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Abstract

Mediator systems are used today in a wide variety of unreliable environments. When processing
a query, a mediator may try to access a data source which is unavailable. In this situation,
existing systems either silently ignore unavailable data sources or generate an error. This behavior
is inefficient in environments with a non-negligible probability that a data source is unavailable
(e.g., the Internet). In the case that some data sources are unavailable, the complete answer to a
query cannot be obtained; however useful work can be done with the available data sources. In
this paper, we describe a novel approach to mediator query processing where, in the presence of
unavailable data sources, the answer to a query is computed incrementally. It is possible to access
data obtained at intermediate steps of the computation. We define two new evaluation models and
analytically model for these evaluation models the probability of obtaining the answer to a query
in the presence of unavailable data sources. The analysis shows that complete answers are more
likely in our two evaluation models than in a classical system. We measure the performance of our
evaluation models via simulations and show that, in the case that all data sources are available,
the performance penalty for our approach is negligible.
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Résumé

Lorsqu’un médiateur traite une requéte, dans un systeme de bases de données hétérogene, il est
probable qu’il tente d’accéder a une source de données qui est temporairement indisponible. Dans
cette situation, les systémes existants génerent une erreur ou ignorent ces sources. Ce comporte-
ment est inefficace dans des environnements ou il existe une probabilité non négligeable qu’un site
soit indisponible (e.g., Internet). Dans le cas ou des sources de données sont indisponibles, la
réponse complete a une requéte ne peut pas étre produite ; cependant du travail utile peut étre
effectué avec les sources de données disponibles. Dans cet article, nous décrivons une nouvelle
approche du traitement de requéte dans un médiateur en présence de sources de données tempo-
rairement indisponibles. Nous définissons deux nouveaux modeles d’évaluation et fournissons pour
chacun d’eux un modele analytique qui représente la probabilité d’obtenir la réponse & une requéte
en présence de sources de données indisponibles. L’analyse montre que la probabilite d’obtenir une
réponse est plus forte dans les deux modeles d’évaluation que nous proposons que dans un systeme
classique. Nous mesurons les performances de nos modeles d’évaluation en utilisant une simulation
; nous montrons que, dans le cas ou toutes les sources de données sont disponibles, les pertes de
performances imputables & notre approche sont négligeables.
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1 Introduction

Many current application environments use mediators (e.g., [19, 7, 1, 12, 4, 22]) to provide query
access to a wide variety of heterogeneous data sources. Providing timely answers to queries in this
environment is difficult due to the unpredictable response-time nature of data sources and of the
interconnection network. Data sources become overloaded and networks become congested. Both
can cease to function due to power loss, administrative operations, etc.

In cases where a data source or network does not respond sufficiently quickly, it can be con-
sidered unavailable. In such situations, when processing a query ¢, existing systems either silently
ignore missing data or generate an error notification n (replicated data sources are considered
in Section 7). In either case, to obtain the complete answer, the query must be resubmitted to
the system and reprocessed from scratch. If some sources are unavailable, the system will again
generate an error and again the query must be resubmitted. The complete answer a to a query
will be generated only when all data sources are available. Thus, we can model the sequential
interaction between the application program and the mediator as the following sequence of steps:
q,n,q,n,...q,n,q,a. We call this sequential model of interaction a classical evaluation model.

However, even when some data sources are unavailable, useful work can be done with the
available data sources; a mediator can access, process and materialize their data. We call a
representation of the mediator state at the point of notification a partial answer (the notification
n contains the partial answer). The mediator uses its state to construct an incremental query
¢ which is equivalent to the original query but cheaper to evaluate. The application program
obtains the incremental query through the partial answer and then submits it to the mediator
in order to get the complete answer. An example of a sequence for this model of interaction is
q,n1,%1,MN2,%2,... , N, ik, a. A different incremental query is used, in general, in each step of the
sequence because the mediator makes partial progress towards the complete answer a depending
on the sources that are available at each step.!

Incremental queries save work; in addition, the mediator state contains interesting information
which may be useful for the user. The application program can extract information from the
mediator state by submitting a secondary query, called a parachute query p. The answer to a
parachute query, called a parachute answer a, can be computed given enough information in the
mediator state. An example of a sequence of interaction is q,n1, p1, 1,41, - - , N, ik, a. Note that
parachute queries and incremental queries can be freely mixed. We call this model of interaction an
unconstrained evaluation model. We use this term because the optimization of ¢ is unconstrained
by the knowledge of p.

The unconstrained evaluation model has several advantages: (i) it is easy to implement, (ii)
parachute queries can be dynamically constructed by examining the partial answer, (iii) the plan
used for the (original) query is always the optimal. However, this evaluation model has a disadvan-
tage with respect to parachute queries because it cannot insure that the mediator state contains
the information necessary to answer a parachute query.

We present in this paper a mediator which optimizes simultaneously the query and the parachute
queries to insure that the mediator state contains the necessary information, assuming the appropri-
ate data sources are available. An example of a sequence of interaction is (g, p1), (n1, 1), (i1, p2), - - -
Note that parachute queries are submitted together with the original query. (This paper considers
only a single parachute query.) The notification is followed by the parachute answers. Parachute
queries can be submitted again with the incremental query. We call this model of interaction a
constrained evaluation model. To help the intuition of the reader, we consider an example.

1.1 TPC-D example

Our example is based on the schema of the TPC-D benchmark. The schema consists of suppliers,
parts, the relationship between suppliers and parts, nations, and regions. Consider a system where
each base relation is located on a different data source. A possible conjunctive query over this
schema, derived from the TPC-D query Q2, is find all suppliers located in FEurope which provide

IThis sequence is valid as long as the underlying data sources are not updated in a way that affects g. This
assumption is a common one in mediator systems research and we use it throughout this paper.



a given part. In the following queries, attributes prefixed by S_ come from the SUPPLIER relation,
N_ from the NATION relation, etc.

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,
P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT
FROM SUPPLIER, PART, PARTSUPP, NATION, REGION
WHERE P_PARTKEY = PS_PARTKEY AND
S_SUPPKEY = PS_SUPPKEY AND
P_SIZE = 15 AND P_TYPE LIKE ’BRASS’ AND
S_NATIONKEY = N_NATIONKEY AND
N_REGIONKEY = R_REGIONKEY AND
R_NAME = ’EUROPE’;

An interesting parachute query associated to this query is all suppliers which provide a given
part.

