
Parachute Queries in the Presence of

Unavailable Data Sources�

Philippe Bonnet

GIE Dyade

��� Avenue de l�Europe

����� Montbonnot� France

Philippe�Bonnet�dyade�fr

Anthony Tomasic

INRIA Rocquencourt

	�
�� Le Chesnay� France

Anthony�Tomasic�inria�fr

Abstract

Mediator systems are used today in a wide variety of unreliable environments� When processing
a query� a mediator may try to access a data source which is unavailable� In this situation�
existing systems either silently ignore unavailable data sources or generate an error� This behavior
is ine�cient in environments with a non�negligible probability that a data source is unavailable
�e�g�� the Internet�� In the case that some data sources are unavailable� the complete answer to a
query cannot be obtained� however useful work can be done with the available data sources� In
this paper� we describe a novel approach to mediator query processing where� in the presence of
unavailable data sources� the answer to a query is computed incrementally� It is possible to access
data obtained at intermediate steps of the computation� We de�ne two new evaluation models and
analytically model for these evaluation models the probability of obtaining the answer to a query
in the presence of unavailable data sources� The analysis shows that complete answers are more
likely in our two evaluation models than in a classical system� We measure the performance of our
evaluation models via simulations and show that� in the case that all data sources are available�
the performance penalty for our approach is negligible�

Keywords

Heterogeneous databases� Query Processing� Partial Evaluation� Unavailable Data

R�esum�e

Lorsqu�un m	ediateur traite une requ
ete� dans un syst�eme de bases de donn	ees h	et	erog�ene� il est
probable qu�il tente d�acc	eder �a une source de donn	ees qui est temporairement indisponible� Dans
cette situation� les syst	emes existants g	en�erent une erreur ou ignorent ces sources� Ce comporte�
ment est ine�cace dans des environnements o�u il existe une probabilit	e non n	egligeable qu�un site
soit indisponible �e�g�� Internet�� Dans le cas o�u des sources de donn	ees sont indisponibles� la
r	eponse compl�ete �a une requ
ete ne peut pas
etre produite � cependant du travail utile peut
etre
e�ectu	e avec les sources de donn	ees disponibles� Dans cet article� nous d	ecrivons une nouvelle
approche du traitement de requ
ete dans un m	ediateur en pr	esence de sources de donn	ees tempo�
rairement indisponibles� Nous d	e�nissons deux nouveaux mod�eles d�	evaluation et fournissons pour
chacun d�eux un mod�ele analytique qui repr	esente la probabilit	e d�obtenir la r	eponse �a une requ
ete
en pr	esence de sources de donn	ees indisponibles� L�analyse montre que la probabilite d�obtenir une
r	eponse est plus forte dans les deux mod�eles d�	evaluation que nous proposons que dans un syst�eme
classique� Nous mesurons les performances de nos mod�eles d�	evaluation en utilisant une simulation
� nous montrons que� dans le cas o�u toutes les sources de donn	ees sont disponibles� les pertes de
performances imputables �a notre approche sont n	egligeables�

Mot Cl�es

Bases de Donnes h�et�erog�enes distribu�ees� traitement de requ�etes� �evaluation partielle� donn�ees indisponibles

�This work has been done in the context of Dyade� a joint R�D venture between Bull and INRIA�

� Introduction

Many current application environments use mediators �e�g�� �
�� ��
�
�� �� ���� to provide query
access to a wide variety of heterogeneous data sources� Providing timely answers to queries in this
environment is di�cult due to the unpredictable response�time nature of data sources and of the
interconnection network� Data sources become overloaded and networks become congested� Both
can cease to function due to power loss� administrative operations� etc�

In cases where a data source or network does not respond su�ciently quickly� it can be con�
sidered unavailable� In such situations� when processing a query q� existing systems either silently
ignore missing data or generate an error noti�cation n �replicated data sources are considered
in Section ��� In either case� to obtain the complete answer� the query must be resubmitted to
the system and reprocessed from scratch� If some sources are unavailable� the system will again
generate an error and again the query must be resubmitted� The complete answer a to a query
will be generated only when all data sources are available� Thus� we can model the sequential
interaction between the application program and the mediator as the following sequence of steps�
q� n� q� n� � � � q� n� q� a� We call this sequential model of interaction a classical evaluation model�

However� even when some data sources are unavailable� useful work can be done with the
available data sources� a mediator can access� process and materialize their data� We call a
representation of the mediator state at the point of noti�cation a partial answer �the noti�cation
n contains the partial answer�� The mediator uses its state to construct an incremental query
i which is equivalent to the original query but cheaper to evaluate� The application program
obtains the incremental query through the partial answer and then submits it to the mediator
in order to get the complete answer� An example of a sequence for this model of interaction is
q� n�� i�� n�� i�� � � � � nk� ik� a� A di�erent incremental query is used� in general� in each step of the
sequence because the mediator makes partial progress towards the complete answer a depending
on the sources that are available at each step��

Incremental queries save work� in addition� the mediator state contains interesting information
which may be useful for the user� The application program can extract information from the
mediator state by submitting a secondary query� called a parachute query �� The answer to a
parachute query� called a parachute answer �� can be computed given enough information in the
mediator state� An example of a sequence of interaction is q� n�� ��� ��� i�� � � � � nk� ik� a� Note that
parachute queries and incremental queries can be freely mixed� We call this model of interaction an
unconstrained evaluation model� We use this term because the optimization of q is unconstrained
by the knowledge of ��

The unconstrained evaluation model has several advantages� �i� it is easy to implement� �ii�
parachute queries can be dynamically constructed by examining the partial answer� �iii� the plan
used for the �original� query is always the optimal� However� this evaluation model has a disadvan�
tage with respect to parachute queries because it cannot insure that the mediator state contains
the information necessary to answer a parachute query�

We present in this paper a mediator which optimizes simultaneously the query and the parachute
queries to insure that the mediator state contains the necessary information� assuming the appropri�
ate data sources are available� An example of a sequence of interaction is �q� ���� �n�� ���� �i�� ���� � � � � a�
Note that parachute queries are submitted together with the original query� �This paper considers
only a single parachute query�� The noti�cation is followed by the parachute answers� Parachute
queries can be submitted again with the incremental query� We call this model of interaction a
constrained evaluation model� To help the intuition of the reader� we consider an example�

��� TPC�D example

Our example is based on the schema of the TPC�D benchmark� The schema consists of suppliers�
parts� the relationship between suppliers and parts� nations� and regions� Consider a system where
each base relation is located on a di�erent data source� A possible conjunctive query over this
schema� derived from the TPC�D query Q�� is �nd all suppliers located in Europe which provide

�This sequence is valid as long as the underlying data sources are not updated in a way that a�ects q� This
assumption is a common one in mediator systems research and we use it throughout this paper�

�

a given part� In the following queries� attributes pre�xed by S� come from the SUPPLIER relation�
N� from the NATION relation� etc�

SELECT S�ACCTBAL� S�NAME� N�NAME� P�PARTKEY�

P�MFGR� S�ADDRESS� S�PHONE� S�COMMENT

FROM SUPPLIER� PART� PARTSUPP� NATION� REGION

WHERE P�PARTKEY � PS�PARTKEY AND

S�SUPPKEY � PS�SUPPKEY AND

P�SIZE � �� AND P�TYPE LIKE �BRASS� AND

S�NATIONKEY � N�NATIONKEY AND

N�REGIONKEY � R�REGIONKEY AND

R�NAME � �EUROPE��

An interesting parachute query associated to this query is all suppliers which provide a given
part�

SELECT S�ACCTBAL� S�NAME� P�PARTKEY� P�MFGR�

S�ADDRESS� S�PHONE� S�COMMENT

FROM SUPPLIER� PART� PARTSUPP

WHERE P�PARTKEY � PS�PARTKEY AND

S�SUPPKEY � PS�SUPPKEY AND

P�SIZE � �� AND P�TYPE LIKE �BRASS��

Suppose the data sources containing the NATION or REGION relations are unavailable when the
user asks the query� The system immediately noti�es her that the query cannot be answered� The
system however proceeds and obtains data from the other data sources for the SUPPLIER� PART
and PARTSUPP relations� The system generates an incremental query that will e�ciently compute
the complete answer once the unavailable data sources are again available� �Reference ��� describes
an incremental query for this example�� The user submits the parachute query and the mediator
returns the parachute answer� Clearly� this answer contains information that is interesting to the
user� Once the unavailable data sources are again available� the user submits the incremental
query� It retrieves data from these data sources and reuses data already obtained� Note that the
incremental query and the parachute query are independent of each other�

��� Summary

In summary� we describe in this paper a novel approach to answering queries with unavailable
data sources� Our approach is based on incrementally computing the answer to the query and
permitting information to be extracted from the intermediate states of the computation� This
approach leads to many interesting questions�

��� What relevant information can be extracted from the mediator state� i�e�� what are the
interesting parachute queries� How to help the database programmer choose good parachute
queries�

��� How are queries evaluated in the constrained and unconstrained evaluation model� How
are incremental queries constructed� How are parachute queries evaluated�

��� How do the di�erent evaluation models impact the availability of complete answers� What
is the impact on performance� How likely is it that a parachute query can be answered�

In this paper� we attack these questions� In Section � we describe an intuitive class of parachute
queries and demonstrate some interesting properties of this class� In Section � we detail the three
evaluation models described above� In Section � we describe the algorithms which support the query
processing shown in the example in the introduction� In Section � we describe our experimental
framework �containing an analytical and a simulation model�� In Section � we analyze the impact
of our algorithms on the probability that an answer can be obtained given a sequence of interaction�
In addition� we simulate the three evaluation models and analyze their performance characteristics�
In Section � we discuss related work� Finally� in the last section we conclude the paper and discuss
future work�

�

in� a conjunctive query Q� with built�in
predicates� a set of predicates L

out� a conjunctive query Q�

RemovePredicates�Q� � L	 f
Q�
� Q�

for each l in L f
if l appears in Q� then

Q�
� e�ace l from Q�

g

E�ace from Q� all built�in predicates where a
non�range restricted variable appears�

E�ace from Q� head all non�range restricted
variables�

Return Q�� g

Figure
� The RemovePredicates function for Conjunctive Queries

in� a union query Q�� a set of predicate names L
out� a union query Q�

RemovePredicates�Q� � L	 f
Q�
� Q�

for each l in L f
if l appears in a rule� then

Q�
� e�ace from Q� the rule using l
g
Return Q�� g

Figure �� The RemovePredicates function for Union Queries

� Parachute Queries

The aim of a parachute query is to provide the user with relevant� useful data� in case the answer
to a particular query cannot be computed� In Section
 we showed an example of such a parachute
query� However� not all parachute queries work well� To work well� �rst the mediator state must
contain the necessary information for answering the parachute query� This problem is considered
in detail in Section �� Second� the set of sources needed to answer the parachute query must be
di�erent from the set of sources needed to answer the original query since� in the case that the set
of sources are equal the system will simply answer the query and ignore the parachute query�

Given these restrictions� the application programmer is still faced with a daunting task� parachute
queries must be semantically meaningful� To aid the programmer in the task of identifying interest�
ing parachute queries� we de�ne a precipitate class of parachute queries with respect to a query as
follows� a parachute query is a �generalized� subset or superset of the original query� The intuitive
connection is clear � the application programmer knows that the given parachute answer contains
missing or extra tuples with respect to the complete answer�

If the parachute answer � is a subset or a superset of the query answer a for all possible
databases� then containment ���� holds� i�e�� � � q or � � q� By generalized subset or superset� we
mean that the projection of the parachute query and the original query are permitted to di�er�
More formally� let �Q be the projection of the attributes of Q� then

De�nition � �Generalized Subset� Q� is a generalized subset of Q � for any database D�
Q��D� � �Q� �Q�D���

De�nition � �Generalized Superset� Q� is a generalized superset of Q � for any database D�
Q��D� � �Q� �Q�D���

Figure � shows an algorithm for the generation of parachute queries� All generated parachute
queries belong to the precipitate class� The algorithm takes as input a query� a set of sources

�

in� a query Q� a mapping from predicate
names to data sources M � a set of required
sources S

out� a set of parachute queries PQ

pq�gen�Q�M�S	 f
V
� use M to determine sources of Q
for each con�guration c in V � S f

L
� the available predicates derived
from M � c and S

PQ
� PQ � RemovePredicates�Q�L	
g
Return PQ� g

Figure �� The pq�gen algorithm for generating parachute queries of a query�

required to be available� and a mapping from sources to predicate names� Given a set of sources
available and unavailable �we call this set a con�guration of sources� and the mapping� the set of
available predicates can be identi�ed�� The heart of the algorithm uses a function RemovePredicates
that takes the set of available predicates and a query and generates a parachute query� This function
is given in Figure
 for conjunctive queries and Figure � for union queries� In these algorithms� a
range restricted variable is a variable that appears in a non�built�in predicate in the body of rule�
Given this algorithm� a tool which allows the application programmer to explore the precipitate
class of parachute queries can easily be constructed� Investigation of other classes of parachute
queries is future work�

Example � Consider the query of employees� departments� and salaries greater than ��� Each
predicate is mapped to a di�erent data source�

Query� eds�X�Y� Z�� e�X� � ed�X�Y � � es�X�Z� � Z �
�
Mapping� feg �
� fedg � �� fesg � �
Required Sources� f
g
The set of parachute queries are�

Available Parachute Query

f
g pq��X	� e�X	
f
� �g pq��X� Y 	� e�X	 � ed�X� Y 	
f
� �g pq��X�Z	� e�X	 � es�X�Z	 � Z �
�
f
� �� �g pq��X� Y� Z	� e�X	 � ed�X� Y 	�

es�X�Z	 � Z �
�

� Evaluation Models

In this section we describe in detail the three evaluation models mentioned in the introduction� The
classical evaluation model represents existing systems which do not support parachute queries� This
evaluation model requires almost no modi�cations to the mediator� The unconstrained evaluation
model considers parachute queries after the evaluation of the query� This evaluation model requires
only lightweight modi�cations to the interface and the run�time system of the mediator� The
constrained evaluation model simultaneously optimizes the query and its associated parachute
queries� This evaluation model requires modi�cations to the interface� optimizer and run�time
system of the mediator�

Figure � shows the general evaluation model of these three systems� In the diagram for the
classical evaluation model� �
� is the submission of the query� ��� is the noti�cation that the query
cannot be answered� ��� is the submission of the parachute query� ��� is the parachute answer�
��� is the re�submission of the original query� and ��� is the complete answer� This evaluation
model represents existing mediator systems that do not support partial answers� or any form of
materialization of intermediate results obtained when processing a query� Such a system has a
classical cost based optimizer� It has no support for parachute queries� Parachute queries can be
asked as follow�up queries and they are processed as all other queries� In case some data sources
are unavailable� the original query is asked several times in order to obtain the complete answer�

�We assume that a predicate resides on a single source�

�

246246 246

n α a n α a n α a

Classical Evaluation Model

Optimizer Optimizer Constrained

Optimizer

Execution Engine Execution Engine

generating Partial Answers
Execution Engine

generating Partial Answers

PQ EvaluationPQ Evaluation

31 31 5 5 35

q q qρ ρ ii

1

q ρ

Constrained Evaluation ModelUnconstrained Evaluation Model

Figure �� Evaluation Models of Three Representative Systems�

Queries and parachute queries are evaluated using the evaluate algorithm described in the next
section�

The unconstrained system optimizes the query independently of the parachute queries� In the
diagram for this evaluation model� �
� is the submission of the query� ��� is the partial answer�
��� is the submission of the parachute query� ��� is the parachute answer� ��� is the submission of
the incremental query� and ��� is the complete answer� The optimizer is cost based� i�e� similar
to the optimizer of the classical system� Queries and incremental queries are evaluated using the
same evaluate algorithm� The incremental query is constructed by the mediator using the construct
algorithm described in the next section� Parachute queries are evaluated using the extract algorithm
described in the next section� This last algorithm only uses data materialized in the mediator�

The constrained evaluation model contains a constrained optimizer� described in the next sec�
tion� that simultaneously optimizes a query and its parachute query� In the diagram for this
evaluation model� �
� is the submission of the query and the parachute queries� ��� is the partial
answer� ��� is the request for the evaluation of a particular parachute query� ��� is the parachute
answer� ��� is the submission of the incremental query and its parachute queries� and ��� is the com�
plete answer� The same algorithms as in the unconstrained evaluation model �evaluate� construct�
and extract� are also used here�

� Algorithms

��� Evaluate algorithm

The evaluate algorithm evaluates a query execution plan that has been generated by an optimizer
for a query or an incremental query� The query execution plan is based on the Graefe iterator
model�

�� The leaves of the plan are the sub�queries submitted to the data sources� The interior
nodes are classical query processing operators such as join� In the case that all data sources are
available� the algorithm computes the complete answer to the query� Otherwise it materializes
part of the query execution plan in the mediator� The algorithm consists of two phases� a sense
phase and an execution phase�

The sense phase is used to detect which data sources are available or unavailable� See ��� for
an outline of the algorithm� This phase recursively descends the query execution plan in parallel
along all sub�plans� When a sub�query is found� the corresponding data source is probed� If the
data source responds within a timeout period� the source is considered available� otherwise it is
unavailable� This phase examines all data source in parallel� thus overlapping the timeout wait on
all data sources� This phase then recursively ascends the plan� marking as available an operator
whose children are available� otherwise marking the operator as unavailable� After traversal of the
plan �nishes� the root operator of the plan has marked itself either available or unavailable�

For the execution phase� if the root operator is marked available� then all sources are available

�

and the �nal result is produced in the normal way� If at least one data source is unavailable� the root
of the execution plan will be marked unavailable and the �nal result cannot be produced� In this
latter case the execution phase proceeds via a second pass on the plan� This phase materializes
some parts of the plan depending on a policy� Consider the plan �A �� B� �� �C �� D� where
relations A� B and D are available� For the nothing policy� no materializations are performed�
For the maximal sub�plan policy� each sub�plan rooted with an available operator materializes its
result� Thus �A �� B� and D are materialized� For the leaves policy� each available leaf plan
�containing the sub�query executed on the data source� materializes its result� Thus� A� B� and D

are materialized� For the shared component sub�query policy� each sub�plan marked as a shared�
component sub�query �cf� Section ���� is materialized� If �B �� C� is a parachute query� then
the shared�component sub�queries are B and C� These materializations of sub�plans proceed in
parallel� Note that this style of query execution is a form of query scrambling ����

We assume in this paper that a data source which is marked available continues to operate in
the execution phase� If an available data source becomes unavailable during the execution phase�
an implementation would simply throw away the subplan which uses that data source� Also note
that the parallel execution style is not critical to the issues of this paper � it simply results in
better performance� However� as we shall see in Section �� the materialization policy crucially
a�ects several aspects of our work�

��� Construct algorithm

The construct algorithm constructs the incremental query from an execution plan and the mediator
state� The execution plan is annotated with information such as the predicates used in joins� the
attributes projected during a scan� etc� Each sub�plan that has been materialized� as described
in the previous section� is annotated with the name of the temporary relation that stores the
materialized data� The algorithm uses this information to construct a declarative query in a
bottom�up fashion� This query is the incremental query� ��� shows the construct algorithm and a
detailed example�

The incremental query that is constructed is equivalent to the original query� This ensures that
the answer to the incremental query is exactly the same as the answer to the original query� under
the assumption that no updates relevant to the query are performed on the data sources between
the time the original query is submitted and the complete answer is computed� The incremental
query� together with a handle to the execution plan� is returned as the partial answer to the query�
The user interface is responsible for requesting the evaluation of the incremental query�

��� Extract Algorithm

The extract algorithm computes the answer to a parachute query using the materialized relations
in the mediator state� The algorithm is a straightforward application of algorithms that answer
queries using views �AQUV� �
��� These algorithms compute the answer to a query q using a set
of views v� The result is a new query q� composed of some views in v and of a remainder query q��

that references base relations ��
In our framework� we set q to be the parachute query � and the views v to be the sub�queries

associated with the materialized relations in the mediator state� �The views are generated by
applying the construct algorithm to the subplan associated to each materialized relation in the
mediator state�� The AQUV algorithm is run to rewrite parachute query � into �� and ���� The
remainder query ��� corresponds to accessing the data sources containing data that has not been
materialized� Since the mediator does not access data sources during the processing of a parachute
query� we permit the execution of the parachute query only if the remainder query ��� is empty�
Thus� �� answers the parachute query using some combination of the materialized relations�

We have favored an approach where a parachute query is evaluated only against materialized
data� Our primary reason is performance� As we shall see in Section �� parachute queries evaluate

�The algorithm presented in �
�� allows to �nd a minimal rewriting� i�e� the rewriting with the minimal number
of literals

�

very quickly�� Permitting the evaluation parachute queries to access data sources� particularly in
the case where the parachute query accesses data sources that are not involved in the original
query� is future work�

��� Constrained Optimization

The constrained optimization algorithm takes as input a conjunctive query q� together with one
associated parachute query �� The output of this constrained algorithm is an execution plan for
q annotated with labels at the root of each shared component sub�queries �SCSQ�� i�e�� the sub�
queries that are shared with the parachute query� These labels are used by the evaluate algorithm
for the shared component sub�query materialization policy�

In our algorithm� the query q and the parachute query � are represented as conjunctive queries
in Datalog ����� The parachute query is thus�

pq�Sacct� Sname� Ppk� Pmfgr� Sadd� Sphone� Scom��
s�Sacct� Sname� Ssk� Snk� Sadd� Sphone� Scom��
p�Ppk� Pkind�
���
ps�Ppk� Ssk��
like�Pkind� �BRASS��

Our algorithm proceeds in four steps� The �rst step constructs the generalized shared sub�query
�GSSQ� between the query and the parachute query� The GSSQ is essentially the most speci�c
query whose body contains a subset of both the query and the parachute query� The second step
constructs two groups of SCSQs based on the GSSQ� In the third step� the query and each group
of SCSQs is used as an input to the AQUV algorithm to rewrite the query into a query q�� In
the fourth step� a classical optimizer is invoked to determine the most e�cient execution plan for
each SCSQ and the associated rewritten query q�� The combination of plans with the lowest cost
is chosen as the �nal plan� Each step is described in detail below�

Step � The GSSQ l is obtained as follows� �i� let l be the body of q� �ii� e�ace all literals
in l whose predicate does not appear in a literal in the body of �� �iii� replace all variables or
constants in l by new distinct variables� At this point� given the query and parachute query above�
l is p�X
� X��X�	 � s�X�� X�� X��X�� X�� X�� X
�	 � ps�X

�X
�	 � like�X
�� X
�	�

We now re�ne l in order to obtain the GSSQ� Containment mapping cq is constructed between
the GSSQ and q� and c� is constructed between the GSSQ and �� From these variable mappings�
we deduce two sets of bindings bq and b� from cq and c�� respectively� The bindings are all equality
relations and bindings of variables to constants� We obtain the GSSQ binding b as bq � b�� In our
example� bq is fX
 � X

� X� � X
�� X
� � �BRASS�� X� �
�� X� � X
�g and b� � bq �

� We apply
b to l to obtain the GSSQ� p�X
� X��
�	�s�X�� X�� X�� X�� X�� X��X
�	�ps�X
� X�	�like�X�� �BRASS�	�

Step � From the GSSQ identi�ed in the previous step� we construct two groups of shared
component sub�queries �a shared component sub�query is a view composed of a head and a body��
Note that considering only two groups of SCSQs is a heuristic� The �rst group of shared component
sub�queries contains a single view whose body is the GSSQ and whose head is obtained with a
new unique predicate symbol and the list of all variables that appear in the body and whose
corresponding variables are needed to evaluate q� We obtain�

fscsq��X
� X�� X�� X�� X�� X�� X
���
p�X
� X��
���
s�X�� X�� X�� X�� X�� X�� X
���
ps�X
� X���
like�X�� �BRASS��g

The second group of SCSQ contains one view per literal �with any built�in predicate� if possible�
appearing in the GSSQ� The body of each of these views is composed of one literal� their head is
obtained with a new unique predicate symbol and the list of all variables that appear in the body
needed to evaluate q� Thus� we obtain�

�Note that materialized data could also be used to evaluate subsequent queries� We consider that this is a
separate area of research�

�The bindings are the same because the conditions and the joins in the parachute query appear in the query�

�

fscsq��X
�� p�X
� X��
��� like�X�� �BRASS���
scsq��X
� X��� ps�X
� X���
scsq��X
� X�� X�� X�� X�� X�� X���

s�X
� X�� X�� X�� X�� X�� X��g

Step � For each group of shared component sub�queries� q is rewritten into a query q� that
uses the group of SCSQ as views and a remainder query q��� The rewriting is accomplished using
an AQUV algorithm �
��� For the �rst group� q is rewritten as

q�Sacct� Sname�Nname� Ppk� Pmfgr� Sadd� Sphone� Scom��
scsq��Ppk� Sacct� Sname� Snk� Sadd� Sphone� Scom��
n�Snk�Nname�Nrk��
r�Nrk� �EUROPE��

Step � The optimizer is invoked once to generate the most e�cient execution plan for each
shared component sub�query in any group and the execution plan for the rewritten query q� of each
group� The optimization of q� is done with respect to the materialized SCSQs in its group� The
total cost of the group of SCSQ is the sum of the costs for computing the SCSQs and the costs
for executing the associated q�� The group with the lower cost is chosen� The execution plan for
q is obtained by merging the execution plan for q� and the execution plans for the corresponding
SCSQ� The root of each shared component sub�query is labeled so that it can be recognized by the
evaluate algorithm�

Thus� the constrained optimization algorithm identi�es component sub�queries shared between
q and � and generates the cheapest execution plan which contains either one SCSQ or a group of
SCSQ� each of them being a leaf�

� Experimental Environment

Our experiments are performed using an analytical model and a detailed simulation of the evalua�
tion models introduced in Section � using a workload based on the query in the introduction� The
analytical model is used to analyze the impact of the evaluation models on the likelihood that a
query or a parachute query can be answered� The simulation is used to study classical response
time and total work performance questions�

��� Analytical Model

As discussed in the previous sections� in the presence of unavailable data sources� a mediator needs
several trials to obtain a complete answer� A trial corresponds to a mediator attempting to access
several data sources� Each data source is either available or unavailable� An available data source
can deliver data in a timely manner� an unavailable data source cannot� We model each trial to
a data source as a uniformly random and independent event in which the data source is available
with probability p and unavailable with probability
 � p� We model in this section� the three
evaluation models of mediators introduced previously� classical� unconstrained and constrained�

We now express the probability that n sources are available simultaneously at least once in t

trials� The probability that n data sources are available during a trial is pn� The probability that
not all n data sources are available during a trial is
� pn� For t trials� the probability that not
all n data sources are available during a trial is �
� pn�t� For t trials� the probability that� in at
least one trial� all data sources are available is

� �
� pn�t �
�

Equation
 represents the availability of complete answers in a classical evaluation model�
An unconstrained evaluation model materializes data from all available data sources in case

some data sources are unavailable� When a query is issued� the mediator checks for t trials the
availability of all n data sources and uploads the desired data from the newly available data sources
at each trial� After t trials� a complete answer can be returned if data has been uploaded from all
n sources� A data source only needs to be available once to participate in the complete answer�

�

We now express the probability that n sources are available at least once in t trials� The
probability that a given source is never available in t trials is �
�p�t �since all trials are independent�
we can consider either the data sources or the trials �rst�� The probability that a given source is
available at least once in t trials is
� �
� p�t� The probability that all n sources are available at
least once across t trials is

�
� �
� p�t�n ���

Equation � is the availability of complete answers in an unconstrained evaluation model� Note that
Equation
 and Equation � are equal if p � � or p �
 or t �
 or n �
� as expected�

We have seen in Section ��� that the constrained optimizer identi�es either one or several shared
component sub�queries� This decision impacts the availability of complete answers� First� in case
the constrained optimizer identi�es one shared component sub�query� this shared component sub�
query involves m of the n data sources contacted to obtain the complete answer� The shared
component sub�query is materialized if the m data sources are available simultaneously�

When a query is issued to a constrained evaluation model� the mediator checks for t trials the
availability of all n data sources� If on the t�th trial� the shared component sub�query can be
materialized� then a complete answer is returned whenever� in the remaining trials �including the
current one� i�e� t� t� �
 trials�� the other m� n data sources are available simultaneously�

tX

t���

��
� �
� pm�t��� �
� �
� pm��t������ � �
� �
� pn�m�t�t�	�� ���

Equation � is the availability of complete answers in case a constrained evaluation model deals
with one shared component sub�query� Details of this derivation are given in Reference ����

In case the constrained optimizer identi�es several shared component sub�queries� there are m
shared component sub�queries involving one data source�

tX

t���

��
� �
� p�t��m � �
� �
� p�t����m� � �
� �
� pn�m�t�t�	�� ���

Equation � is the availability of complete answers in case a constrained evaluation model deals with
several shared component sub�queries� each involving one data source� Details of this derivation
are given in Reference ����

��� Simulation Environment

To study the performance of the algorithms producing partial answers� we have extended an
existing simulator ��� �� that models a peer�to�peer database system� We brie�y describe� here� the
simulator and present the extensions we have implemented to simulate the partial answers systems
identi�ed in Section ��

�	�	� Servers

Table
 shows the main parameters for con�guring the simulator and the settings used for this
study� The mediator and the data sources are modeled as servers� A single mediator is connected
to NumSites data sources� Each of the data source stores one base relation� The data sources
are unloaded� �Delays from data sources are considered in ����� The mediator can materialize
temporary results on disk� Each server is characterized by a CPU whose speed is speci�ed by the
Mips parameter� NumDisks disks� and a main memory bu�er pool of size Memory� Servers are
connected via a network which is characterized by its bandwidth NetBw� The network is modeled
as a FIFO queue� Although servers are con�gured with memory� base and materialized relations
are always read from a server�s disks� i�e�� there is no caching across queries and relations are
accessed once per query�

We extended this simulator by introducing the evaluate algorithm with di�erent materializa�
tion policies as described in Section �� In the sense phase� unavailable servers are modeled in a

�

Parameter Value Description

NumSites � or � number of data source servers
Mips �� CPU speed �
�� instr�sec	
NumDisks
 number of disks per servers
DskPageSize ���� size of a disk page �bytes	
NetBw ��� network bandwidth �Mbit�sec	
NetPageSize ���� size of a network page �bytes	
Compare � instr� to apply a predicate
HashInst �� instr� to hash a tuple
Move � instr� to copy � bytes
memory ���� size of memory �disk pages	
time�out
� time�out for sources �sec	

Table
� Simulation parameters and main settings�

simple way� When a server representing a remote data source is contacted� it is either available
or unavailable� If the server is available� it responds immediately� If the server is unavailable�
mediator detects this fact after time�out seconds� For all the experiments� we have set the value
of the time�out to
� seconds� We use this value so that the behavior of the time�out can be
clearly distinguished from other behavior in the simulation� An actual system would use a shorter
time�out� In the execution phase� we assume that disk space is unlimited and that all intermediate
results �t in memory and can be materialized on disk�

�	�	� Query Optimizer

In the simulation of all three evaluation models a cost�based optimizer is used� Although the
simulator implements hash join� where builds are done in parallel� we use a cost�based optimizer
whose objective function is total work� This makes sense because we consider a slow network�
The slow network essentially serializes the delivery of data from the data sources� The results we
report in Section � do not include the time required for running the query optimizer� nor the time
required for running the constrained optimization� nor the answering queries using views algorithm�
Incremental queries are not re�optimized � they use the plan with the materialized results� This
means that the incremental query results are more conservative than an actual system�

�	�	� TPC
D Workload

We use the query and the parachute query presented in the introduction as the workload� In our
experiment� each base relation is located on a separate data source� Select and Project operations
are executed at the data sources and the mediator receives only the selected tuples�

PS S N R

0.2

0.20.040.0001

185 bytes

P

0.000067

0.000005

200000 tuples
164 bytes

25 tuples 5 tuples
181 bytes

800000 tuples
219 bytes

10000 tuples
197 bytes

Figure �� Query graph for query Q

The query is a ��way join query� with selections on the PART and REGION relations� Figure �
shows the query graph� Each relation is represented using the �rst letters of its name� The
cardinality of a relation with the associated tuple size are listed below its abbreviated name� An
edge between two relations indicates a join predicate between those relations in the query� the edge
is labeled with the corresponding selectivity� Selection predicates are indicated by boxes containing
the relation on which they are applied and the selectivity of the predicate is presented above the
selection box�

The simulations use the parachute query given in the introduction� It belongs to the precipitate
class and it is derived from the query by removing relations NATION and REGION�

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 a

t l
ea

st
 a

n
A

ns
w

er

Source Availability

classical
unconstrained

constrained

Figure �� Probability of obtaining at least one complete answer in � trials for the TPC�D Workload

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 T

ria
ls

Source Availability

classical
unconstrained

constrained

Figure �� Numbers of trials required to have a probability ��� of obtaining a complete answer for
the TPC�D Workload

� Results

In this section� we study the in�uence of the optimization algorithms and of the materialization
policies used in the evaluate algorithm on the availability of complete answers and response time�

��� Availability of Complete Answers

We use the analytical model of Section � to compare the availability of complete answers in the
di�erent evaluation models for the TPC�D Workload� This workload is characterized by a query
which involves �ve data sources� and a parachute query which involves three of these data sources�
Moreover� in the constrained evaluation model� an execution plan containing one shared component
sub�query is chosen by the constrained optimizer�

Figure � plots the probability of obtaining at least one complete answer in two trials as a
function of source availability� The curve for the constrained evaluation model is contained between
the curve for the unconstrained evaluation model �upper bound� and the curve for the classical
evaluation model �lower bound�� The event of a classical evaluation model returning a complete
answer in t trials is included in the event of a constrained evaluation model returning a complete
answer in t trials which is itself contained in the event of an unconstrained returning a complete
answer in t trials�

In Figure �� the unconstrained evaluation model shows much better availability than the other

�

S

Mediator Site

Data Source 2

Data Source 3

Data Source 4

Data Source 5Data Source 1

R

N

P

PS

Figure �� Execution plan for the query in the three evaluation models�

two evaluation models� for a source availability of ���� the probability of obtaining an answer is
���� in the unconstrained evaluation model� ���� in the constrained evaluation model and ���� in
the classical evaluation model� The more data sources provide data which are materialized at each
trial� the higher the availability of complete answer� As data is never materialized in the classical
evaluation model� it has the lowest availability of complete answers� In the constrained evaluation
model� data is only materialized if the three sources involved in the shared component sub�query
are available� As a consequence the curve for the constrained evaluation model is close to the
curve for the classical evaluation model� In the unconstrained evaluation model� as much data as
possible is materialized at each trial� The probability of obtaining a complete answer is thus much
higher in this evaluation model�

Figure � shows the number of trials that are required to get at least one complete answer with
a probability of ��� as a function of source availability� When the source availability is low� say ����
the number of trials required to obtain a complete answer in the unconstrained evaluation model
is still reasonable� almost � trials� while it is � trials in the constrained evaluation model and
�
trials in the classical evaluation model�

��� � Trial Experiment

We use the simulator with the TPC�D workload to examine the in�uence of the optimization
algorithm and of di�erent materialization policies on response time using a realistic workload�
Our experiment is based on enumerating all possible con�gurations of available and unavailable
sources� For each con�guration c� we use a sequence of interaction which submits the query� then
the parachute query� and �nally the incremental query� This sequence is achieved by �i� setting
sources to be available or unavailable according to c� �ii� issuing the query� waiting for noti�cation�
issuing the parachute query� waiting for the parachute answer� �iii� changing all unavailable sources
to available sources after the parachute answer is returned� and �iv� issuing the incremental query
and waiting for the complete answer� Thus� the mediator attempts twice to answer the query and
once to answer the parachute query� In the case that all sources are available� we use the sequence
of interaction q� a�

To measure our experiments� we introduce several metrics� The time to �rst answer is the time
between q and n� i�e�� the time to execute the evaluate algorithm� The time to incremental answer
is the time between i and a� i�e�� the time to execute the evaluate algorithm on the incremental
query� The time to parachute answer is the time between � and �� i�e�� the time to execute the
extract algorithm�

Classical Evaluation Model The sequence of interaction for the classical evaluation model
experiment is q� n� �� �� i� a� When the query is submitted to the classical evaluation model� it is
optimized� Figure � shows the execution plan which is chosen�
 When the parachute query is

�We have also experimented with an optimizer whose objective function is to minimize response time� The
execution plan chosen by this optimizer is a right linear tree� where the build phase of each hash join operator is
performed in parallel� In our experiment� however� network bandwidth is low� As a result� the parallelism that
appears in right linear trees cannot be exploited because the network serializes data access�

�

0.01

0.1

1

10

100

1000

no
ne R N S

P
S P

N
-R

S
-R

P
S

-R

P
-R

S
-N

P
S

-N

P
-N

P
S

-S

P
-S

P
-P

S

S
-N

-R

P
S

-N
-R

P
-N

-R

P
S

-S
-R

P
-S

-R

P
S

-P
-R

P
S

-S
-N

P
-S

-N

P
S

-P
-N

P
S

-P
-S

 *

P
S

-S
-N

-R

P
S

-P
-N

-R

P
S

-P
-S

-R
 *

P
S

-P
-S

-N
 *

P
S

-P
-S

-N
-R

available sources

re
sp

o
n

se
 t

im
e

in
 s

ec

 time to first answer time to parachute answer time to incremental answer

Figure �� TPC�D Workload � Classical Evaluation Model

submitted� it is also optimized � its execution plan is �P �� PS� �� S� The classical evaluation
model does not materialize relations� Thus� unless all sources are available� the time taken by the
evaluate algorithm is essentially equal to the sense phase of this algorithm�

Figure � shows the results for the TPC�D workload with a classical evaluation model for each
possible con�guration of sources in the �rst trial� The x�axis indicates the con�guration of available
sources in the �rst trial and the y�axis indicates the query response time �on a logarithmic scale
between ��
 and
��� seconds�� In case all sources are available �P�PS�S�R�N�� the query runs to
completion and the �rst answer is the complete answer� The parachute query is not submitted�
The time to �rst answer is ����� seconds�

The time to incremental answer is identical in all con�gurations where some sources are un�
available and it is equal to the time to complete answer� i�e� ����� seconds� Since no relations are
materialized in the classical evaluation model� the incremental query is identical to the query and
thus no work is saved between consecutive executions�

The time to �rst answer is identical�
� seconds� in all con�gurations where some sources are
unavailable� It corresponds to the time�out value in the simulator required to recognize a data
source is unavailable� Since data sources are contacted in parallel� all time�outs are overlapped
with each other� Note that this measurement is liberal since many mediator systems do not contact
sources in parallel�

A parachute query is submitted in all con�gurations� except one where the complete answer
is immediately returned� In the case that a parachute answer cannot be obtained� we report the
time to parachute answer as the noti�cation of this event� This time is equal to the time to �rst
answer since exactly the same mechanism is used� A parachute answer is obtained for the three
con�gurations where P� PS and S are available �these con�gurations are marked with a star on the
x�axis�� These answers are obtained because con�guration of sources remains the same between
the �rst trial and the execution of the parachute query� In these cases� the time to parachute
answer is ��� seconds � slightly less than the time to complete answer because the tiny relations
R and N do not participate in the parachute query�

Unconstrained Evaluation Model We use the same sequence of interactions with the un�
constrained evaluation model that we used with the classical evaluation model� q� n� �� �� i� a� The

�

0.01

0.1

1

10

100

1000

no
ne R N S

P
S P

N
-R

S
-R

P
S

-R

P
-R

S
-N

P
S

-N

P
-N

P
S

-S

P
-S

P
-P

S

S
-N

-R

P
S

-N
-R

P
-N

-R

P
S

-S
-R

P
-S

-R

P
S

-P
-R

P
S

-S
-N

P
-S

-N

P
S

-P
-N

P
S

-P
-S

 *

P
S

-S
-N

-R

P
-S

-N
-R

P
S

-P
-N

-R

P
S

-P
-S

-R
 *

P
S

-P
-S

-N
 *

P
S

-P
-S

-N
-R

available sources

re
sp

o
n

se
 t

im
e

in
 m

se
c

 time to first answer time to parachute answer time to incremental answer

Figure
�� TPC�D Workload � Unconstrained Evaluation Model

execution plans chosen by the optimizer for q and � are the same as in the classical evaluation
model �see Figure ��� However� the noti�cation n returned by the mediator is a partial answer in
case some sources are unavailable� Thus� the incremental query i is based on the mediator state�
In particular i depends on the materialization policy�

For these simulations� the unconstrained evaluation model uses the maximal available sub�query
policy �see Section ��� When evaluating a query tree� the evaluate algorithm �rst marks all available
nodes and in a second pass materializes the maximal available subtrees into temporary relations�

Figure
� shows the results for the TPC�D workload with an unconstrained evaluation model�
In case all sources are available� the �rst answer is the complete answer� obtained in ����� seconds�
The unconstrained evaluation model operates in the same way as the classical evaluation model
for this case�

The time to �rst answer is dominated by the access to relation PS� which takes approximately
��� seconds� In cases where relation PS is unavailable in the �rst trial� the time to �rst answer is
low �just above the time�out boundary of
� seconds�� In case relation PS is available in the �rst
trial� the time to �rst answer is high �above ��� seconds�� This time is even higher than the time to
compute the complete answer in con�gurations PS� PS�R� PS�N� PS�S� PS�N�R� PS�S�R� PS�S�N�
PS�S�N�R� In these cases� the time to �rst answer is the sum of the time�out required to recognize
a source is unavailable� the time to access PS and other relations� plus the time to materialize PS
and the other relations �PS is not joined in these con�gurations�� In cases where PS and P are
available together in the �rst trial� the join P �� PS can be performed with the maximal sub�query
materialization policy that we have chosen� As a result relation PS is reduced and the time it takes
to perform the join and materialize the result is lower than the time to materialize relation PS�

For the time to incremental answer� generally it holds an inverse relationship with the time to
�rst answer� The materialization work done during the time to �rst answer makes the incremental
answer cheaper to evaluate� The size of this inverse relationship depends on exactly how much
work can be accomplished via joins and how many intermediate results must be materialized�

Parachute answers are provided in the con�gurations PS�P�S� PS�P�S�N and PS�P�S�R �these
con�gurations are marked with a star on the x�axis�� In all other cases� the algorithm for the
evaluation of parachute queries� based on answering queries using views detects that the parachute

�

0.01

0.1

1

10

100

1000

no
ne R N S

P
S P

N
-R

S
-R

P
S

-R

P
-R

S
-N

P
S

-N

P
-N

P
S

-S

P
-S

P
-P

S

S
-N

-R

P
S

-N
-R

P
-N

-R

P
S

-S
-R

P
-S

-R

P
S

-P
-R

P
S

-S
-N

P
-S

-N

P
S

-P
-N

P
S

-P
-S

 *

P
S

-S
-N

-R

P
S

-P
-N

-R

P
S

-P
-S

-R
 *

P
S

-P
-S

-N
 *

P
S

-P
-S

-N
-R

available sources

re
sp

o
n

se
 t

im
e

in
 m

se
c

 time to first answer time to parachute answer time to incremental answer

Figure

� TPC�D Workload � Constrained Evaluation Model

query cannot be evaluated given the current mediator state� In those cases the time to parachute
answer is reported as zero� The time to parachute answer is approximatively ���� seconds in all
con�gurations where a parachute answer is provided� In those cases� the parachute query evaluation
algorithm has recognized that �P �� PS� �� S has been materialized� This time to parachute answer
is thus the time to read a local relation of �� pages� This time is very fast compared to the classical
evaluation model which must evaluate the parachute query from scratch�

Constrained Evaluation Model The sequence of interactions for the constrained evaluation
model is� �q� ��� n� r� �� �� �i� ��� a since queries and parachute queries are issued together in this
evaluation model� The symbol r represents the request for the parachute answer� In terms of
timing� this request functions in a manner similar to the parachute query submission of the other
two evaluation models� In our simulations� the time between noti�cation and the request for the
parachute answer is zero�

When �q� �� is submitted� the constrained optimization algorithm is applied� After the SCSQ
and the corresponding remaining queries are optimized and their costs added� the execution plan
chosen for the parachute query uses group containing the shared component sub�query� Surpris�
ingly� the same execution plan as the classical and unconstrained evaluation model results from
this optimization� This coincidence occurs because �i� the parachute query is contained in the
query and �ii� the unconstrained optimizer joins exactly the three relations in the parachute query
and in the same way as the constrained optimizer�

The materialization policy we have chosen to illustrate the constrained evaluation model is the
shared component sub�query policy �cf� Section ��� When evaluating a query tree� the evaluate
algorithm �rst marks all available nodes in the sense phase and then in the execution� materializes
the shared component sub�query if it is available� If one of the relations involved in the shared
component sub�query is unavailable� then the shared component sub�query is not materialized�

Figure

 shows the results for the TPC�D workload with a constrained evaluation model� In
the con�guration where all sources are available in the �rst trial �P�PS�S�N�R�� the �rst answer�
which is the complete answer is obtained in ����� seconds� as in both previous evaluation models
�the execution plans being the same�� This situation is actually rare � typically the constrained
optimizer does not generate the same execution plan as the unconstrained optimizer�

�

In con�gurations PS�P�S� PS�P�S�R and PS�P�S�N� the shared component sub�query can be
materialized �it involves relations P� PS and S�� As a consequence� the time to �rst answer is the
time it takes to recognize a data source is unavailable plus the time to process and materialize the
shared component sub�query�

In all other con�gurations� the shared component sub�query cannot be materialized� because
one of the relations it involves is unavailable� In these cases� nothing is materialized� The time to
�rst answer is thus the time�out value� As a consequence the incremental query which is constructed
is identical to the original query� The time to incremental answer is thus similar to the time to
complete answer� In these cases� the parachute query evaluation algorithm recognizes that the
parachute query cannot be answered using the mediator state� We report the time to parachute
answer in this case as zero�

� Related Work

An alternative to our techniques in dealing with unavailable data sources is replication� Replication
can increase the availability of all data sources to the point that queries almost always execute�
However� note that parachute queries are completely compatible with replication � in the case that
a data source is replicated� the probability that it will be unavailable is simply smaller�

Multiplex �
�� tackles the issue of unavailable data sources in a multidatabase system and
APPROXIMATE ��
� tackles the issue of unavailable data in a distributed database� Both systems
propose an approach based on approximate query processing� In presence of unavailable data�
the system returns an approximate answer which is de�ned in terms of subsets and supersets
sandwiching the exact answer� Approximation has been notably developed in ���� ���� �
���

Multiplex uses the notions of subview and superview to de�ne the approximate answer� A view
V
 is a subview of a view V� if it is obtained as a combination of selections and projections of V�� V�
is then a superview of V
� These notions can be a basis to de�ne the relationship between a query
and its associated parachute queries� APPROXIMATE uses semantic information concerning the
contents of the database for the initial approximation� In our context� we do not use any semantic
information concerning the data sources� None of these system produce an incremental query for
accessing e�ciently the complete answer�

References �
�� and �
�� survey cooperative answering systems� These systems emphasize the in�
teraction between the application program and the database system� they extend the basic scheme
where the application program asks a precise query that the database system answers� Refer�
ence �
�� identi�es two classes of cooperative answering techniques� The �rst class of techniques
aims at assisting users in the formulation of precise queries� The second class of techniques aims
at providing meaningful answers in presence of incomplete or empty results� Parachute queries can
be considered as a technique that aim at providing meaningful answers in presence of unavailable
data sources�

Reference �
�� attacks the problem of obtaining a complete answer from an incomplete database�
A query is asked on a set of virtual relations� To each virtual relation R that contains all the tuples
that should be in a relation� corresponds an available relation R� which contains the tuples that are
actually in the relation� A constraint expresses the relationship between relations R and R�� If we
consider that a virtual relation denotes a complete answer and that an available relation denotes a
parachute answer� we can use the formalism introduced in �
�� to re�ne the de�nition of relevant
parachute queries� This only concerns parachute queries which are a subset of the original query�

The constrained optimization algorithm we have introduced in Section ��� is a multiple�query
optimization algorithm� This problem has been studied in �
��� The author formulates the problem
of multiple�query optimization as follows� given n sets of access plans �each set corresponds to all
possible plans to evaluate a query� �nd a global access plan by merging n local access plans �one
out of each set� such that the cost of this global plan is optimal� Our algorithm is constructed in
order to maximize the probability of answering parachute queries and to minimize total work once
the shared component sub�queries are materialized�

�

� Conclusion

In this paper we have presented a novel method for dealing with queries in distributed heteroge�
neous database systems �mediators� which may access unavailable sources� The method is based
on a combination of techniques� In the case that all sources are available� queries are evaluated
in the normal way� In the case that some sources are unavailable� queries are evaluated in a way
which obtains the maximum amount of information from available data sources� A representa�
tion of this work materialized in the mediator state� called the partial answer� is returned to the
user� The user can then extract information from the mediator state using another query� called
the parachute query� The parachute query is submitted to the mediator and the parachute query
answer is extracted� In addition� the mediator constructs an incremental query using its state�
The incremental query is resubmitted to the mediator to obtain the answer to the original query�
assuming that the unavailable data sources are now available�

In this paper we have shown several results� We de�ned a sequential model of interaction with
the database programmer� This model modi�es the interface between the database system and the
user program� We then gave a de�nition of a precipitate class of parachute queries� We described
an algorithm for the generation of parachute queries that belong to the precipitate class� This
algorithm is the basis for a tool which permits the database programmer to explore the precipitate
class of parachute queries for a given con�guration and query� �Required because there are� in the
worst case� an exponential number of parachute queries in the precipitate class��

We then proceeded to describe a collection of algorithms for dealing with queries and parachute
queries in this environment� We described an evaluate algorithm which evaluates queries in two
phases� The �rst phase senses the collection of available sources and the second phase evaluates the
query according to some materialization policy� We described a construct algorithm which gives the
incremental query for a partial answer� This algorithm translates algebraic representation of query
execution into an equivalent declarative representation� We described an extract algorithm which
computes the parachute query answer� This algorithm matches �via query sub�query matching�
the parachute queries with the sub�queries representing the materialized relations in the partial
answer�

To test the viability of our work� we de�ned three evaluation models for implementing parachute
queries� The classical evaluation model implements parachute queries in the user interface� This
evaluation model requires no modi�cations to the mediator� The unconstrained evaluation model
implements parachute queries on partial answers� This evaluation model requires only lightweight
modi�cations to the interface and the run�time system of the mediator� The constrained evaluation
model simultaneously optimizes a query and its associated parachute queries� This evaluation
model requires modi�cations to the interface� optimizer and run�time system of the mediator�

We then analytically analyzed the availability of query and parachute query answers in the three
evaluation models� We showed that availability of the query answer depends on the probability
that a source is available� the number of sources accessed by the query� the materialization policy
and the evaluation algorithm�

To show the performance impact of our work� we simulated the three evaluation models� We de�
�ned several new performance metrics to compare the performance of the three evaluation models�
These performance metrics are based on the classical query response time metric� We simulated
the classical evaluation model as a baseline for comparison to the other evaluation models�

We simulated the unconstrained evaluation model and demonstrated that parachute query
extraction and incremental query evaluation response times are much faster than in the classical
evaluation model� This performance improvement is due to the materialization policy�

We simulated the constrained evaluation model and demonstrate that query evaluation� parachute
query extraction and incremental query evaluation are nearly as fast as in the unconstrained evalua�
tion model� and that the performance penalties are small in most cases� The constrained evaluation
model may have a negative impact on the availability of complete answers� This impact results
from the materialize shared component sub�queries policy� Thus� we conclude that there is a
trade�o� between performance and availability of queries and parachute queries�

The reader is encouraged to consult reference ���� In this reference we show the impact of
the materialization policy on the availability of the parachute answer and the impact of delays
from data sources� We also run a collection of experiments on a synthesized workload where the

�

constrained optimizer chooses a di�erent execution plan than the unconstrained optimizer� thus
we show the impact of parachute queries on the optimizer�

Acknowledgments The authors wish to thank Laurent Amsaleg� St	ephane Bressan� Mike
Franklin� Rick Hull� Tamer �Ozsu� Louiqa Raschid and Dennis Shasha for interesting discussions on
the subject of this paper� Helena Galhardas� Olivier Lobry and Jo ao Pereira helped debug versions
of this paper�

References

�
� S� Adali� K� S� Candan� Y� Papakonstantinou� and V� S� Subrahmanian� Query caching and
optimization in distributed mediator systems� In ACM SIGMOD International Conference
on Management of Data� pages
���
��� Montreal� Canada�
����

��� L� Amsaleg� Ph� Bonnet� M� J� Franklin� A� Tomasic� and T� Urhan� Improving responsiveness
for wide�area data access� Bulletin of the Technical Committee on Data Engineering� ��������

�
����

��� Ph� Bonnet and A� Tomasic� Parachute queries in the presence of unavailable data sources�
INRIA Technical Report�
���� In preparation�

��� S� Bressan� C�H� Goh� et al� The COntext INterchange mediator prototype� In Proceedings
of the ACM SIGMOD International Conference on Management of Data� Tucson� Arizona�

����

��� P� Buneman� S� Davidson� and A� Watters� Querying independant databases� Information
Sciences� nov
����

��� P� Buneman� S� Davidson� and A� Watters� A semantics for complex objects and approximate
answers� Journal of Computer and System Sciences� ���
��
�

��� C�M� Chen and N� Roussopoulos� The implementation and performance evaluation of the
ADMS query optimizer� Integrating query result caching and matching� In Proceedings of the
�th International Conference on Extending Database Technology�
����

��� S� Dar� M�J� Franklin� B�T� J�onsson� D� Srivasta� and M� Tan� Semantic data caching and
replacement� In Proceedings of the 		nd International Conference on Very Large Databases�
Bombay� India�
����

��� M�J� Franklin� B�T� J�onsson� and D� Kossmann� Performance tradeo�s for client�server query
processing� In Proceedings of the ACM SIGMOD International Conference on Management
of Data� Montr	eal� Canada�
����

�
�� T� Gaasterland� P� Godfrey� and J� Minker� An overview of cooperative answering� Journal
of Intelligent Information Systems�
����
���
���
����

�

� G� Graefe� Query evaluation techniques for large databases� ACM Computing Surveys� ������

����

�
�� A� Y� Levy� A� Rajaraman� and J� J� Ordille� Querying heterogeneous information sources
using source descriptions� In Proceedings of the 		nd International Conference on Very Large
Databases� Bombay� India�
����

�
�� A�Y� Levy� Obtaining complete answers from incomplete databases� In Proceedings of the
		nd International Conference on Very Large Databases� Bombay� India�
����

�
�� A�Y� Levy� A� Mendelzon� Y� Sagiv� and D� Srivasta� Answering queries using views� In Pro�
ceedings of the ��th ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database
Systems� PODS�
�� San Jose� California�
����

�

�
�� L� Libkin� Approximation in databases� In Proceedings of the International Conference on
Database Theory�
����

�
�� A� Motro� Cooperative database systems� In Proceedings of the �

� Workshop on Flexible
Query�Answering Systems �FQAS

��� pages
�
��
����

�
�� A� Motro� Multiplex� A formal model for multidatabases and its implementation� Technical
Report ISSE�TR����
��� George Mason University�
����

�
�� T� Sellis� Multiple�query optimization� ACM Transactions on Database Systems�
��
��������
March
����

�
�� A� Tomasic� L� Raschid� and P� Valduriez� Scaling heterogeneous database and the design of
Disco� In Proceedings of the ��th International Conference on Distributed Computing Systems
�ICDCS����� pages �������� Hong Kong� May
���� IEEE Computer Society Press�

���� J� D� Ullman� Principals of Database and Knowledge�Base Systems� volume �� Computer
Science Press�
����

��
� S� V� Vrbsky and J� W� S� Liu� APPROXIMATE� A query processor that produces mono�
tonically improving approximate answers� Transactions on Knowledge and Data Engineering�
�����
����
���� December
����

���� G� Wiederhold� Intelligent integration of information� In Proceedings of the �

� ACM SIG�
MOD International Conference on Management of Data� pages �������� Washington� D�C��

����

��

