512 MB of memory, while the DBSS node had an

Intel 64-bit Xeon processor with 2GB of memory. In all ex-

periments, the home server and DBSS node were connected

by a high latency, low bandwidth duplex link (100 ms latency,

2 Mbps). Each client was connected to the DBSS node by a

low latency, high bandwidth duplex link (5 ms latency, 20

Mbps).

Because the overhead for emulating clients is low, a single

additional Emulab node was used to emulate all clients. As in

the TPC-W [32] specification, clients simulate human usage

patterns by issuing an HTTP request, waiting for the response,

and pausing for a think time before requesting another Web

page—the think time is drawn from a negative exponential

distribution with a mean of seven seconds.

The configuration parameters we used in our experiments

are provided in [23]. (Moreover, for the BOOKSTORE bench-

mark, we used the standard shopping mix.) Each experiment

ran for ten minutes, and the DBSS node started with a cold

cache each time. Scalability was measured as the maximum

number of users that could be supported while keeping the

response time below two seconds for 90% of the HTTP re-

quests.

6.3 Scalability Benefits of Invalidation Clues

Figure 3 plots the scalability of an application as a function

of the invalidation strategy used by the DBSS, for all three

applications. The y-axis plots scalability, measured as spec-

ified in Section 6.2. On the x-axis, we consider five cases:

one corresponding to not using a DBSS, one corresponding to

not using clues2, and the other three corresponding to DBSS

strategies based on different classes of clues: Clues (excl. DB

clues), which uses only parameter and result clues3, Clues

(incl. DB clues), which uses parameter, result, and database

update clues (as presented in Section 4.1), and Opportunistic,

which uses the OPPORTUNISTIC strategy presented in Sec-

tion 4.2.

In all applications, using a DBSS with invalidation clues

significantly increased scalability. This agrees with previous

work [24], which can be viewed as having considered specific

types of (non-database) clues. Because the rightmost strat-

egy, Opportunistic, heuristically uses database update clues

only when the increase in scalability is higher than the over-

head, it offers the most scalability, for all three applications.

As the figure shows, the results for the BBOARD application

differ from the others in two respects. First, when no clues

are used, not even a small number of clients can be sup-

ported within the response time threshold specified in Sec-

2The scalability of this strategy is the same as the Minimal Template-

Inspection Strategy (MTIS) of [24].
3The scalability of this strategy is the same as the Minimal View-

Inspection Strategy (MVIS) of [24].

 No DBSS

 No clues

 Clues (excl. DB clues)

 Clues (incl. DB clues)

 Opportunistic

 0

 200

 400

 600

 800

AUCTION BBOARD BOOKSTORE

S
ca

la
b

il
it

y
 (

n
u

m
b

er
 o

f
co

n
cu

rr
en

t
u

se
rs

 s
u

p
p

o
rt

ed
)

0

Figure 3: Impact of invalidation clues on scalability. For

comparison, we include the scalability numbers without a

DBSS.

tion 6.2. This is because each HTTP request results in about

ten database requests, most of which suffer cache misses (due

to no clues being used). Second, the overhead of comput-

ing database update clues is high relative to the decrease in

invalidations. Hence, as Figure 3 shows, using database up-

date clues whenever required for precise invalidations results

in worse scalability. Figure 3 thus confirms the claim made

in Section 4.2 that the use of database update clues must be

carefully weighed against the expected benefit.

6.4 Benefits of EqualityOptimal Mapping

Figure 4 shows the reduction in the number of invalida-

tions. The workload used is the template pair in Table 5, with

the parameter values chosen according to the Zipf distribu-

tion in BOOKSTORE, over a domain of 100 values. The y-axis

plots the percentage reduction in invalidations in using our

EQUALITY-OPTIMAL mapping (Section 5.2), over a simplis-

tic mapping which maps an equal number of parameter values

to each place-holder. (The percentage reduction is a crude

estimate of the scalability improvement an application can

achieve by switching to an EQUALITY-OPTIMAL mapping.)