SELECT S_ACCTBAL, S_NAME, P_PARTKEY, P_MFGR,
S_ADDRESS, S_PHONE, S_COMMENT

FROM SUPPLIER, PART, PARTSUPP

WHERE P_PARTKEY = PS_PARTKEY AND
S_SUPPKEY = PS_SUPPKEY AND
P_SIZE = 15 AND P_TYPE LIKE ’BRASS’;

Suppose the data sources containing the NATION or REGION relations are unavailable when the
user asks the query. The system immediately notifies her that the query cannot be answered. The
system however proceeds and obtains data from the other data sources for the SUPPLIER, PART
and PARTSUPP relations. The system generates an incremental query that will efficiently compute
the complete answer once the unavailable data sources are again available. (Reference [3] describes
an incremental query for this example). The user submits the parachute query and the mediator
returns the parachute answer. Clearly, this answer contains information that is interesting to the
user. Once the unavailable data sources are again available, the user submits the incremental
query. It retrieves data from these data sources and reuses data already obtained. Note that the
incremental query and the parachute query are independent of each other.

1.2 Summary

In summary, we describe in this paper a novel approach to answering queries with unavailable
data sources. Our approach is based on incrementally computing the answer to the query and
permitting information to be extracted from the intermediate states of the computation. This
approach leads to many interesting questions:

(1) What relevant information can be extracted from the mediator state, i.e., what are the
interesting parachute queries? How to help the database programmer choose good parachute
queries?

(2) How are queries evaluated in the constrained and unconstrained evaluation model? How
are incremental queries constructed? How are parachute queries evaluated?

(3) How do the different evaluation models impact the availability of complete answers? What
is the impact on performance? How likely is it that a parachute query can be answered?

In this paper, we attack these questions. In Section 2 we describe an intuitive class of parachute
queries and demonstrate some interesting properties of this class. In Section 3 we detail the three
evaluation models described above. In Section 4 we describe the algorithms which support the query
processing shown in the example in the introduction. In Section 5 we describe our experimental
framework (containing an analytical and a simulation model). In Section 6 we analyze the impact
of our algorithms on the probability that an answer can be obtained given a sequence of interaction.
In addition, we simulate the three evaluation models and analyze their performance characteristics.
In Section 7 we discuss related work. Finally, in the last section we conclude the paper and discuss
future work.



in: a conjunctive query @1 with built-in
predicates, a set of predicates L
out: a conjunctive query Q2

RemovePredicates(Q1,L) {
Q2 := Q1

for each [ in L {
if [ appears in Q2 then
Q2 := efface | from Q2

}

Efface from Q2 all built-in predicates where a
non-range restricted variable appears.

Efface from @2 head all non-range restricted
variables.

Return Q2. }

Figure 1: The RemovePredicates function for Conjunctive Queries

in: a union query @1, a set of predicate names L
out: a union query Q2

RemovePredicates(Q1,L) {
Q2 := Q1

for each [ in L {
if [ appears in a rule, then
Q2 := efface from Q2 the rule using [

Return Q2. }
Figure 2: The RemovePredicates function for Union Queries

2 Parachute Queries

The aim of a parachute query is to provide the user with relevant, useful data, in case the answer
to a particular query cannot be computed. In Section 1 we showed an example of such a parachute
query. However, not all parachute queries work well. To work well, first the mediator state must
contain the necessary information for answering the parachute query. This problem is considered
in detail in Section 4. Second, the set of sources needed to answer the parachute query must be
different from the set of sources needed to answer the original query since, in the case that the set
of sources are equal the system will simply answer the query and ignore the parachute query.

Given these restrictions, the application programmer is still faced with a daunting task: parachute
queries must be semantically meaningful. To aid the programmer in the task of identifying interest-
ing parachute queries, we define a precipitate class of parachute queries with respect to a query as
follows: a parachute query is a (generalized) subset or superset of the original query. The intuitive
connection is clear — the application programmer knows that the given parachute answer contains
missing or extra tuples with respect to the complete answer.

If the parachute answer « is a subset or a superset of the query answer a for all possible
databases, then containment [20] holds, i.e., p C g or p D q. By generalized subset or superset, we
mean that the projection of the parachute query and the original query are permitted to differ.
More formally, let mg be the projection of the attributes of @), then

Definition 1 (Generalized Subset) Q' is a generalized subset of Q < for any database D,
Q'(D) C mq (Q(D)).

Definition 2 (Generalized Superset) Q' is a generalized superset of Q < for any database D,

Q'(D) 2 mq (Q(D)).

Figure 3 shows an algorithm for the generation of parachute queries. All generated parachute
queries belong to the precipitate class. The algorithm takes as input a query, a set of sources



in: a query @, a mapping from predicate
names to data sources M, a set of required
sources S

out: a set of parachute queries PQ

pq-gen(Q, M, S) {
V := use M to determine sources of Q
for each configuration cin V — S {
L := the available predicates derived
from M, ¢ and S
PQ := PQ U RemovePredicates(Q, L)

}
Return PQ. }

Figure 3: The pg-gen algorithm for generating parachute queries of a query.

required to be available, and a mapping from sources to predicate names. Given a set of sources
available and unavailable (we call this set a configuration of sources) and the mapping, the set of
available predicates can be identified.? The heart of the algorithm uses a function RemovePredicates
that takes the set of available predicates and a query and generates a parachute query. This function
is given in Figure 1 for conjunctive queries and Figure 2 for union queries. In these algorithms, a
range restricted variable is a variable that appears in a non-built-in predicate in the body of rule.
Given this algorithm, a tool which allows the application programmer to explore the precipitate
class of parachute queries can easily be constructed. Investigation of other classes of parachute
queries is future work.

Example 1 Consider the query of employees, departments, and salaries greater than 10. FEach
predicate is mapped to a different data source.

Query: eds(X,Y,Z) < e(X)Ned(X,Y)Nes(X,Z)NZ > 10

Mapping: {e} — 1,{ed} — 2,{es} — 3

Required Sources: {1}

The set of parachute queries are:

Awailable Parachute Query
{1} pq1(X) « e(X)
{172}’ pQZ(va) <—e(X)/\ed(X, Y)
{1,3} p3(X,Z) «+ e(X)Nes(X,Z)NZ > 10
{17273} pQ4(X7Y7Z) Fe(X)Aed(X,Y)/\
es(X,Z)NZ > 10

3 Evaluation Models

In this section we describe in detail the three evaluation models mentioned in the introduction. The
classical evaluation model represents existing systems which do not support parachute queries. This
evaluation model requires almost no modifications to the mediator. The unconstrained evaluation
model considers parachute queries after the evaluation of the query. This evaluation model requires
only lightweight modifications to the interface and the run-time system of the mediator. The
constrained evaluation model simultaneously optimizes the query and its associated parachute
queries. This evaluation model requires modifications to the interface, optimizer and run-time
system of the mediator.

Figure 4 shows the general evaluation model of these three systems. In the diagram for the
classical evaluation model, (1) is the submission of the query, (2) is the notification that the query
cannot be answered, (3) is the submission of the parachute query, (4) is the parachute answer,
(5) is the re-submission of the original query, and (6) is the complete answer. This evaluation
model represents existing mediator systems that do not support partial answers, or any form of
materialization of intermediate results obtained when processing a query. Such a system has a
classical cost based optimizer. It has no support for parachute queries. Parachute queries can be
asked as follow-up queries and they are processed as all other queries. In case some data sources
are unavailable, the original query is asked several times in order to obtain the complete answer.

2We assume that a predicate resides on a single source.
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Figure 4: Evaluation Models of Three Representative Systems.

Queries and parachute queries are evaluated using the evaluate algorithm described in the next
section.

The unconstrained system optimizes the query independently of the parachute queries. In the
diagram for this evaluation model, (1) is the submission of the query, (2) is the partial answer,
(3) is the submission of the parachute query, (4) is the parachute answer, (5) is the submission of
the incremental query, and (6) is the complete answer. The optimizer is cost based, i.e. similar
to the optimizer of the classical system. Queries and incremental queries are evaluated using the
same evaluate algorithm. The incremental query is constructed by the mediator using the construct
algorithm described in the next section. Parachute queries are evaluated using the extract algorithm
described in the next section. This last algorithm only uses data materialized in the mediator.

The constrained evaluation model contains a constrained optimizer, described in the next sec-
tion, that simultaneously optimizes a query and its parachute query. In the diagram for this
evaluation model, (1) is the submission of the query and the parachute queries, (2) is the partial
answer, (3) is the request for the evaluation of a particular parachute query, (4) is the parachute
answer, (5) is the submission of the incremental query and its parachute queries, and (6) is the com-
plete answer. The same algorithms as in the unconstrained evaluation model (evaluate, construct,
and extract) are also used here.

4 Algorithms

4.1 Evaluate algorithm

The evaluate algorithm evaluates a query execution plan that has been generated by an optimizer
for a query or an incremental query. The query execution plan is based on the Graefe iterator
model[11]. The leaves of the plan are the sub-queries submitted to the data sources. The interior
nodes are classical query processing operators such as join. In the case that all data sources are
available, the algorithm computes the complete answer to the query. Otherwise it materializes
part of the query execution plan in the mediator. The algorithm consists of two phases, a sense
phase and an execution phase.

The sense phase is used to detect which data sources are available or unavailable. See [3] for
an outline of the algorithm. This phase recursively descends the query execution plan in parallel
along all sub-plans. When a sub-query is found, the corresponding data source is probed. If the
data source responds within a timeout period, the source is considered available, otherwise it is
unavailable. This phase examines all data source in parallel, thus overlapping the timeout wait on
all data sources. This phase then recursively ascends the plan, marking as available an operator
whose children are available, otherwise marking the operator as unavailable. After traversal of the
plan finishes, the root operator of the plan has marked itself either available or unavailable.

For the execution phase, if the root operator is marked available, then all sources are available



and the final result is produced in the normal way. If at least one data source is unavailable, the root
of the execution plan will be marked unavailable and the final result cannot be produced. In this
latter case the execution phase proceeds via a second pass on the plan. This phase materializes
some parts of the plan depending on a policy. Consider the plan (A < B) 1 (C' > D) where
relations A, B and D are available. For the mothing policy, no materializations are performed.
For the mazimal sub-plan policy, each sub-plan rooted with an available operator materializes its
result. Thus (A < B) and D are materialized. For the leaves policy, each available leaf plan
(containing the sub-query executed on the data source) materializes its result. Thus, A, B, and D
are materialized. For the shared component sub-query policy, each sub-plan marked as a shared-
component sub-query (cf. Section 4.4) is materialized. If (B < C) is a parachute query, then
the shared-component sub-queries are B and C. These materializations of sub-plans proceed in
parallel. Note that this style of query execution is a form of query scrambling [2].

We assume in this paper that a data source which is marked available continues to operate in
the execution phase. If an available data source becomes unavailable during the execution phase,
an implementation would simply throw away the subplan which uses that data source. Also note
that the parallel execution style is not critical to the issues of this paper — it simply results in
better performance. However, as we shall see in Section 6, the materialization policy crucially
affects several aspects of our work.

4.2 Construct algorithm

The construct algorithm constructs the incremental query from an execution plan and the mediator
state. The execution plan is annotated with information such as the predicates used in joins, the
attributes projected during a scan, etc. Each sub-plan that has been materialized, as described
in the previous section, is annotated with the name of the temporary relation that stores the
materialized data. The algorithm uses this information to construct a declarative query in a
bottom-up fashion. This query is the incremental query. [3] shows the construct algorithm and a
detailed example.

The incremental query that is constructed is equivalent to the original query. This ensures that
the answer to the incremental query is exactly the same as the answer to the original query, under
the assumption that no updates relevant to the query are performed on the data sources between
the time the original query is submitted and the complete answer is computed. The incremental
query, together with a handle to the execution plan, is returned as the partial answer to the query.
The user interface is responsible for requesting the evaluation of the incremental query.

