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Abstract� Distributed databases operating over wide	area networks such as the Internet� must
deal with the unpredictable nature of the performance of communication� The response times
of accessing remote sources can vary widely due to network congestion� link failure� and other
problems� In such an unpredictable environment� the traditional iterator	based query execution
model performs poorly� We have developed a class of methods� called query scrambling� for deal	
ing explicitly with the problem of unpredictable response times� Query scrambling dynamically
modi
es query execution plans on	the	�y in reaction to unexpected delays in data access� In this
paper we focus on the dynamic scheduling of query operators in the context of query scrambling�
We explore various choices for dynamic scheduling and examine� through a detailed simulation�
the e�ects of these choices� Our experimental environment considers pipelined and non	pipelined
join processing in a client with multiple remote data sources and delayed or possibly bursty ar	
rivals of data� Our performance results show that scrambling rescheduling is e�ective in hiding
the impact of delays on query response time for a number of di�erent delay scenarios�

Keywords� Distributed query processing� mediators� iterator execution model� performance anal	
ysis� query scrambling� dynamic query optimization�

�� Introduction

The continued dramatic growth in global interconnectivity via the Internet has
made around�the�clock� on�demand access to widely�distributed data a common
expectation for many computer users� At present� such access is typically obtained
through non�database facilities such as the World�Wide�Web� Advances in dis�
tributed heterogeneous databases �e�g�� ���� ��� �� ��	
 and other non�traditional
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approaches �e�g�� WebSQL ���	
� however� aim to make the Internet a viable and
important platform for distributed database technology�

The Internet environment presents many interesting problems for database sys�
tems� In addition to the issues of data models� resource discovery� and heterogeneity
addressed by the work in the areas cited above� a major challenge that must be
addressed for wide�area distributed information systems is that of response�time
unpredictability� Data access over wide�area networks involves a large number of
remote data sources� intermediate sites� and communications links� all of which are
vulnerable to congestion and failures� Such problems can introduce signi�cant and
unpredictable delays in the access of information from remote sources�

Current distributed query processing technology performs poorly in the wide�
area environment because unexpected delays encountered during a query execution
directly increase the query response time� Query execution plans are typically
generated statically� based on a set of assumptions about the costs of performing
various operations and the costs of obtaining data� The execution of a statically
optimized query plan is likely to be sub�optimal in the presence of unexpected
response time problems that arise during the query run�time� In the worst case� a
query execution may be blocked for an arbitrarily long time if needed data fail to
arrive from remote data sources� The apparent randomness of such delays in the
wide�area environment makes planning for them during query optimization nearly
impossible�

To address the issue of unpredictable delays in the wide�area environment� we have
developed a dynamic approach to query execution� called query scrambling� Query
scrambling reacts to unexpected delays by on�the��y rescheduling the operations of
a query during its execution� Query scrambling attempts to hide delays encountered
when obtaining data from remote sources by performing other useful work� such as
transferring other needed data or performing query operations� such as joins� that
would normally be scheduled for a later point in the execution� Query scrambling
can be eective at hiding signi�cant amounts of delay� in the best case� it can hide
all of the delay experienced during a query execution� That is� a query can execute
in the presence of certain delays with little or no response time penalty observable
to the user�

���� Coping With Bursty Arrival

In a previous paper ��	� we identi�ed three types of delay that can arise when
requesting data from remote sources�

Initial Delay There is an unexpected delay in the arrival of the �rst tuple from
a particular remote source� This type of delay typically appears when there is
di�culty connecting to a remote source� due to a failure or congestion at that
source or along the path between the source and the destination�

Slow Delivery Data is arriving at a regular rate� but this rate is much slower
than the expected rate� This problem can result� for example� from network
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congestion� resource contention at the remote source� or because a dierent
�slower
 communication path is being used �e�g�� due to a network link failure
�

Bursty Arrival Data is arriving at an unpredictable rate� typically with bursts
of data followed by long periods of no arrivals� This problem can arise from
�uctuating resource demands and the lack of a global scheduling mechanism in
the wide�area environment�

The algorithm presented in ��	 focused on the problem of Initial Delay� As such� it
was assumed that once data started to arrive from a remote source� the remaining
data from that source would arrive in an uninterrupted fashion� This assumption
facilitated the development and study of an initial approach but limited the ap�
plicability of the resulting algorithm� as wide�area data access seldom fails in such
a well�behaved manner� In this article� we extend the scope of query scrambling
by investigating approaches to dynamically rescheduling query operations in the
presence of the additional problem of bursty arrivals�

Bursty arrivals are more di�cult to manage than initial delays for several reasons�
First� the run�time system must constantly monitor the arrival of data from remote
sources and must be able to react to delays that arise at any time� Such continuous
monitoring of remote sources is not necessary in the initial delay environment�
Second� due to the unpredictable nature of bursty arrivals� care must be taken
to avoid initiating overly�expensive scrambling actions for short� transient delays�
while remaining reactive enough to initiate scrambling without undue hesitation in
situations where there is a signi�cant delay� Given the di�culty of predicting the
future short�term behavior of remote access� scrambling for a bursty environment
must be implemented such that it can be initiated� halted� and restarted in a
lightweight manner�

���� A Reactive Approach

Query scrambling shares some common goals with other approaches to dynamic
query processing� In general� methods that attack poor run�time performance for
queries fall into two broad categories� proactive and reactive� Proactive methods
�e�g�� ��� ��� ��	
 attempt at compile�time to predict the behavior of query execution
and plan ahead for possible contingencies� These approaches use a form of late
binding in order to postpone making certain execution choices until the state of
the system can be assessed at run�time� Typically the binding is done immediately
prior to executing the compiled plan� and remains �xed for the entire execution�

Reactive methods �e�g�� ���� �� ��	
 monitor the behavior of the run�time system
during query execution� When a signi�cant event is detected� the run�time system
reacts to the event� Query scrambling is a reactive approach � the query execu�
tion is changed on�the��y in response to run�time events� While other reactive ap�
proaches have been aimed towards adjusting to errors in query optimizer estimates
�e�g�� selectivities� cardinalities� etc�
� query scrambling is focused on adjusting to
the problems that arise due to the time�varying performance of loosely�coupled
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data sources in a wide�area network� Related work is discussed in more detail in
Section ��

One basic technique used by query scrambling is to change the scheduling of op�
erators in a query plan if a delay is detected while accessing data from a remote
site� Such rescheduling permits delays from dierent remote sources to overlap
with each other and to overlap with useful work performed by the query processor�
In order to implement this rescheduling� the run�time system must sometimes in�
troduce additional materializations of intermediate results and base data into the
query execution plan� For this and other reasons� query scrambling may increase
the total cost of query execution in terms of network communication costs� memory
usage� and�or disk I�O�

���� Overview of the Article

Because operator rescheduling introduces both bene�ts and costs� it must be reg�
ulated in an eective way� Thus� the key questions for implementing scrambling
rescheduling are� �
 when should scrambling start� �
 what should be rescheduled�
and �
 when should scrambling stop� We examine several sets of policies to control
scrambling rescheduling� and we describe the architecture of a run�time scheduler
that is capable of implementing these policies� We then use a detailed simulation
of a run�time system based on the iterator query processing model ���	 in order
to examine the tradeos of the various scrambling policies for both pipelined and
non�pipelined execution�

In this article� we focus on query processing using a data�shipping or hybrid�
shipping approach ���	� where data is ultimately collected from remote sources and
integrated at the query source� This approach models remote data access and is
also typical of mediated database systems that integrate data from distributed�
heterogeneous sources� �e�g�� ���	
� In this work� the remote sources are treated
as black boxes� regardless of whether they provide raw data or the answers to
subqueries� Only the query processing that is performed at the query source is
subject to scrambling� Our results show that scrambling� if done correctly� can
produce dramatic response time savings under a wide range of delay scenarios� It
can in some cases� reduce the slowdown observed due to random delays by a factor
proportional to the number of bursty remote sources� It can also� in some cases
completely hide the delay from the user�

In summary� unpredictable behavior of remote sources during query execution
is a problem that database technology must address if it will ever be successful
on the Internet� We have investigated initial results for a new class of methods�
query scrambling� that attempts to address this problem� This article describes the
following contributions�

�� An examination of the weaknesses of the iterator model in this environment�

�� An architecture� which extends the iterator model� of a scrambling rescheduling
run�time system�
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�� Several policies for controlling the key implementation aspects of scrambling
rescheduling�

�� Extensive simulation results that document the various performance trade�os
of the policies� and

�� Evidence that scrambling rescheduling is eective for a broad class of workloads
in a bursty data arrival environment�

The article is organized as follows� Section � describes the basic trade�os for
query scrambling to cope with bursty arrivals� Section � provides a detailed model
and architecture of a run�time scheduler for implementing scrambling rescheduling�
Section � describes the policies which control rescheduling� Section � describes
the experimental framework and Section � describes the experimental results for
the non�pipelined and pipelined cases� Section � describes related work� Section �
concludes the article�

�� Query Scrambling Overview

In this section we �rst discuss the behavior of a traditional iterator based run�time
system and its behavior in the bursty environment� We then describe how scram�
bling can be applied to such a run�time system in order to cope with unexpected
delays� Finally� we discuss the basic tradeos and design decisions that arise in the
development of a scrambling algorithm�

���� Query Scrambling for Iterator�Based Execution Engines

Rather than relying on the operating system� most database systems provide their
own execution engine� which performs scheduling and memory management for the
operators of compiled query plans� The iterator model is one way to structure such
an execution engine ���	� In this model� each node of the query tree is an iterator�
Iterators support three dierent calls� open�� to prepare an operator for producing
data� next�� to produce a single tuple� and close�� to perform �nal housekeeping�
To start the execution of a query� the DBMS initiates an open�� call on the root
operator of the query tree� and this call iteratively propagates down the query tree�
A key attribute of the iterator approach is that the scheduling of the query opera�

tors is� in some sense� compiled into the query tree itself� The scheduling of the op�
erators in the tree is determined by the way in which operators make open���next���
and close�� calls on their children operators� The data �ow among nodes in this
model is demand�driven� A child node passes a tuple to its parent node in re�
sponse to a next�� call from the parent� As such� iterator�based plans allow for
a natural form of pipelining� Each time an operator needs data� it calls its child
operator�s
 and waits until the requested data is delivered� The producer�consumer
relationship allows the operators to work as co�routines� and avoids the need for
storage of intermediate results� as long as the child operator produces tuples at
about the same rate or slower than they can be consumed by its parent operator�
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This scheduling dependency can be avoided� however� if the child operator �rst
materializes its result �e�g�� as part of open�� processing
 either in memory or to
disk� After materialization� the child can then provide tuples to the parent operator
in the typical one�at�a�time fashion in response to next�� requests� A completely
non�pipelined schedule can be constructed by introducing materialization between
each pair of operators in the tree�

This simple� static scheduling approach works well when the response times of
operators and data sources can be predicted with some accuracy� When processing
queries with data from remote sources� however� unpredictable delays in obtaining
that data can arise� The eect of such unexpected delays on a precompiled schedule
can be severe� When a remote source blocks� all of its ancestors in the query tree will
also block� In addition to delaying the initiation of operators that are scheduled
to execute later in the plan� such blocking can also block other operators that
are already executing� For example� if a binary operator �e�g�� a join
 becomes
blocked because one of its children blocks� then it will stop requesting tuples from
its other child� thereby inducing blocking on the subtree rooted at that child as
well� This blocking can propagate down the subtree to the leaves of the tree� unless a
materialization �which breaks the producer�consumer dependency
 is encountered��

With a static schedule� progress on the query can� in some cases� grind to a halt
even if only a single data source becomes delayed�

In this article� query scrambling applies dynamic scheduling to query execution
in order to avoid the problems caused by unexpected delays� It depends on two
basic techniques� rescheduling and materialization� Simply stated� when a delay in
obtaining data from a remote source is detected� scrambling changes the scheduling
of operators in the query tree in order to allow other portions of the plan to execute�
To perform this rescheduling� scrambling introduces any materializations that are
required to allow the re�scheduled operators to run� Materializations can be added
to the plan by placing a materialization operator between the re�scheduled operator
and its parent�� A materialization operator is a unary operator� which when opened�
obtains the entire input from its child and places it in storage �typically disk�
unless there is su�cient memory
� The materialization operator provides tuples in
response to next�� requests from its parent operator when the parent is eventually
able to execute�

As stated in the introduction� there are three key policy questions for the imple�
mentation of a scrambling run�time system� ��
 when to start scrambling� ��
 what
to scramble� and ��
 when to stop scrambling� In the following three sections we
describe the options and the basic tradeos that arise for each of these options�

���� Initiating Scrambling

A fundamental principle of our approach to Query Scrambling is that the nor�
mal scheduling of a query execution should proceed unperturbed in the absence of
unexpected delays� The assumption is that the execution plan generated by the
optimizer is in fact� an e�cient plan� and that re�scheduling and materialization
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can result in additional memory� disk I�O� and other costs� Thus� the original plan
should be tampered with only if an unexpected problem arises during the execution�
In order to determine when a delay has occurred� the system associates a timer

with each operator that directly accesses data from a remote site� This timer is
started when the operator begins waiting for a chunk �i�e�� a page or packet
 of
data to arrive from the remote site� and is reset when the data arrives� If the timer
goes o before the data arrives� then the scrambling mechanism is informed that a
signi�cant delay has occurred�
Given such a timer mechanism� the main policy question is to determine at which

point there are su�cient problems to warrant the initiation of re�scheduling� There
is a knob that can be used to �ne�tune such a policy� The timeout�value is the
value at which the timer is initialized when an operator enters a waiting state� The
length of this value determines how long the operator waits before a timeout alarm
is raised�
The timeout�value limits the degree of response time variance that will be tol�

erated for any remote source� This knob allows the sensitivity of the scrambling
policy to be adjusted across a range from aggressive �i�e�� low settings for the knob

to tolerant �i�e�� high setting
� The tradeos between these two extremes are fairly
straightforward� A tolerant policy runs the risk of allowing too much delay to accu�
mulate before reacting� while an aggressive policy can potentially waste resources
in an eort to solve non�existent �or minor
 problems� The decisions covered in the
next two sections� however� can help limit the extent of the damage caused by an
overly aggressive approach�
In this article we run experiments with a timeout�value equal to �� times the round

trip communication delay between the query processing site and the remote site�
Delayed sources respond after a period equal to three times to the timeout�value�
Thus we investigate an aggressive policy� Note that in heterogeneous systems� an
expensive subquery may be executed on the remote source� Clearly the estimated
time to execute the subquery on the remote source should in�uence the timeout�
value for that source� We do not investigate this issue in this paper�

���� What to Scramble

Once scrambling has been initiated� the next decision to be made is the extent of
the scrambling action to be performed� As stated previously� scrambling involves
the rescheduling of operations in the execution plan� There are two types of policy
decisions that must be made with respect to the extent of scrambling� i
 where in
the tree to initiate scrambling� and ii
 how many scrambling operations should be
initiated�
For the �rst question� we consider two options� i
 early initiation of a non�leaf

operator in the plan� and ii
 early retrieval of data from a remote source� The �rst
case� initiating a non�leaf operator� requires the scrambling system to arti�cially
call open�� on that operator� The open�� has the usual eect of initiating the
sub�tree of the query rooted at that operator� It is relatively simple to execute a
non�pipelined operator out�of�turn �i�e�� before its parent operator
 because such
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an operator simply writes its result to a temporary �le �or to an allocated area in
memory
� On the other hand� rescheduling pipelined operators is more di�cult�
it requires the introduction of a materialization operator as a surrogate parent� in
order to temporarily store the result of the operator� A surrogate parent is also
needed in the case of early retrieval of data from a remote source� In that case�
a materialization operator is inserted in the tree to pull tuples from the remote
source and store them locally at the query execution site�
The tradeos between these two choices are as follows� Starting a non�leaf oper�

ator allows the entire subtree rooted at that operator to be initiated at the cost of
at most� a single additional materialization� The downside of this approach is that
su�cient memory must be allocated to allow the subtree to execute� In contrast�
early retrieval from a remote source requires very little memory �e�g�� one or two
pages� for staging tuples to disk
� however� an additional materialization is required
for every remote source opened in this way�
The second decision that must be made is how many scrambling operations should

be initiated� The fundamental tradeo here is as follows� The more operations that
are initiated� the more remote sources can be accessed in parallel� and hence� the
greater the potential for overlapping the delays that might arise from those remote
sources�� There are� however� signi�cant dangers in starting too many operators�
First� if care is not taken� the data arriving from multiple sources can cause con�
tention in the network or at the query execution site� On the network� contention
can result in the invocation of congestion avoidance mechanisms� which can force
sources to send data at a low rate� At the query execution site� thrashing can arise
if the speed of materializations to disk cannot keep up with the rate at which the re�
mote sources are delivering data� These problems can be mitigated� to some extent�
if the query execution site controls the arrival of data from remote sources� Such
control can be achieved using a page�at�a�time protocol �as opposed to a streaming
protocol
 between the query execution site and the remote sources�

Another problem that can arise from initiating too many scrambling operations is
the randomization of disk access� When multiple relations are placed on the disk of
the query execution site� access to those relations may interfere with other disk I�O
performed by the query� For example� in the case of a non�pipelined join� accessing
the input relations from disk may interfere with the writing of the join result to
disk� thereby turning both processes into random rather than sequential I�O� Such
interference can slow disk access substantially� Note that this latter problem can
arise regardless of whether a streaming or page�at�a�time protocol is used to obtain
data from remote sources�
In this article we compare several policies for deciding what to scramble� We

compare policies which �i
 do nothing� �ii
 open all remote sources and �iii
 open
all remote sources and process available joins�

��	� Stopping Scrambling

The third key decision for scrambling is that of when to stop scrambled operations
once they have been initiated� There are two basic choices here� One option is
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to simply suspend all scrambled operations when the remote source that triggered
scrambling resumes sending data� The other option is to ignore the status of the
blocked remote source� and continue scrambling� Perhaps the most intuitive ap�
proach is to suspend scrambling and resume normal processing as soon as a blocked
operator becomes unblocked� Since scrambling is a reaction to an unanticipated
event� it makes sense to resume the original plan as soon as possible� In addition�
scrambling has the potential to add costs to the execution of the query� so returning
to the original schedule can help avoid such costs�

In cases where a remote source temporarily experiences delays but then performs
smoothly� the approach of returning to the original plan is likely to work well� In
other cases� however� going back too soon can carry its own costs� Recall that some
scrambled operators �e�g�� those higher in the query tree
 may consume considerable
amounts of memory� If the suspension of scrambling causes the scrambled operators
to be swapped out then it is possible to encounter a thrashing condition if the
remote source repeatedly delays and resumes� On the other hand� not swapping
the scrambled operators out could result in a signi�cant waste of memory and could
hurt performance� Thus� for very unreliable remote sources� it could be bene�cial
to continue scrambling� even if the remote source resumes� A useful option in this
case might be to materialize the delayed source in the background while continuing
to complete the scrambling operations� Materializing an operator that was started
normally� however� would require additional mechanism beyond what has been
described above�

In this article we consider policies which both suspend scrambling and which
ignore the status of a blocked source� In all� we consider four policies which combine
the issue of what to scramble with the issue of when to stop scrambling�

��
� Discussion

The above sections described the main decisions that must be addressed when de�
signing a query scrambling policy for the bursty environment� These decisions and
their possible settings are summarized in Table �� The settings allow the scrambling
policy to be adjusted between tolerant and aggressive approaches towards dealing
with delays� In general� tolerant policies favor sticking to the original query plan
wherever possible� while aggressive policies are more willing to commit resources in
order to hide potential delay� As stated above� it is possible to implement scram�
bling in a way that can reduce the potential for problems� For example� using a
page�at�a�time protocol rather than a streaming one for obtaining data from remote
sources can reduce the potential for network and local disk congestion�

In general� scrambling involves rescheduling the execution order of operators�
changing the actual operators themselves� and modifying the shape of the query
tree to cope with delays ��� ��	� In this paper� our focus is on the �rst aspect of
scrambling� namely� rescheduling� That is� we examine various policies for changing
the scheduling of operators in a particular query execution tree� without creating
new operators or modifying the shape of the tree�
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Table 	� Summary of Scrambling Options

Decision Tolerant Value Aggressive Value

Start timer�value high low
Which Operators remote source non�leaf
How Many Operators few many
Stop suspend ignore

The execution tree shape has an impact on the eectiveness of operator reschedul�
ing� If the �rst �left�most
 remote source� say A� in the query execution order� has
a long delay� then scrambling can perform very well� The rest of the query will
execute during the time that A is delayed� eectively overlapping the delay of A
with all other delays and work� However� suppose the last remote source� say Z� is
delayed� Scrambling will be ineective� since there is no work after Z and thus no
work to scramble� In general� delays which appear early in query execution order
have much more impact than delays which appear late��

Consider the impact of physical network topology� If a network delay aects
only a single remote source� scrambling will perform as if the delay was due to the
remote source itself� However� if a network delay aects all remote sources equally
�e�g� a delay in the network link between the client and the local Internet router
of the client
� scrambling will be ineective� because all remote sources are equally
delayed and thus no work can be overlapped�

�� Architecture

In this section we describe the architecture of a scrambling run�time system� We
�rst extend the iterator model with a scheduler� We then describe how material�
ization operators are inserted into the query tree�

���� The Query Scrambling Engine

We extend an iterator run�time system such that each operator has an independent
internal process state� A scheduler dictates the state of each operator� Operators
can be suspended� resumed� or terminated just like operating system threads� An
operator can be in �ve possible states� Among these �ve states� six transitions are
possible� Operator states and transitions are showed in Figure ��
These states are�

� Not Started� State of an operator before being opened�

� Active� State of the operators that can be scheduled for execution� The actual
order in whichActive operators are scheduled is identical to the one that would
normally be produced by the iterator model under traditional scheduling�

� Suspended� State of an operator explicitly suspended by the query scrambling
scheduler�
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Closed

Not Started Stalled

SuspendedActive

1 opened
2 timed-out

6 closed 4 reactivated

3 resumed

5 suspended

Figure 	� State Diagram for Query Operators

� Stalled� State of an operator stalled due to the unavailability of the requested
data�

� Closed� State of an operator once it has produced all its possible results�

The query scrambling scheduler moves one or more operators from one state to
another via a transition in response to an external event� Three possible external
events are de�ned�

� Time�Out� When the timer embedded in an operator goes�o� the operator
informs the scheduler of the time�out� In turn� the scheduler then knows this
operator can not be run�

� Resume� When pending data eventually arrive at the query execution site the
scheduler determines the operator for which the data is intended� The scheduler
then knows this operator can potentially be run again�

� End of Stream� An operator that produced all its possible results tells the
scheduler it has reached the end of stream� Such an operator goes out of the
scope of scrambling�

The reactions of the query scrambling scheduler to the occurrence of these events
can be easily expressed in terms of transitions between states for the operators
concerned by the events� The transitions between the states are�

�� opened� Every time an operator opens� the scheduler moves this operator from
Not Started to Active�

�� timed�out� The scheduler moves an operator from Active to Stalled when the
operator times�out ��rst external event
� The scheduler also forces the ancestors
of the stalled operator to go through this transition as well� indicating that a
whole branch of the query tree is blocked and can not run�

�� resumed� When the pending data eventually arrives �second external event

the scheduler moves the corresponding operator� as well as its ancestors� from
Stalled to Suspended indicating that they can potentially be run again�
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�� reactivated� The scheduler moves an operator from Suspended to Active
when it decides to reactivate it� Every time an operator is moved through the
transitions timed�out or resumed� the query scrambling scheduler checks to see
if one �or more
 suspended operations need to be re�activated� For example� if
no operators are Active because they are all timed�out� then the scheduler will
try to reactivate the scrambling of Suspended operators�

�� suspended� The scheduler moves Active operators to the Suspended state
when it decides to temporarily suspend their execution� This happens� for
example� when the regulation mechanism of query scrambling decides to halt
all materializations because the problem that triggered scrambling is resolved�
Later� suspended materializations can be reactivated� for example in response
to the time�out of one active operator�

�� closed� When an operator completes �end of stream� third external event
� it
closes and the scheduler moves it to the Closed state�

���� Modifying the Query Tree

After it has chosen an operator to reschedule� the query scrambling scheduler anal�
yses the query tree to determine if it has to introduce a materialization operator
as a surrogate parent to allow this operator to run� If not� then the scheduler sim�
ply starts a thread that opens the operator� In contrast� if a surrogate parent is
required� then the scheduler creates a new materialization operator and inserts it
between the rescheduled operator and its parent� Patching a query tree is fairly
simple with iterators� since they interact through well de�ned� implementation in�
dependent� interfaces� As such� neither the parent nor the child operator needs to
be aware of the patch�
Once the surrogate parent is placed in the tree� the scheduler opens it� After

calling open�� on its child� the materialization operator continuously calls next��
and materializes the received tuples to disk� The child operator is closed when it
produces its last tuple� At this point the materialization is complete�
Eventually� the original parent of the rescheduled operator will be scheduled to

execute� Due to the patching of the query tree� when it calls open�� on its child�
it actually re�opens the materialization operator� In response to next�� calls� the
materialization operator returns the tuples that it previously materialized� If the
materialization was complete then its child operator need never be called� On the
other hand� if the materialization was incomplete� then once its supply of materi�
alized tuples is exhausted� it simply passes any subsequent next�� calls to its child�
and passes each tuple obtained in this manner back to its parent�

�� Policies

We now present the scheduling and rescheduling policies that we study in the sub�
sequent sections� Two of these policies are static while the two others are reactive�
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The static policies do not change the scheduling of operators even when delays are
encountered �in fact� they are not aware that a delay has occurred
� In contrast�
the reactive policies change the original schedule once a delay is experienced� The
two reactive policies dier by the operators that they are allowed to reschedule�
Because of the memory problems that can arise when rescheduling subtrees� we
focus on policies that have very manageable memory requirements� In particular�
one policy only materializes relations obtained directly from remote sources and
the other policy is able to in addition� reschedule a single join operator at a time�
The four policies are�

�� Normal Iterator Execution �ITR�� The �rst policy� which we use as a
baseline� is a static� iterator�based execution as described in Section ����

�� Materialize Always �MA�� MA is also a static policy� but diers from ITR in
that it it immediately initiates the materialization of all data sources at query
startup time� When the query starts its execution� this policy inserts in the
query tree materialization operators for all relations that are to be obtained
from the remote sources� Once those operators have been inserted in the tree�
the policy spawns threads to open them� Materializations continuously pull�
over remote data and write this data on the local disk� In parallel to those
materializations� the query continues its execution� When an operator �a join
for example
 needs data from a relation that is currently materialized� this join
stops this particular materialization �others remain active
� consumes the local
data and requests the rest of this relation �if any
 from the remote server� Of
course� since MA is a static policy� it is made aware of any delays that may be
encountered during a query execution� but rather� the aected operators simply
block� MA is used to show the impact of parallel fetching from remote sources
in the absence of a reactive policy�

�� Reactive Materialize �RM �� The simplest of the two reactive policies we
study is RM � In the absence of delay� RM behaves identically to the static
ITR policy� As soon as the query experiences a delay� it switches to a mode
similar toMA� that is� all data sources are opened and their data materialized in
parallel� Any delays experienced by on�going materializations do not trigger any
special action� When the data source that caused this opening resumes� on�going
materializations are suspended and the query returns to standard execution� If
another delay is experienced� the suspended materializations are resumed� and
they continue to bring data in parallel� The choice of suspending rescheduled
operators was made because materializations consume little memory�

�� Reactive Materialize and Join �RMJ �� This policy has the same basic
behavior as RM � except that it also is able to reschedule the execution of a
single join at a time� When necessary� RMJ triggers the materialization of all
base relations� In parallel to these materializations� RMJ tries to materialize
the result of a join when this is possible� It is possible to materialize a join as
soon as both inputs of that join have been entirely materialized on the local disk�
Waiting for the inputs of a join to be entirely stored on the local disk ensures the
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join cannot be blocked by any delayed data� As a result� this policy assumes that
there is enough memory available to support the execution of this join� Joins are
elected for execution on a �rst�come �rst�served basis� that is� the �rst join that
has both inputs fully materialized is the �rst to be rescheduled for execution�
Materialization of joins can run concurrently with on�going materializations of
base relations� As in the previous policy� all on�going materializations �i�e�� of
base relations and�or joins
 are suspended if delayed data begins to arrive� We
chose to study RMJ because it allows for potentially more work to be done by
scrambling rescheduling� but it also has very manageable memory requirements�

�� Experimental Framework

In this section we �rst describe the simulation environment used to evaluate several
dierent policies for scrambling queries� We then present the workload used to
perform these experiments�


��� Simulation Environment

To study the performance of scrambling rescheduling� we implemented the scram�
bling architecture of Section � and the policies described in Section � on top of
an existing simulator that models a heterogeneous� peer�to�peer database system
such as SHORE ��	� The simulator we used provides a detailed model of query
processing costs in such a system� Here� we brie�y describe the simulator� focusing
on the aspects that are pertinent to our experiments� More detailed descriptions
of the simulator can be found in ���� ��	�

Table � shows the main parameters for con�guring the simulator� and the settings
used for this study� Every site has a CPU whose speed is speci�ed by the Mips
parameter� NumDisks disks� and a main�memory buer pool of size Memory� For
the current study� the simulator was con�gured to model a client�server system
consisting of a single client and eight servers� Each site� except the query execution
site� stores one base relation� In all the experiments described in this paper� the
servers were not performing any other work than servicing pages upon request�l

The CPU at each site is modeled as a FIFO queue and the simulator charges
for all the functions performed by query operators like hashing� comparing� and
moving tuples in memory� as well as for system costs such as disk I�O processing
and network protocol overhead as described below�

Disks are modeled using a detailed characterization and settings adapted from
the ZetaSim model ��	� The disk model includes costs for random and sequential
physical accesses and also charges for software operations implementing I�Os� The
unit of disk I�O for the database is pages of size DskPageSize� The disks prefetch
pages when reads are performed� In the current version of the simulator� � pages
are obtained for each read access request made to the disk� In addition to the disk
costs� there is always a charge of DiskInst instructions for each disk access� In our
experiments� disks were seen to deliver data at an average rate of approximately
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Table �� Simulation Parameters and Main Settings

Parameter Value Description

NumSites � number of sites
Mips �� CPU speed ���� instr�sec�
NumDisks � number of disks per site
DskPageSize ���� size of a disk page �bytes�
RequestSize �� size of a data request �bytes�
TransferSize ���� size of a data transfer �bytes�
Compare � instr� to apply a predicate
HashInst �� instr� to hash a tuple
Move � instr� to copy � bytes
Memory ���� memory size �in disk pages�
NetBw ���� �� �� network bandwidth �Mbits�sec�
MsgInst ����� instructions to send or receive a message
PerSizeMI � instructions per byte sent
DiskInst ���� instructions to read a page from disk