On the x-axis, we plot the number of place-holders. (Recall

from Section 5.2 that fewer place-holders implies greater pri-

vacy.) As expected, when all parameter values are mapped to

a single place-holder or most are mapped to separate place-

holders (right part of the graph), both mapping algorithms

result in almost the same number of invalidations. In other

cases, however, the EQUALITY-OPTIMAL algorithm reduces

invalidations by around 20%. The benefits increase as the

distribution over the parameters becomes more skewed.

7. Related Work

We now discuss other related work in database services,

view invalidation, and privacy.

Database Services. Existing work on providing database

 0

 10

 20

 30

 40

 0 20 40 60 80 100

%
 r

e
d

u
c
ti
o

n
 i
n

 I
n

v
a

lid
a

ti
o

n
s

Number of place-holders

Figure 4: Reduction in invalidations due to our

EQUALITY-OPTIMAL mapping algorithm.

services can be classified into Database Outsourcing (DO)

services [1, 15, 16, 17] and Database Scalability Services

(DBSS) [4, 5, 6, 19, 21, 22, 24, 28]. With DO services, an ap-

plication outsources all aspects of management of its database

to a third party [16]. Guaranteeing privacy of applications’

data is a key challenge in this setting [1, 15, 17]. With DBSS,

only database scalability is outsourced to a third party: ap-

plication providers retain master copies of their data on their

own systems, with the DBSS caching and serving read-only

copies on their behalf. This approach is more attractive from

a privacy and data integrity standpoint than the DO approach,

particularly for Web applications with read/write workloads

(e.g., e-commerce applications). As discussed in Section 2,

previous DBSS technology efforts [4, 5, 6, 19, 21, 22, 28]

other than [24] did not address privacy concerns.

View Invalidation and Maintenance. Many papers

have studied invalidation strategies for cached materialized

views [10, 12, 20], but none of these study the privacy im-

plications of using a particular invalidation strategy, the focus

of our work. Likewise, many papers [14, 29] have studied

techniques for view maintenance—how to change a view to

reflect an update.

The view invalidation and view maintenance works cited

above are special cases of clues. However, they do not address

privacy concerns. Furthermore, we demonstrate the necessity

and advantages of specially designed “database-derived” up-

date clues, in order to achieve precise invalidations. The work

closest to this in technique is by Candan et al. [10]. They

suggested using “polling queries” to inspect portions of the

database in order to decide whether to invalidate cached query

results in response to database updates. However, they used

polling queries just as a heuristic to get better invalidations.

They neither implemented precise invalidations using polling

queries, nor addressed privacy issues arising from the use of

polling queries.

Privacy. There has been a lot of recent interest in keeping

data private, yet allowing the computation of several func-

tions on the data (e.g., [3]). Agrawal et al. [2] present order-

preserving encryption schemes (OPES). As argued in Sec-

tion 5.2, however, these schemes do not preserve privacy un-

der our attack model. Hore et al. [18] study the privacy-utility

tradeoff in the choice of the “coarseness” of the index on en-

crypted data. Our bucketization technique in Section 5 is sim-

ilar. However, the resulting optimization problems are differ-

ent because different privacy metrics apply.

8. Conclusion

Database scalability services (DBSSs) are an extension

of CDNs that offload work from and absorb load spikes

for individual application databases, thereby removing a

key bottleneck for many Web applications without the ex-

pense/headaches of an over-provisioned server farm. This pa-

per presented invalidations clues, a general framework and

techniques for enabling applications to reveal little data to the

DBSS, yet provide sufficient information to limit unnecessary

invalidations of results cached at the DBSS. Compared with

previous approaches, our proposed invalidation clues provide

increased scalability to the DBSS for a target security/privacy

level, as well as more fine-grained control of this tradeoff. Us-

ing three realistic Web application benchmarks, we illustrated

the issues and solutions for generating effective clues, e.g., by

identifying categories requiring database clues, and then we

demonstrated the scalability benefits of these solutions on our

DBSS prototype.

Acknowledgments. This research is supported in part by

National Science Foundation grants, including NeTS CNS–

0520192, CNF–0433540, and NeTS CNF–0435382.

References

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,

K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and

Y. Xu. Two can keep a secret: A distributed architecture for

secure database services. In Proc. CIDR, 2005.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserv-

ing encryption for numeric data. In Proc. SIGMOD, 2004.