4.3 Extract Algorithm

The extract algorithm computes the answer to a parachute query using the materialized relations
in the mediator state. The algorithm is a straightforward application of algorithms that answer
queries using views (AQUV) [14]. These algorithms compute the answer to a query ¢ using a set
of views v. The result is a new query ¢’ composed of some views in v and of a remainder query ¢”
that references base relations 3.

In our framework, we set g to be the parachute query p and the views v to be the sub-queries
associated with the materialized relations in the mediator state. (The views are generated by
applying the construct algorithm to the subplan associated to each materialized relation in the
mediator state.) The AQUYV algorithm is run to rewrite parachute query p into p’ and p”. The
remainder query p" corresponds to accessing the data sources containing data that has not been
materialized. Since the mediator does not access data sources during the processing of a parachute
query, we permit the execution of the parachute query only if the remainder query p’' is empty.
Thus, p' answers the parachute query using some combination of the materialized relations.

We have favored an approach where a parachute query is evaluated only against materialized
data. Our primary reason is performance. As we shall see in Section 6, parachute queries evaluate

3The algorithm presented in [14] allows to find a minimal rewriting, i.e. the rewriting with the minimal number
of literals



very quickly. Permitting the evaluation parachute queries to access data sources, particularly in
the case where the parachute query accesses data sources that are not involved in the original
query, is future work.

4.4 Constrained Optimization

The constrained optimization algorithm takes as input a conjunctive query ¢, together with one
associated parachute query p. The output of this constrained algorithm is an execution plan for
g annotated with labels at the root of each shared component sub-queries (SCSQ), i.e., the sub-
queries that are shared with the parachute query. These labels are used by the evaluate algorithm
for the shared component sub-query materialization policy.

In our algorithm, the query ¢ and the parachute query p are represented as conjunctive queries
in Datalog [20]. The parachute query is thus:

pq(Sacct, Sname, Ppk, Pm f gr, Sadd, Sphone, Scom) +
s(Sacct, Sname, Ssk, Snk, Sadd, Sphone, Scom)A
p(Ppk, Pkind, 15)A
ps(Ppk, Ssk)A
like(Pkind, 'BRASS")

Our algorithm proceeds in four steps. The first step constructs the generalized shared sub-query
(GSSQ) between the query and the parachute query. The GSSQ is essentially the most specific
query whose body contains a subset of both the query and the parachute query. The second step
constructs two groups of SCSQs based on the GSSQ. In the third step, the query and each group
of SCSQs is used as an input to the AQUV algorithm to rewrite the query into a query ¢'. In
the fourth step, a classical optimizer is invoked to determine the most efficient execution plan for
each SCSQ and the associated rewritten query ¢’. The combination of plans with the lowest cost
is chosen as the final plan. Each step is described in detail below.

Step 1 The GSSQ [ is obtained as follows: (i) let I be the body of ¢; (ii) efface all literals
in [ whose predicate does not appear in a literal in the body of p; (iii) replace all variables or
constants in [ by new distinct variables. At this point, given the query and parachute query above,
lis p(X1,X2,X3) A s(X4,X5 X6,X7,X8 X9, X10) Aps(X11,X12) A like(X13, X 14).

We now refine [ in order to obtain the GSSQ. Containment mapping c, is constructed between
the GSSQ and ¢, and ¢, is constructed between the GSSQ and p. From these variable mappings,
we deduce two sets of bindings b, and b, from ¢, and ¢,, respectively. The bindings are all equality
relations and bindings of variables to constants. We obtain the GSSQ binding b as b, N b,. In our
example, b, is {X1 = X11, X2 = X13, X14 = 'BRASS’, X3 = 15, X6 = X12} and b, = b,.> We apply
b to [ to obtain the GSSQ: p(X1, X2,15)As(X4, X5, X6, X7, X8, X9, X10)Aps(X1, X6)Alike(X2, 'BRASS").

Step 2 From the GSSQ identified in the previous step, we construct two groups of shared
component sub-queries (a shared component sub-query is a view composed of a head and a body).
Note that considering only two groups of SCSQs is a heuristic. The first group of shared component,
sub-queries contains a single view whose body is the GSSQ and whose head is obtained with a
new unique predicate symbol and the list of all variables that appear in the body and whose
corresponding variables are needed to evaluate g. We obtain:

{sesq1 (X1,X4,X5, X7, X8 X9, X10) +
p(X1,X2,15)A
s(X4,X5,X6,X7, X8, X9, X10)A
ps(X1, X6)A
like(X2, 'BRASS")}

The second group of SCSQ contains one view per literal (with any built-in predicate, if possible)
appearing in the GSSQ. The body of each of these views is composed of one literal; their head is
obtained with a new unique predicate symbol and the list of all variables that appear in the body
needed to evaluate g. Thus, we obtain:

4Note that materialized data could also be used to evaluate subsequent queries. We consider that this is a
separate area of research.
5The bindings are the same because the conditions and the joins in the parachute query appear in the query.



{scsq2(X1) + p(X1,X2,15) ANlike(X2, 'BRASS'),
sesq3 (X1, X2) + ps(X1, X2),
sesqu(X1, X2, X3, X4, X5, X6, XT)

s(X1,X2,X3,X4, X5 X6,X7)}

Step 3 For each group of shared component sub-queries, ¢ is rewritten into a query ¢’ that
uses the group of SCSQ as views and a remainder query ¢"”. The rewriting is accomplished using
an AQUV algorithm [14]. For the first group, ¢ is rewritten as

q(Sacct, Sname, Nname, Ppk, Pm fgr, Sadd, Sphone, Scom) +
sesqy (Ppk, Sacct, Sname, Snk, Sadd, Sphone, Scom)A\
n(Snk, Nname, Nrk)A
r(Nrk, '"EUROPE")

Step 4 The optimizer is invoked once to generate the most efficient execution plan for each
shared component sub-query in any group and the execution plan for the rewritten query ¢’ of each
group. The optimization of ¢’ is done with respect to the materialized SCSQs in its group. The
total cost of the group of SCSQ is the sum of the costs for computing the SCSQs and the costs
for executing the associated ¢'. The group with the lower cost is chosen. The execution plan for
q is obtained by merging the execution plan for ¢’ and the execution plans for the corresponding
SCSQ. The root of each shared component sub-query is labeled so that it can be recognized by the
evaluate algorithm.