�� Mbits�sec with sequential I�Os� and a rate of approximately � Mbits�sec with
random I�Os�

In this study� the disk at the query execution site �i�e�� client
 is used only to tem�
porarily store intermediate results and base relations that are materialized during
a query execution� The actual base relations are stored on disk at the servers �one
relation per server� in this case
� Although servers are con�gured with memory� the
workload used in the experiments here is performed such that the server memory
is not useful �i�e�� there is no caching across queries and relations are accessed once
per query
 � Thus� in the experiments that follow� base relations are always read
�sequentially
 from the servers� disks for each query execution�

The network is modeled simply as a FIFO queue with a bandwidth dictated by
the NetBw parameter� All processing sites share this single communication link�
Three dierent bandwidth settings are used in the experiments that follow� slow
���� Mbit�sec
� medium �� Mbit�sec
� and fast ��� Mbit�sec
 in order to study
cases where the system is network�bound� roughly balanced� and disk�bound at the
query site respectively� The details of a particular technology �Ethernet� ATM
 are
not modeled� The cost of sending messages� however� is modeled as follows� the
simulator charges for the time�on�the�wire �depending on the message size and the
network bandwidth
 as well as CPU instructions for networking protocol operations
which consist of a �xed cost per message �MsgInst
 and a per�byte cost based on
the size of the message �PerSizeMI 
� The CPU costs for messages are paid both at
the sender and the receiver�

The query execution model uses a synchronous �i�e�� non�streaming
 approach to
remote data access� That is� when an operator running at the query site needs data
from a remote source� it sends a request �of RequestSize bytes
 to that source and
waits for the reply �of course� other operators can run during this period
� A source
responds with with a block of TransferSize bytes of data� After the operator has
consumed this data� it issues another request to the source�
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Finally� we modeled a bursty environment by adding to each remote server a small
piece of software� Every time a message is about to be sent by a site� the software
checks to see if the message must be delayed� The duration of the delay as well as
the moment when the delay is eectively enforced are fully con�gurable� and can
range from a �xed duration enforced every time a given number of messages have
been exchanged to a random duration and a random occurrence of delays using
several probability distributions�

For all the experiments� we have set the value of the timer that activates the
scheduler as a multiple of the expected round�trip time for requesting and obtaining
a data page from an unloaded source in an unloaded network� In our experiments
�except where noted
 the timer is set to ten times the duration of this round�trip�


��� Workload

The workload used for all the experiments described in Section � consists of two
versions of the query tree shown in Figure �� The basic query is an ��way join
structured as a balanced bushy tree� As stated in Section ���� each base relation
�A through H
 is stored on a separate remote site� and scans of the base relations
are executed at the remote servers� All other operators� i�e�� joins �represented by
circles in the �gure
� are executed at the query execution site� In the experiments
we focus our study on hash�based joins�

The tuples of all base relations are ��� bytes each� As shown in Figure �� there are
two parameters for setting the �possibly dierent
 cardinalities of the base relations�
These parameters are indicated by the letters n and m in the �gure� These same
parameters are also used to set the cardinalities of the intermediate results produced
by the various joins�

The two versions of the tree that are used in the study are called uniform and
non�uniform� they dier in the settings of the cardinality parameters� For the
uniform tree� n and m are set to be equal so that all base relations have the same
size and all joins return a result that is the size of a single base relation� In this
case� we set n	m	�
�


� so that all base relations and join results consist of
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�MB ���� disk pages
 each� With this setting� all hash joins can be performed
without partitioning�
For the non�uniform tree� m is set to be an order of magnitude greater than n

�n	�
�


 andm	�

�



� In this case we have base relations and intermediate
results of either �MB ���� pages
 or ��MB ������ pages
� The order of magnitude
dierence between n and m has two major consequences in our study� First� the
hash join of relations C and D requires partitioning in this case� because neither of
the relations can �t in memory� Second� the query execution makes better use of
pipelining here than in the uniform query tree� as the right�hand sides of many of
the joins are large� Recall that given su�cient memory� right�deep hash joins can be
executed in a pipelined fashion� thereby avoiding materialization of the right�hand
input �i�e�� the probe relation
� Thus� although many of the right�hand sides are
relatively large in this query� they do not need to be staged to and from disk when
the query executes normally�
These particular queries were chosen for the following reasons� First� an ��way

join query is complex enough to provide su�cient latitude for the scrambling poli�
cies and it allows us to investigate the dierences and similarities among them�
Second� the use of a bushy tree� which is more general than a left� or right�deep
tree �i�e�� it contains both left� and right�deep components
� allows us to investigate
scrambling behavior for both left� and right�deep plans� In addition� a bushy tree
provides additional options for scrambling beyond those that arise with the more
restrictive plans� Finally� we study both the uniform and non�uniform cases in or�
der to compare scrambling in a situation where changes to the execution schedule
are likely to have small eects on performance �i�e�� the uniform case
 and in a
situation where it could conceivably have a large� negative impact on performance
�i�e�� the non�uniform case
� Thus� these two queries� plus the ability to vary key
system parameters such as the network speed� provide su�cient �exibility to allow
us to cover a large area of the performance space for dynamic scheduling�
We also describe �in Section �����
 a set of experiments designed to study the

potential impact of scrambling rescheduling on an application environment� In this
section we use a simpli�ed version of a query from the TPC�D benchmark�

�� Experiments and Results

In this section we present experiments that analyze the trade�os raised by scram�
bling rescheduling� We �rst investigate the impact of parallel materializations in
the absence of delays� We then introduce delays in the execution of the queries
to explore the potential bene�ts of overlapping delays with other work for various
delays and network bandwidths�

���� Parallel Materializations and Network Speed

As stated in the introduction� the key technique that Query Scrambling rescheduling
uses is the introduction of parallelism into the execution of a query in response to
unexpected delays� Such parallelism is intended to hide delays by overlapping them
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with other useful work performed while waiting for missing data to arrive� Before
investigating the performance of scrambling rescheduling policies in the presence of
delays� however� we �rst examine the impact of parallelism in the absence of delays�
By doing so� we are able to isolate the potential bene�ts and consequences of such
parallelism on the normal execution of queries�
Figure � shows the response times of the Uniform query executed with the ITR

and MA policies as the network bandwidth �NetBw
 is increased from � Mbits�sec
to �� Mbits�sec�� As expected� the response time for both policies improves dra�
matically as the bandwidth is increased up to a point and then levels out� With
very slow networks� the cost of query execution is dominated by the network costs
and the policies have similar performance� As the network speed is increased �up
to � Mbits�sec
� the performance of the policies begins to diverge and ITR shows
better performance than MA�
The performance of ITR is quite simple to explain� The main components of

performance in this system are the local �i�e� query site
 processing and I�O� the
remote �server
 processing and I�O� and the network� With the ITR policy� very
little of this work is overlapped� At low bandwidths� the portion of the response
time that is due to network time�on�the wire costs is signi�cant �e�g�� ��� of the
total at �Mbit�sec
� As the network speed is increased� the portion of the response
time that is due to time�on�the�wire decreases and has smaller impact on the overall
performance of ITR� Thus� as can be seen in Figure �� improving the bandwidth
for ITR beyond a certain point provides increasingly smaller gains�
In contrast to ITR� MA has a high degree of parallelism� so the explanation be�

hind its performance here is slightly more subtle� At low bandwidths� the network
can become a bottleneck when data are requested from multiple sources in parallel�
When the network is the bottleneck� the performance of MA is almost completely
dependent on it�� As the network bandwidth is increased� it no longer is the bottle�
neck� but the local disk �at the query site
 soon becomes a bottleneck� Recall that
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MA obtains its high degree of parallelism by materializing data on the local disk�
This materialization costs disk writes when the data is brought in� as well as disk
reads when the data is eventually accessed by query processing�

Once the disk bottleneck is reached by MA� it actually has worse performance
than ITR� This is because the ITR policy does no local I�O for the Uniform query�
With a fast network� its performance is dictated by the local query processing and
the �relatively fast
 sequential I�Os done at the remote servers� The same general
performance behavior� with larger response times� is observed for the two policies
when using the Non�Uniform query�

The important lesson here is that with a single disk� materializing base relations
in parallel with the query execution does not improve performance in the absence
of delays� For slower networks� the performance of ITR and MA were roughly
equivalent� and for faster networks� MA actually performed worse than ITR�

���� Rescheduling With Delays

We examined the performance of ITR and MA in the absence of delays across a
range of network speeds� in order to gain an understanding of the performance
tradeos of parallel materialization� In this section� we examine ITR and MA
policies as well as two reactive ones �RM and RMJ 
 in the presence of various
delays for slow ���� Mbits�sec
� medium �� Mbits�sec
 and fast ��� Mbits�sec

network speeds� The slow network setting is intended to model speeds that are
on the order of what could be obtained at a decently connected site with today�s
Internet technology� As shown in the previous section� with a slow network� little
care needs to be taken when using the local resources at the query execution site� as
they contributed at most a small portion to the total response time� The medium
network speed was chosen so that the system would be roughly balanced between
network bandwidth and local disk rates �under mixed random�sequential access

and the fast network is used to examine the performance of the policies when the
local resources are the crucial factor in performance�

In the following� we examine the performance of the policies under dierent de�
lay scenarios �e�g�� bursty and initial delay
 for the two query trees presented in
Section ���� We �rst present the results for the Uniform query and then for the
Non�Uniform one�

������ Uniform Query Tree� Bursty Environment We �rst examine the perfor�
mance of the policies when all of the base relations are subject to random delays
throughout the entire execution of a query� Delay is applied in the following way�
Each remote source �ips a weighted coin before sending a page of tuples to the
query execution site� The outcome of the coin toss determines if the source should
transmit the page normally� or if it should stall for a speci�ed period before sending
its page�� In all experiments� the timer used by the reactive policies to detect prob�
lems with a remote source is set to �� times the expected round�trip delay time for
a data request between the query site and a source �thus� the timer is dierent for
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each NetBw setting
� In this experiment� the delay period �for each random delay

is set to three times the value of this timer� Because of the �xed value for the delay
and timer� it is known that the query processor will timeout on a source each time
that source delays� In this case� the timeout will be detected one�third of the way
through the delay�

In the remainder of the performance section� all graphs show the percentage
slowdown of the query �compared to the non�delayed case
 as the probability of
delay for each page transmission is increased along the x�axis� Figure � shows the
slowdown for Uniform query under the various policies� using the slow network ����
Mbits�sec
�� In this case� the duration of the delay is ����� sec �the is timer set
to ��� seconds� here
� Slowdown is computed by subtracting the normal response
time for the query �in this case� ����� seconds
 in the absence of delays� from the
observed response time in the delayed case� and dividing by the normal response
time�

As can be seen in the �gure� the slowdown for all policies shown increases linearly
with the delay probability� but there are dramatic dierences in the slopes of the
lines� The ITR policy is the most sensitive to delay here� Since ITR accesses the
base relations sequentially it incurs the full cost of every delay on every source�
In this experiment� at ��� delay probability the query runs ��� times slower than
when there are no delays� At ��� delay probability �not shown
 the query runs
���� times slower�

This result is to be expected� The static� sequential scheduler is unable to overlap
any delays� so query execution time is increased by the sum of the delays experienced
by all of the remote sources� At ��� delay probability� there are ��� delays of
����� seconds each� so the total delay is ���� seconds� compared to a normal query
execution time of only ����� seconds� In this case� the slowdown for the standard
query execution at ��� delay probability is �������� �����
������ � ���� At ���
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delay probability� there are ��� delays of ����� seconds each� so the total delay is
���� seconds� The corresponding slowdown is �������� �����
������ � �����

Turning to the non�sequential policies� it can be seen that they too incur a lin�
ear slowdown as the delay probability is increased� The slopes of the increases�
however� are much lower than for the sequential policy� By requesting data from
multiple sources� the three policies can tolerate delays of a subset of those sources
by overlapping them with other work�

The best policy for coping with delay in this experiment is MA� This policy is
the most aggressive one� since it immediately initiates parallel materializations and
continuously materializes data regardless of the potential delays� At ��� delay
probability� MA executes in ������ seconds� that is� it is slowed by a factor of ���
with respect to the execution time of the query with no delays� Since the total
delay in this case is ���� seconds� this policy is able to hide ���� seconds of delay
by overlapping it with other useful work �e�g�� the retrieval of other base relations

and other delays� Thus� while in the no�delay case with the slow network� MA and
ITR displayed similar performance� in the presence of multiple delays �as may arise
in a bursty environment
� MA has a tremendous advantage over ITR�

The two reactive policies� RM and RMJ are also very bene�cial here� but their
performance is slightly worse than MA� The performance dierence arises because
the reactive policies must wait until the timer expires before resuming materializa�
tions when the left�most �i�e�� non�scrambled
 data source experiences a new delay�
In contrast� MA does not rely on any timer mechanism� The performance dierence
seen in the �gure� thus� is the sum of all the timer waits encountered by the reactive
policies� In this scenario� with bursty delays on all relations� even a low probability
of delay results in signi�cant burstiness� so an aggressive policy will work well here�

Figure � shows the performance of the policies when the fast network speed ���
Mbits�sec
 is used�� Here� even with a very fast network� the policies that hide
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delays using parallel materializations do well� and the more aggressive MA policy
performs best here� This result is in contrast to the no delay case �Figure �
 where
the performance of MA was worse than ITR for faster networks� The reason for
this dierence is that in this experiment� the large amount of delay overwhelms the
cost of local processing� so even though MA performs much local I�O here� that
I�O is more than paid for by the overlapping of delays�

������ Uniform Query Tree� Initial Delay One lesson from preceding experi�
ments is that if multiple sources are likely to have multiple delays� even the most
simple forms of parallelism oer a good opportunity to hide delays and that an
aggressive policy can do well� In this section� we examine the potential negative
impact of scrambling too aggressively by investigating a case where there is much
less delay than in the previous cases� To accomplish this� we vary the length of a
single� initial delay on the left�most relation of the query tree �i�e�� relation A
� As
stated in Section �� under the initial delay model� sources experience a single delay
before transmitting their �rst tuple� but perform reliably after that� The x�axis on
the graphs shows the magnitude of this initial delay as a percentage of the time
required to execute the query in the absence of any delay� The y�axis shows� as
before� the percent slowdown compared to normal execution�

Figure � shows the performance of the policies for the slow network� In this case�
the execution time of the ITR policy is ����� seconds� and is completely dominated
by the network cost� The result of this imbalance is that the use of local resources
at the query processing site is eectively free� so all scrambling policies can hide
virtually all of the delay up to ���� after which they run out of work to perform
and the slowdown increases linearly with the delay�

Figure � shows the performance of the policies with the balanced network� With
this setting� the query execution time with no delays is ���� seconds and the over�
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head of materializations can have a somewhat larger impact� In this �gure� all
three parallel policies are able to hide most of the delay up to ���� after which
they increase linearly with the delay� Beyond ���� RMJ � the reactive policy that
can instigate join processing in addition to materializing base relations has a slight
advantage over the other parallel policies because it performs some additional work
�i�e�� joins
 whereas the other policies block after all base relations have been mate�
rialized if the tuples of A are still missing� As such� once the tuples of A have been
received� the work that must be done by RMJ to complete the query is small and
the query �nishes relatively quickly� Although it is not shown in the graph� with
higher delays �e�g�� beyond ����
 RMJ eventually performs all the join processing
it can without A �i�e� C � D� and E � F � G � H
 at which point its response
time curve becomes parallel to the others�
If a slow network makes local disk I�O virtually free� then a faster network makes

local I�O relatively more expensive� Figure � shows the performance of the polices
when the fast network is used� In this case�MA� the most aggressive policy� performs
relatively poorly� MA always materializes all base relations concurrently with the
normal query execution� so in the presence of short delays� MA� which is a static
policy� commits to reading most of its data from the local disk using random I�O ��
Mbit�sec
� In contrast� ITR is able to access its data over the high speed network
in this case� �It is important to note� however� that even though the network
bandwidth is �� Mbits�sec here� ITR accesses remote sources one�at�a�time� and
so is limited by the speed at which a remote source can provide data� i�e�� ��
Mbits�sec�

The net eect is that in this case� the extra cost of the random� local I�O that

MA performs in order to materialize and read base relations outweighs the bene�t
gained by hiding delay� Therefore� MA performs worse than ITR up until a delay of
about ���� RM and RMJ avoid the problems ofMA� because both are able to stop
the materialization of base relations when the delay of A is over� Because of this�
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the reactive policies are able to read their materialized data sequentially and thus�
unlike MA� can obtain materialized data at the same speed �i�e�� �� Mbits�sec
 that
ITR can obtain data from the network� As a result� the reactive policies� unlike
the static ones� are able to eectively hide delay by materializing base relations and
then reading that materialized data for no penalty �compared to ITR
 after the
delay is over� As the delay is increased� the penalty that MA pays is erased� and
at a delay of ��� and beyond� it performs similarly to RM � Finally� it should be
noted that as seen in the balanced network case �Figure �
 RMJ performs slightly
better than RM and MA at higher delays because it is able to overlap somewhat
more delay by executing joins�
We also conducted a set of experiments �not shown here
 that investigate the

eect of setting dierent values for the timer� We ran the experiments presented
in this section and increased the timer by a factor of �� in order to determine the
performance impact on scrambled queries� The net result of increasing the timer is
that there is a longer amount of delay for which scrambling remains inactive� after
which it is subject to the problems identi�ed in the Figure �� An eective approach
to scrambling is to use a fairly short timer� in order to allow scrambling to hide
more delay� but to introduce regulation mechanisms such as suspend �e�g�� as for RM
and RMJ 
� in order to ensure that scrambling does not harm performance� Such
considerations will become increasingly important as high�speed network access
becomes more prevalent�

������ Non Uniform Query Tree In this section� we brie�y describe the perfor�
mance of the policies with the non�uniform query tree as described in Section ����
This tree contains a mix of large and small relations� as well as high� and low� selec�
tivity joins� and allows us to examine the performance of the policies in a situation
where changes to the execution plan chosen by the optimizer could conceivably have
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a large� negative impact on performance� Recall that one impact of the non�uniform
query is that one of its joins requires the hash join algorithm to use partitioning�
We �rst investigate the performance of the policies in the bursty environment and
then in the case of a single initial delay�

For the bursty delay cases� the results for the non�uniform query show the same
behavior as was seen for the uniform query� That is� for all three network speeds�
the parallel policies dramatically improve the performance of the query when it
experiences many delays� Such a result is to be expected� since using local resources
to support overlapping delay is virtually free compared to the amount of experienced
delays� For the balanced and fast networks �not shown
 the results are essentially
the same as those for the Uniform query in Section ������ For the slow network
�Figure �
� the results are also very similar to the Uniform case� except that with
the mixed relation sizes of this tree� the parallel policies are slightly less eective
in hiding delay than with the Uniform query tree�

Figure �� shows the performance of the policies in the initial delay case for the
fast network� As was seen for the uniform query �Figure �
� The performance here
also quite similar to what was seen for the uniform query except for one aspect�
At ���� delay� RMJ initiates the partitioning of the materialized base relation in
order to perform the join of C and D� Between ���� and ����� therefore� its curve
is �at because this corresponds to the time required to partition the two relations
before doing the join� This work is entirely bene�cial to the query and does not
incur any additional overhead because these two relations have to be partitioned
anyway� either by the policy or by the query once the delay is over� Beyond �����
RMJ has performed all the possible work and its performance increases linearly
with the delay�
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����	� Impact of Rescheduling In this section we describe a set of experiments
to study the potential impact of scrambling rescheduling for a more application�
oriented query than the uniform and non�uniform cases shown so far� The experi�
ments use a simpli�cation of query Q� of the TPC�D benchmark ���	� We chose this
query because it is relatively simple� yet processes a �ve�way join� The cardinalities
of the relations involved in this query are as follows� PART� ������ tuples of ���
bytes� SUPPLIER �S
� ������ tuples of ��� bytes� PARTSUPP �PS
� ������� tuples
of ��� bytes� NATION �N
� �� tuples of ��� bytes and REGION �R
 � tuples of
��� bytes�
The query is�

SELECT S�ACCTBAL� S�NAME� N�NAME� P�PARTKEY�

P�MFGR� S�ADDRESS� S�PHONE� S�COMMENT

FROM PART� SUPPLIER� PARTSUPP� NATION� REGION

WHERE P�PARTKEY � PS�PARTKEY

AND S�SUPPKEY � PS�SUPPKEY

AND P�SIZE � ��

AND P�TYPE LIKE �BRASS�

AND S�NATIONKEY � N�NATIONKEY

AND N�REGIONKEY � R�REGIONKEY

AND R�NAME � �EUROPE�

In this experiment� each base relation resides on a separate data source� Selects
are performed at the data sources and the query execution site receives only the
selected tuples� Figure �� shows the query tree run at the query source site and
the resulting cardinalities of the input relations and joins�
We ran this query under various conditions of delays and network speed �net�

work speed of ���� �� and ��� Mbit�s
� Here� we illustrate only the cases where
initial delays are applied to the query� We delay one source per experiment and
reschedule the query using the RM policy� The response times of the query in
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the absence of delays are� ����� seconds with a ���Mbit�s network� ����� seconds
for �Mbit�s and ���� seconds for ���Mbit�s� Three delay values were tried� ����
���� and ���� of the execution time of the query in the non�delayed case� This
totals to �� experiments� plus � experiments with no delay� For each experiment�
both the scrambling and non�scrambling versions were executed� and the relative
performance improvement calculated� Several broad statements can be made about
the behavior of scrambling for this query�

In all experiments� scrambling either improved performance signi�cantly� or had
negligible �under �����
 eect� The maximum performance improvement was
������ for an initial delay on the R relation of ��� the time required for the
non�delayed query with a network speed of ��� Mbit�s using the MA policy� When
the delayed relation is PS� the scrambling performance improvement is less than
����� for all policies� Since PS is the last relation to be processed� all other work
has been performed and scrambling cannot overlap un�nished work with the delays
in PS� Generally� as would be expected� performance improvement declines as the
delay appears in relations later in the plan� Also� generally� performance improve�
ment declines as the network speed increases� Table � shows a typical experimental
result� We see that the performance improvement is above ��� for delays on all
relations except for the delay of PS� as noted above� This is typical for scrambling
in the initial delay environment� The general performance improvement is indicated
by the delay on R� and performance declines �slightly
 as the delay appears later
into the tree� until a sharp drop at the delay of the last relation� Finally� we also

Table �� Response Times �sec�� � Mbits�s� ��� initial delay ������ sec�

Delay No Scrambling Scrambling �

no delay �����
on R ����� ����� �����
on N ����� ����� �����
on S ����� ����� �����
on P ����� ����� �����
on PS ����� ����� ����
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Table �� Histogram of Observed Improvements
�RM Policy�

� Improvement Total

���� �
���� to ����� �
����� to ����� ��
����� to ����� ��
����� to ����� ��
� ����� �

categorized all �� experiments for the RM policy by the size of improvement� This
classi�cation is given in Table ��

����
� Discussion The experiments of this section showed that simple reactive
polices such as RM and RMJ are fairly robust� even when some of the relations and
intermediate results are scaled up by an order of magnitude� The main reason for
this robustness is that these policies constantly monitor the execution of delays and
enforce parallelism only when delays are experienced� As such� they are able to hide
the delays with useful work without incurring a high additional cost� Even when
base relations are big� as is the case for the non�uniform query tree� these policies
bring a substantial improvement� One reason that materializing large relations
does not hurt performance for these policies is that they suspend the rescheduled
operations when delays are short so that extra work is not performed in the absence
of delays� The overhead of materializations becomes signi�cant only if most or all
of the relations can be materialized and this can only happen when the delay is
large� For the same reason� the joins materialized by RMJ do not typically hurt
performance�

Another case that we studied �but do not present here
 is for Cartesian products
and joins whose results are signi�cantly larger than the sum of their inputs� In such
a case it conceivable that materializing such a result could hurt performance� but
we did not see dramatic dierences in our studies �for the reasons outlined above
�
Furthermore� query optimizers typically try to avoid such costly operations� making
the occurrence of these cases less likely� Interestingly� it is fairly easy to protect
query scrambling against such pathological cases� For example� we extended the
policies to materialize only joins having a small ratio between the size of their result
and the size of their input� This policy was able to avoid problems in the few cases
where they arose�

Finally� at the beginning of this article we mentioned networks with slow delivery�
In our experimental framework� a worst�case example of a source with slow delivery
would deliver a single tuple for every timeout�value�� delay� and thus �possibly

invoke scrambling for each tuple delivered from the source� However� we see that the
MA policy� because it ignores the subsequent time�outs of the tuples� will perform
very well in this case�
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� Related Work

As stated in the introduction� techniques that try to adapt a query to a changing
environment broadly fall in the proactive and reactive categories� Proactive tech�
niques attempt to predict the possible states of the system that may arise at query
run�time� and construct alternatives that can be used based on the actual observed
state at the time a query is scheduled to execute� The Volcano ���� ��	 system
compiles choose�plan operators into the query tree at optimization time� These op�
erators are bound to a particular query execution plan before the query is executed�
HERMES ��	 records a history of the costs of remote accesses� and uses the history
to better estimate the costs of future accesses� Mariposa ���	 builds query plans
after having negotiated a price�performance trade�o with data providers� All of
these approaches settle on a query execution plan at query start�up time� and then
stick to that plan for the duration of the query execution�

In contrast to proactive techniques� reactive approaches monitor the progress of
queries during their execution and modify the execution plan on the �y� Previously
proposed reactive techniques have generally been aimed at adjusting for inaccurate
optimizer estimates of intermediate result sizes� rather than dealing with unpre�
dictable delays� as is the focus of our work�

Bodorik et al� ��	 proposed a reactive technique in which the execution of a dis�
tributed query proceeds through three phases� �i
 a monitoring phase observing the
progress of the execution of the query� �ii
 a decision making phase during which
a new strategy for executing the query is computed� and �iii
 a corrective phase in
which the current execution is aborted and a new execution is initiated� A similar
approach is used in Rdb�VMS ��	�

Both InterViso ���	 and MOOD ���	 are heterogeneous distributed databases that
perform query optimization while the query is executing� Heterogeneous distributed
databases divide a query into a collection of subqueries and a composition query�
There is one subquery for each remote source and a composition query than com�
bines the results of the subqueries� These systems use a reactive technique that
interleaves the execution of subqueries with the execution of the composition query
by monitoring the arrival of the answer to subqueries and dynamically executing
the composition query�

A technique similar in spirit to scrambling rescheduling is used to improve the
access time to tertiary storage in ���	� This work divides queries into parts that
can be executed independently in arbitrary order� The order in which the parts are
executed is dynamically chosen depending on the data each part needs to fetch� the
state of the disk cache and the state of the the tertiary memory �i�e�� the platter
currently loaded
� The scheduler�s objective is to maximize the overall system
throughput�

As stated in Section �� the work described here builds on our initial de�nition of
Query Scrambling ��	� Additional experimental results are also available in ��	�
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�� Conclusions

Query scrambling is a reactive technique for coping with unpredictable delays for
wide�area remote data access� Query scrambling� in its most general sense� monitors
query execution and reacts to delays by on�the��y rescheduling query operators and
possibly synthesizing new operators to run� This article� we focused on the tradeos
that arise for the rescheduling portion of the query scrambling technique�

We �rst described the performance problems that arise from the iterator model�
i�e�� when executing a static query plan in the presence of unexpected delays� We
then discussed alternatives for rescheduling and the tradeos among them� In
particular� we focused on the way that memory management issues in�uence the
feasibility of dierent rescheduling options� In general� memory management issues
lead to rescheduling techniques that use minimal amounts of memory� Such tech�
niques allow operators to be run �out�of�turn� by materializing their results to the
local disk of the query execution site�

We studied two reactive policies� RM � which initiates the materialization of data
from all remote sources when a delay is detected during normal query processing�
and RMJ � which works similarly to RM � but in addition� has the ability to resched�
ule �and materialize
 individual join operators� one�at�a�time� RMJ reserves more
memory for rescheduling than RM but it has a greater opportunity to perform
useful work when delays arise� The memory requirements for RMJ are much less
than for a more general policy that would allow entire subtrees to be rescheduled at
once� More importantly� RMJ avoids the potential problems that a more general
policy would encounter if the rescheduled operations themselves became delayed�

The two reactive policies were compared to two static ones� ITR and MA� ITR
is an iterator�based execution policy� while MA augments such a policy by opening
scans on all remote sources in parallel� MA was used to investigate the impact of
parallelism outside of a reactive policy� The polices were compared using a uniform
and a non�uniform query tree� In addition� results using a simpli�ed TPC�D query
were also presented� The experiments were run using three network settings� one
where the network was the dominant cost� one where the network and local disk
were balanced� and one where the system was disk�bound at the query execution
site� The slow setting is of the same order of what many current wide�area environ�
ments experience �even if the actual wires are somewhat faster
� The balanced and
fast networks show how the policies will change as deployed network technology
continues to improve�

The performance studies showed that in the absence of delay� parallel material�
izations had little impact on performance for slow networks and were detrimental
for fast networks� When delays were present� however� such parallelism provided
substantial bene�ts� in a situation where all data sources are subject to delays� the
performance improvement due to parallel materializations is a factor of the num�
ber of sites involved in the query� With the slow network� parallel materializations
where seen to be always bene�cial� and the reactive techniques were hurt slightly
by their delay in initiating and resuming materializations� With the faster network�
and less delay� however� the blind use of materializations as used by MA was seen
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to signi�cantly hurt performance� while the reactive approaches were able to suc�
cessfully hide delay in many cases� In terms of the reactive approaches� they were
seen to have similar performance in most cases� but the ability to execute joins was
seen to bene�t RMJ in certain cases with long initial delays� Finally� using a query
based on Q� of TPC�D� we observed that the RM policy was eective at hiding
delay across a range of delay scenarios�
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Notes

�� Note that this blocking phenomenon arises even if operators are ones that support intra	
operator parallelism such the exchange operator of Volcano �����

�� This notion of a materialization operator is not related to the operator for path expressions
described in ����

�� In general� if n remote sources are subject to signi
cant� independent delays� then by access	
ing those sources in parallel� scrambling has the potential to improve performance �over not
scrambling� by as much as n times�

�� Thus� a query optimizer for a run	time system that supports scrambling may favor query
execution plans where historically unreliable remote sources appear early in the plan�

�� Results for bandwidths lower than � Mbits�sec are not shown here� The response	time in this
range is nearly totally dependent on the network speed� and thus� it increases proportionally
with the slowdown of the network�

�� Once all data has been downloaded by MA� there is a relatively small amount of additional
work that must be performed at the query site in order to complete the query� The cost of
this work is not impacted by the network bottleneck�

�� In those cases where random delays are used we ran each experiment �� times and then averaged
the results to get the 
nal results presented here�

�� Although we measured slowdowns for delay probabilities as high as ���� we only show prob	
abilities up to ���� here� as lines remain linear beyond this point�

�� The results for the balanced network are similar� so are not shown here�
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