[3] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving

OLAP. In SIGMOD Conference, 2005.

[4] M. Altinel, C. Bornhvd, S. Krishnamurthy, C. Mohan, H. Pira-

hesh, and B. Reinwald. Cache tables: Paving the way for an

adaptive database cache. In Proc. VLDB, 2003.

[5] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy:

A dynamic data cache for Web applications. In Proc. ICDE,

2003.

[6] C. Amza, G. Soundararajan, and E. Cecchet. Transparent

caching with strong consistency in dynamic content web sites.

In International Conference on Supercomputing, 2005.

[7] Apache Tomcat. http://tomcat.apache.org.

[8] J. A. Blakeley, N. Coburn, and P. Larson. Updating derived

relations: Detecting irrelevant and autonomously computable

updates. ACM TODS, 14(3), 1989.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allow-

able errors. Commun. ACM, 13(7), 1970.

[10] K. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View

invalidation for dynamic content caching in multitiered archi-

tectures. In Proc. VLDB, 2002.

[11] B. Chen and R. Morris. Certifying program execution with

secure processors. In USENIX HotOS Workshop, 2003.

[12] C. Y. Choi and Q. Luo. Template-based runtime invalidation

for database-generated web contents. In APWeb, 2004.

[13] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and

B. Weihl. Globally distributed content delivery. IEEE Internet

Computing, 6(5), 2002.

[14] A. Gupta and J. A. Blakeley. Using partial information to up-

date materialized views. Information Systems, 20(9), 1995.

[15] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL

over encrypted data in the database service provider model. In

Proc. SIGMOD, 2002.

[16] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database

as a service. In Proc. ICDE, 2002.

[17] H. Hacigumus, B. Iyer, and S. Mehrotra. Efficient execution

of aggregation queries over encrypted relational databases. In

DASFAA, 2004.

[18] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving

index for range queries. In VLDB, 2004.

[19] P.-A. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent

mid-tier database caching in sql server. Proc. ICDE, 2004.

[20] A. Y. Levy and Y. Sagiv. Queries independent of updates. In

Proc. VLDB, 1993.

[21] W. Li, O. Po, W. Hsiung, K. S. Candan, D. Agrawal, Y. Akca,

and K. Taniguchi. CachePortal II: Acceleration of very large

scale data center-hosted database-driven web applications. In

Proc. VLDB, 2003.

[22] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,

B. G. Lindsay, and J. F. Naughton. Middle-tier database

caching for e-business. In Proc. SIGMOD, 2002.

[23] A. Manjhi, P. B. Gibbons, A. Ailamaki, C. Garrod, B. M.

Maggs, T. C. Mowry, C. Olston, A. Tomasic, and H. Yu. Invali-

dation clues for database scalability services. Technical Report

CMU-CS-06-139R, Carnegie Mellon University, Nov. 2006.

[24] A. Manjhi, C. Olston, A. Ailamaki, B. M. Maggs, T. C. Mowry,

and A. Tomasic. Simultaneous scalability and security for data-

intensive web applications. In Proc. SIGMOD, 2006.

[25] MySQL AB. MySQL database server.

[26] ObjectWeb Consortium. Rice University bidding system.

http://rubis.objectweb.org/.

[27] ObjectWeb Consortium. Rice University bulletin board sys-

tem. http://jmob.objectweb.org/rubbos.html.

[28] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs,

and T. C. Mowry. A scalability service for dynamic web appli-

cations. In Proc. CIDR, 2005.

[29] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making

views self-maintainable for data warehousing. In PDIS, 1996.

[30] B. Schneier. Applied Cryptography: Protocols, Algorithms,

and Source Code in C. John Wiley & Sons, 1996.

[31] The Washington Post. Advertiser charged in massive database

theft. http://www.washingtonpost.com/wp-dyn/

articles/A4364-2004Jul21.html, July, 2004.

[32] Transaction Processing Council. TPC-W, version 1.7.

[33] Trusted Computing Group. Trusted Platform Mod-

ule Main Specification, Version 1.2. http://www.

trustedcomputing.org.

[34] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-

grated experimental environment for distributed systems and

networks. In Proc. OSDI, 2002.