Thus, the constrained optimization algorithm identifies component sub-queries shared between
q and p and generates the cheapest execution plan which contains either one SCSQ or a group of
SCSQ, each of them being a leaf.

5 Experimental Environment

Our experiments are performed using an analytical model and a detailed simulation of the evalua-
tion models introduced in Section 3 using a workload based on the query in the introduction. The
analytical model is used to analyze the impact of the evaluation models on the likelihood that a
query or a parachute query can be answered. The simulation is used to study classical response
time and total work performance questions.

5.1 Analytical Model

As discussed in the previous sections, in the presence of unavailable data sources, a mediator needs
several trials to obtain a complete answer. A trial corresponds to a mediator attempting to access
several data sources. Each data source is either available or unavailable. An available data source
can deliver data in a timely manner, an unavailable data source cannot. We model each trial to
a data source as a uniformly random and independent event in which the data source is available
with probability p and unavailable with probability 1 — p. We model in this section, the three
evaluation models of mediators introduced previously: classical, unconstrained and constrained.

We now express the probability that n sources are available simultaneously at least once in ¢
trials. The probability that n data sources are available during a trial is p™. The probability that
not all n data sources are available during a trial is 1 — p™. For t trials, the probability that not
all n data sources are available during a trial is (1 — p™)?. For ¢ trials, the probability that, in at
least one trial, all data sources are available is

1—(1-p")f (1)

Equation 1 represents the availability of complete answers in a classical evaluation model.

An unconstrained evaluation model materializes data from all available data sources in case
some data sources are unavailable. When a query is issued, the mediator checks for ¢ trials the
availability of all n data sources and uploads the desired data from the newly available data sources
at each trial. After ¢ trials, a complete answer can be returned if data has been uploaded from all
n sources. A data source only needs to be available once to participate in the complete answer.



We now express the probability that n sources are available at least once in ¢ trials. The
probability that a given source is never available in ¢ trials is (1—p)? (since all trials are independent,
we can consider either the data sources or the trials first). The probability that a given source is
available at least once in ¢ trials is 1 — (1 — p)t. The probability that all n sources are available at
least once across t trials is

(1—(1-p))" (2)

Equation 2 is the availability of complete answers in an unconstrained evaluation model. Note that
Equation 1 and Equation 2 are equal if p=0orp=1ort¢t=1or n =1, as expected.

We have seen in Section 4.4 that the constrained optimizer identifies either one or several shared
component sub-queries. This decision impacts the availability of complete answers. First, in case
the constrained optimizer identifies one shared component sub-query, this shared component sub-
query involves m of the n data sources contacted to obtain the complete answer. The shared
component sub-query is materialized if the m data sources are available simultaneously.

When a query is issued to a constrained evaluation model, the mediator checks for ¢ trials the
availability of all n data sources. If on the tgth trial, the shared component sub-query can be
materialized, then a complete answer is returned whenever, in the remaining trials (including the
current one, i.e. t —to + 1 trials), the other m — n data sources are available simultaneously.

t

DA =@ =p™e) = (1= (L =p™ V] (1= (1= ptTm)t 3)

to=1

Equation 3 is the availability of complete answers in case a constrained evaluation model deals
with one shared component sub-query. Details of this derivation are given in Reference [3].

In case the constrained optimizer identifies several shared component sub-queries, there are m
shared component sub-queries involving one data source.

t

A1 =p))" =11 =p)"] (L= (-t (4)

to=1

Equation 4 is the availability of complete answers in case a constrained evaluation model deals with
several shared component sub-queries, each involving one data source. Details of this derivation
are given in Reference [3].

5.2 Simulation Environment

To study the performance of the algorithms producing partial answers, we have extended an
existing simulator [9, 8] that models a peer-to-peer database system. We briefly describe, here, the
simulator and present the extensions we have implemented to simulate the partial answers systems
identified in Section 3.

5.2.1 Servers

Table 1 shows the main parameters for configuring the simulator and the settings used for this
study. The mediator and the data sources are modeled as servers. A single mediator is connected
to NumSites data sources. Each of the data source stores one base relation. The data sources
are unloaded. (Delays from data sources are considered in [3].) The mediator can materialize
temporary results on disk. Each server is characterized by a CPU whose speed is specified by the
Mips parameter, NumDisks disks, and a main memory buffer pool of size Memory. Servers are
connected via a network which is characterized by its bandwidth NetBw. The network is modeled
as a FIFO queue. Although servers are configured with memory, base and materialized relations
are always read from a server’s disks, i.e., there is no caching across queries and relations are
accessed once per query.

We extended this simulator by introducing the evaluate algorithm with different materializa-
tion policies as described in Section 4. In the sense phase, unavailable servers are modeled in a
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Parameter | Value [ Description |

NumSites 3 or 4 | number of data source servers
Mips 50 | CPU speed (10° instr/sec)
NumDisks 1 | number of disks per servers
DskPageSize 4096 | size of a disk page (bytes)
NetBw 0.5 | network bandwidth (Mbit/sec)
NetPageSize 4096 | size of a network page (bytes)
Compare 4 | instr. to apply a predicate
HashlInst 25 | instr. to hash a tuple

Move 2 | instr. to copy 4 bytes
memory 2048 | size of memory (disk pages)
time-out 10 | time-out for sources (sec)

Table 1: Simulation parameters and main settings.

simple way. When a server representing a remote data source is contacted, it is either available
or unavailable. If the server is available, it responds immediately. If the server is unavailable,
mediator detects this fact after time-out seconds. For all the experiments, we have set the value
of the time-out to 10 seconds. We use this value so that the behavior of the time-out can be
clearly distinguished from other behavior in the simulation. An actual system would use a shorter
time-out. In the execution phase, we assume that disk space is unlimited and that all intermediate
results fit in memory and can be materialized on disk.

5.2.2 Query Optimizer

In the simulation of all three evaluation models a cost-based optimizer is used. Although the
simulator implements hash join, where builds are done in parallel, we use a cost-based optimizer
whose objective function is total work. This makes sense because we consider a slow network.
The slow network essentially serializes the delivery of data from the data sources. The results we
report in Section 6 do not include the time required for running the query optimizer, nor the time
required for running the constrained optimization, nor the answering queries using views algorithm.
Incremental queries are not re-optimized — they use the plan with the materialized results. This
means that the incremental query results are more conservative than an actual system.

5.2.3 TPC-D Workload

We use the query and the parachute query presented in the introduction as the workload. In our
experiment, each base relation is located on a separate data source. Select and Project operations
are executed at the data sources and the mediator receives only the selected tuples.

0.000067 0.2

E 0000005 o 00001 o 004 02 E

200000 tuples 800000 tuples 10000 tuples 25 tuples 5 tuples
164 bytes 219 bytes 197 bytes 185 bytes 181 bytes

Figure 5: Query graph for query Q

The query is a 5-way join query, with selections on the PART and REGION relations. Figure 5
shows the query graph. Each relation is represented using the first letters of its name. The
cardinality of a relation with the associated tuple size are listed below its abbreviated name. An
edge between two relations indicates a join predicate between those relations in the query; the edge
is labeled with the corresponding selectivity. Selection predicates are indicated by boxes containing
the relation on which they are applied and the selectivity of the predicate is presented above the
selection box.

The simulations use the parachute query given in the introduction. It belongs to the precipitate
class and it is derived from the query by removing relations NATION and REGION.
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Figure 7: Numbers of trials required to have a probability 0.9 of obtaining a complete answer for
the TPC-D Workload

6 Results

In this section, we study the influence of the optimization algorithms and of the materialization
policies used in the evaluate algorithm on the availability of complete answers and response time.

6.1 Availability of Complete Answers

We use the analytical model of Section 5 to compare the availability of complete answers in the
different, evaluation models for the TPC-D Workload. This workload is characterized by a query
which involves five data sources, and a parachute query which involves three of these data sources.
Moreover, in the constrained evaluation model, an execution plan containing one shared component
sub-query is chosen by the constrained optimizer.

Figure 6 plots the probability of obtaining at least one complete answer in two trials as a
function of source availability. The curve for the constrained evaluation model is contained between
the curve for the unconstrained evaluation model (upper bound) and the curve for the classical
evaluation model (lower bound). The event of a classical evaluation model returning a complete
answer in ¢ trials is included in the event of a constrained evaluation model returning a complete
answer in ¢ trials which is itself contained in the event of an unconstrained returning a complete
answer in ¢ trials.

In Figure 6, the unconstrained evaluation model shows much better availability than the other
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Figure 8: Execution plan for the query in the three evaluation models.

two evaluation models: for a source availability of 0.9, the probability of obtaining an answer is
0.96 in the unconstrained evaluation model, 0.89 in the constrained evaluation model and 0.83 in
the classical evaluation model. The more data sources provide data which are materialized at each
trial, the higher the availability of complete answer. As data is never materialized in the classical
evaluation model, it has the lowest availability of complete answers. In the constrained evaluation
model, data is only materialized if the three sources involved in the shared component sub-query
are available. As a consequence the curve for the constrained evaluation model is close to the
curve for the classical evaluation model. In the unconstrained evaluation model, as much data as
possible is materialized at each trial. The probability of obtaining a complete answer is thus much
higher in this evaluation model.

Figure 7 shows the number of trials that are required to get at least one complete answer with
a probability of 0.9 as a function of source availability. When the source availability is low, say 0.6,
the number of trials required to obtain a complete answer in the unconstrained evaluation model
is still reasonable, almost 4 trials, while it is 7 trials in the constrained evaluation model and 16
trials in the classical evaluation model.

6.2 2 Trial Experiment

We use the simulator with the TPC-D workload to examine the influence of the optimization
algorithm and of different materialization policies on response time using a realistic workload.
Our experiment is based on enumerating all possible configurations of available and unavailable
sources. For each configuration ¢, we use a sequence of interaction which submits the query, then
the parachute query, and finally the incremental query. This sequence is achieved by (i) setting
sources to be available or unavailable according to ¢, (ii) issuing the query, waiting for notification,
issuing the parachute query, waiting for the parachute answer, (iii) changing all unavailable sources
to available sources after the parachute answer is returned, and (iv) issuing the incremental query
and waiting for the complete answer. Thus, the mediator attempts twice to answer the query and
once to answer the parachute query. In the case that all sources are available, we use the sequence
of interaction g, a.

To measure our experiments, we introduce several metrics. The time to first answer is the time
between g and n, i.e., the time to execute the evaluate algorithm. The time to incremental answer
is the time between i and a, i.e., the time to execute the evaluate algorithm on the incremental
query. The time to parachute answer is the time between p and «, i.e., the time to execute the
extract algorithm.

Classical Evaluation Model The sequence of interaction for the classical evaluation model
experiment is q,n, p,a,t,a. When the query is submitted to the classical evaluation model, it is
optimized. Figure 8 shows the execution plan which is chosen.® When the parachute query is

6We have also experimented with an optimizer whose objective function is to minimize response time. The
execution plan chosen by this optimizer is a right linear tree, where the build phase of each hash join operator is
performed in parallel. In our experiment, however, network bandwidth is low. As a result, the parallelism that
appears in right linear trees cannot be exploited because the network serializes data access.
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Figure 9: TPC-D Workload — Classical Evaluation Model

submitted, it is also optimized — its execution plan is (P > PS) <1 S. The classical evaluation
model does not materialize relations. Thus, unless all sources are available, the time taken by the
evaluate algorithm is essentially equal to the sense phase of this algorithm.

Figure 9 shows the results for the TPC-D workload with a classical evaluation model for each
possible configuration of sources in the first trial. The x-axis indicates the configuration of available
sources in the first trial and the y-axis indicates the query response time (on a logarithmic scale
between 0.1 and 1000 seconds). In case all sources are available (P-PS-S-R-N), the query runs to
completion and the first answer is the complete answer. The parachute query is not submitted.
The time to first answer is 597.2 seconds.

The time to incremental answer is identical in all configurations where some sources are un-
available and it is equal to the time to complete answer, i.e. 597.2 seconds. Since no relations are
materialized in the classical evaluation model, the incremental query is identical to the query and
thus no work is saved between consecutive executions.

The time to first answer is identical, 10 seconds, in all configurations where some sources are
unavailable. It corresponds to the time-out value in the simulator required to recognize a data
source is unavailable. Since data sources are contacted in parallel, all time-outs are overlapped
with each other. Note that this measurement is liberal since many mediator systems do not contact
sources in parallel.

A parachute query is submitted in all configurations, except one where the complete answer
is immediately returned. In the case that a parachute answer cannot be obtained, we report the
time to parachute answer as the notification of this event. This time is equal to the time to first
answer since exactly the same mechanism is used. A parachute answer is obtained for the three
configurations where P, PS and S are available (these configurations are marked with a star on the
x-axis). These answers are obtained because configuration of sources remains the same between
the first trial and the execution of the parachute query. In these cases, the time to parachute
answer is 597 seconds — slightly less than the time to complete answer because the tiny relations
R and N do not participate in the parachute query.

Unconstrained Evaluation Model We use the same sequence of interactions with the un-
constrained evaluation model that we used with the classical evaluation model: ¢q,n, p, a,%,a. The
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Figure 10: TPC-D Workload — Unconstrained Evaluation Model

execution plans chosen by the optimizer for ¢ and p are the same as in the classical evaluation
model (see Figure 8). However, the notification n returned by the mediator is a partial answer in
case some sources are unavailable. Thus, the incremental query ¢ is based on the mediator state.
In particular ¢ depends on the materialization policy.

For these simulations, the unconstrained evaluation model uses the mazimal available sub-query
policy (see Section 4). When evaluating a query tree, the evaluate algorithm first marks all available
nodes and in a second pass materializes the maximal available subtrees into temporary relations.

Figure 10 shows the results for the TPC-D workload with an unconstrained evaluation model.
In case all sources are available, the first answer is the complete answer, obtained in 597.2 seconds.
The unconstrained evaluation model operates in the same way as the classical evaluation model
for this case.

The time to first answer is dominated by the access to relation PS, which takes approximately
540 seconds. In cases where relation PS is unavailable in the first trial, the time to first answer is
low (just above the #ime-out boundary of 10 seconds). In case relation PS is available in the first
trial, the time to first answer is high (above 540 seconds). This time is even higher than the time to
compute the complete answer in configurations PS, PS-R, PS-N, PS-S, PS-N-R, PS-S-R, PS-S-N,
PS-S-N-R. In these cases, the time to first answer is the sum of the time-out required to recognize
a source is unavailable, the time to access PS and other relations, plus the time to materialize PS
and the other relations (PS is not joined in these configurations). In cases where PS and P are
available together in the first trial, the join P b1 PS can be performed with the mazimal sub-query
materialization policy that we have chosen. As a result relation PS is reduced and the time it takes
to perform the join and materialize the result is lower than the time to materialize relation PS.

For the time to incremental answer, generally it holds an inverse relationship with the time to
first answer. The materialization work done during the time to first answer makes the incremental
answer cheaper to evaluate. The size of this inverse relationship depends on exactly how much
work can be accomplished via joins and how many intermediate results must be materialized.

Parachute answers are provided in the configurations PS-P-S, PS-P-S-N and PS-P-S-R (these
configurations are marked with a star on the x-axis). In all other cases, the algorithm for the
evaluation of parachute queries, based on answering queries using views detects that the parachute
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Figure 11: TPC-D Workload — Constrained Evaluation Model

query cannot be evaluated given the current mediator state. In those cases the time to parachute
answer is reported as zero. The time to parachute answer is approximatively 0.09 seconds in all
configurations where a parachute answer is provided. In those cases, the parachute query evaluation
algorithm has recognized that (P b PS) b S has been materialized. This time to parachute answer
is thus the time to read a local relation of 30 pages. This time is very fast compared to the classical
evaluation model which must evaluate the parachute query from scratch.

Constrained Evaluation Model The sequence of interactions for the constrained evaluation
model is: (q,p),n,r,a,aq,(i,p),a since queries and parachute queries are issued together in this
evaluation model. The symbol r represents the request for the parachute answer. In terms of
timing, this request functions in a manner similar to the parachute query submission of the other
two evaluation models. In our simulations, the time between notification and the request for the
parachute answer is zero.

When (q, p) is submitted, the constrained optimization algorithm is applied. After the SCSQ
and the corresponding remaining queries are optimized and their costs added, the execution plan
chosen for the parachute query uses group containing the shared component sub-query. Surpris-
ingly, the same execution plan as the classical and unconstrained evaluation model results from
this optimization. This coincidence occurs because (i) the parachute query is contained in the
query and (ii) the unconstrained optimizer joins exactly the three relations in the parachute query
and in the same way as the constrained optimizer.

The materialization policy we have chosen to illustrate the constrained evaluation model is the
shared component sub-query policy (cf. Section 4). When evaluating a query tree, the evaluate
algorithm first marks all available nodes in the sense phase and then in the execution, materializes
the shared component sub-query if it is available. If one of the relations involved in the shared
component sub-query is unavailable, then the shared component sub-query is not materialized.

Figure 11 shows the results for the TPC-D workload with a constrained evaluation model. In
the configuration where all sources are available in the first trial (P-PS-S-N-R), the first answer,
which is the complete answer is obtained in 597.2 seconds, as in both previous evaluation models
(the execution plans being the same). This situation is actually rare — typically the constrained
optimizer does not generate the same execution plan as the unconstrained optimizer.
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In configurations PS-P-S, PS-P-S-R and PS-P-S-N, the shared component sub-query can be
materialized (it involves relations P, PS and S). As a consequence, the time to first answer is the
time it takes to recognize a data source is unavailable plus the time to process and materialize the
shared component sub-query.

In all other configurations, the shared component sub-query cannot be materialized, because
one of the relations it involves is unavailable. In these cases, nothing is materialized. The time to
first answer is thus the time-out value. As a consequence the incremental query which is constructed
is identical to the original query. The time to incremental answer is thus similar to the time to
complete answer. In these cases, the parachute query evaluation algorithm recognizes that the
parachute query cannot be answered using the mediator state. We report the time to parachute
answer in this case as zero.

7 Related Work

An alternative to our techniques in dealing with unavailable data sources is replication. Replication
can increase the availability of all data sources to the point that queries almost always execute.
However, note that parachute queries are completely compatible with replication — in the case that
a data source is replicated, the probability that it will be unavailable is simply smaller.

Multiplex [17] tackles the issue of unavailable data sources in a multidatabase system and
APPROXIMATE [21] tackles the issue of unavailable data in a distributed database. Both systems
propose an approach based on approximate query processing. In presence of unavailable data,
the system returns an approximate answer which is defined in terms of subsets and supersets
sandwiching the exact answer. Approximation has been notably developed in [5], [6], [15].

Multiplex uses the notions of subview and superview to define the approximate answer. A view
V1is asubview of a view V2 if it is obtained as a combination of selections and projections of V2; V2
is then a superview of V1. These notions can be a basis to define the relationship between a query
and its associated parachute queries. APPROXIMATE uses semantic information concerning the
contents of the database for the initial approximation. In our context, we do not use any semantic
information concerning the data sources. None of these system produce an incremental query for
accessing efficiently the complete answer.

References [10] and [16] survey cooperative answering systems. These systems emphasize the in-
teraction between the application program and the database system; they extend the basic scheme
where the application program asks a precise query that the database system answers. Refer-
ence [16] identifies two classes of cooperative answering techniques. The first class of techniques
aims at assisting users in the formulation of precise queries. The second class of techniques aims
at providing meaningful answers in presence of incomplete or empty results. Parachute queries can
be considered as a technique that aim at providing meaningful answers in presence of unavailable
data sources.

Reference [13] attacks the problem of obtaining a complete answer from an incomplete database.
A query is asked on a set of virtual relations. To each virtual relation R that contains all the tuples
that should be in a relation, corresponds an available relation R’ which contains the tuples that are
actually in the relation. A constraint expresses the relationship between relations R and R’. If we
consider that a virtual relation denotes a complete answer and that an available relation denotes a
parachute answer, we can use the formalism introduced in [13] to refine the definition of relevant
parachute queries. This only concerns parachute queries which are a subset of the original query.

The constrained optimization algorithm we have introduced in Section 4.4 is a multiple-query
optimization algorithm. This problem has been studied in [18]. The author formulates the problem
of multiple-query optimization as follows: given n sets of access plans (each set corresponds to all
possible plans to evaluate a query) find a global access plan by merging n local access plans (one
out of each set) such that the cost of this global plan is optimal. Our algorithm is constructed in
order to maximize the probability of answering parachute queries and to minimize total work once
the shared component sub-queries are materialized.
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8 Conclusion

In this paper we have presented a novel method for dealing with queries in distributed heteroge-
neous database systems (mediators) which may access unavailable sources. The method is based
on a combination of techniques. In the case that all sources are available, queries are evaluated
in the normal way. In the case that some sources are unavailable, queries are evaluated in a way
which obtains the maximum amount of information from available data sources. A representa-
tion of this work materialized in the mediator state, called the partial answer, is returned to the
user. The user can then extract information from the mediator state using another query, called
the parachute query. The parachute query is submitted to the mediator and the parachute query
answer is extracted. In addition, the mediator constructs an incremental query using its state.
The incremental query is resubmitted to the mediator to obtain the answer to the original query,
assuming that the unavailable data sources are now available.

In this paper we have shown several results. We defined a sequential model of interaction with
the database programmer. This model modifies the interface between the database system and the
user program. We then gave a definition of a precipitate class of parachute queries. We described
an algorithm for the generation of parachute queries that belong to the precipitate class. This
algorithm is the basis for a tool which permits the database programmer to explore the precipitate
class of parachute queries for a given configuration and query. (Required because there are, in the
worst case, an exponential number of parachute queries in the precipitate class.)

We then proceeded to describe a collection of algorithms for dealing with queries and parachute
queries in this environment. We described an evaluate algorithm which evaluates queries in two
phases. The first phase senses the collection of available sources and the second phase evaluates the
query according to some materialization policy. We described a construct algorithm which gives the
incremental query for a partial answer. This algorithm translates algebraic representation of query
execution into an equivalent declarative representation. We described an extract algorithm which
computes the parachute query answer. This algorithm matches (via query sub-query matching)
the parachute queries with the sub-queries representing the materialized relations in the partial
answer.

To test the viability of our work, we defined three evaluation models for implementing parachute
queries. The classical evaluation model implements parachute queries in the user interface. This
evaluation model requires no modifications to the mediator. The unconstrained evaluation model
implements parachute queries on partial answers. This evaluation model requires only lightweight
modifications to the interface and the run-time system of the mediator. The constrained evaluation
model simultaneously optimizes a query and its associated parachute queries. This evaluation
model requires modifications to the interface, optimizer and run-time system of the mediator.

We then analytically analyzed the availability of query and parachute query answers in the three
evaluation models. We showed that availability of the query answer depends on the probability
that a source is available, the number of sources accessed by the query, the materialization policy
and the evaluation algorithm.

To show the performance impact of our work, we simulated the three evaluation models. We de-
fined several new performance metrics to compare the performance of the three evaluation models.
These performance metrics are based on the classical query response time metric. We simulated
the classical evaluation model as a baseline for comparison to the other evaluation models.

We simulated the unconstrained evaluation model and demonstrated that parachute query
extraction and incremental query evaluation response times are much faster than in the classical
evaluation model. This performance improvement is due to the materialization policy.

We simulated the constrained evaluation model and demonstrate that query evaluation, parachute
query extraction and incremental query evaluation are nearly as fast as in the unconstrained evalua-
tion model, and that the performance penalties are small in most cases. The constrained evaluation
model may have a negative impact on the availability of complete answers. This impact results
from the materialize shared component sub-queries policy. Thus, we conclude that there is a
trade-off between performance and availability of queries and parachute queries.

The reader is encouraged to consult reference [3]. In this reference we show the impact of
the materialization policy on the availability of the parachute answer and the impact of delays
from data sources. We also run a collection of experiments on a synthesized workload where the
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constrained optimizer chooses a different execution plan than the unconstrained optimizer, thus
we show the impact of parachute queries on the optimizer.
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