
Improving Responsiveness for Wide�Area Data Access�

Laurent Amsaleg Philippe Bonnet Michael J� Franklin
INRIA Bull University of Maryland

Anthony Tomasic Tolga Urhan
INRIA University of Maryland

Abstract

In a wide�area environment� the time required to obtain data from remote sources can vary

unpredictably due to network congestion� link failure or other problems� Traditional techniques

for query optimization and query execution do not cope well with such unpredictability� The

static nature of those techniques prevents them from adapting to remote access delays that arise

at runtime� In this paper we describe two separate� but related techniques aimed at tackling this

problem� The �rst technique� called Query Scrambling� hides relatively short� intermittent delays

by dynamically adjusting query execution plans on�the��y� The second technique addresses the

longer�term unavailability of data sources by allowing the return of partial query answers when

some of the data needed to fully answer a query are missing�

� Introduction

The continued dramatic growth in global interconnectivity via the Internet has made around�the�clock�
on�demand access to widely�distributed data a common expectation for many computer users� Ad�
vances in resource discovery� heterogeneous data management� and semi�structured data management
are providing semantic tools to enable the access and correlation of data from diverse� widely�distributed
sources� A limiting factor of such work however� is the di�culty of providing responsive data access to
users� due to the highly varying response�time and availability characteristics of remote data sources in
a wide�area environment� Data access over wide�area networks involves a large number of data sources�
intermediate sites� and communications links� all of which are vulnerable to congestion and failures�
Such problems can introduce signi�cant and unpredictable delays in the access of information from
remote sources�

Current distributed query processing approaches perform poorly in the wide�area environment�
They permit unexpected delays to directly increase the query response time� allowing query execution

Copyright ���� IEEE� Personal use of this material is permitted� However� permission to reprint�republish this ma�
terial for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists� or to reuse any copyrighted component of this work in other works must be obtained from the IEEE�
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�This work was partially supported by the NSF under Grant IRI���������� by Bellcore� and by an IBM Shared
University Research award� Laurent Amsaleg did this work while he was at the University of Maryland and was supported
in part by an INRIA Fellowship� Philippe Bonnet and Anthony Tomasic performed this work in the context of Dyade�
an R�D joint venture between Bull and INRIA�

�



to be blocked for an arbitrarily long time when needed data fail to arrive from remote sites� The
problem with current approaches is that they generate query execution plans statically based on a set
of assumptions about the costs of performing various operations and the costs of obtaining data� Static
approaches do not cope well with large �uctuations in these costs at run�time� Unfortunately � the
apparent randomness of such delays makes planning for them during query optimization impossible�

We have developed two di�erent but complementary approaches to address the issue of unpre�
dictable delays in the wide�area environment� In �AFTU	
� we introduced the concept of Query

Scrambling � which reacts to delays by modifying the query execution plan on�the��y so that progress
can be made on other parts of the plan� In other words� rather than simply stalling for delayed data
to arrive� as would happen in a typical query processing scheme� Query Scrambling attempts to hide

unexpected delays by performing other useful work�
Query Scrambling assumes that all the data required by a query will eventually be received so that a

complete result can be returned to the user� As such� once Query Scrambling has performed all possible
work� the system waits for the missing data and will return the full result only once this data has been
received� If the delays are too long� a user may not �nd it tolerable to wait for a complete answer�
An approach to coping with longer�term delays is described in �BT	��� This latter approach allows the
system to time�out on a data source or sources and return a partial answer � which encapsulates data
obtained from available sources along with a description of the work remaining to be done�

The approaches we describe di�er signi�cantly from previous dynamic query optimization tech�
niques� One popular approach to dynamic query optimization has been to delay binding of certain
execution choices until query execution time 
e�g�� �CG	�� ACPS	
� SAL�	
� LP	���� In these ap�
proaches the �nal query plan is produced immediately prior to execution and then remains �xed for
the duration of the query� Such approaches� therefore� cannot adapt to unexpected problems that
arise during the execution� Approaches that do change the query plan during execution� have been
proposed in �TTC�	�� Ant	�� ONK�	
�� to account for inaccurate estimates of selectivities� cardinal�
ities� or costs� etc� made during query optimization� and in �Sar	�� to adjust to the location of data
in a deep�store memory hierarchy� In contrast� our work is focused on adjusting to the time�varying
performance of loosely�coupled data sources in a wide�area network� and as a result� we have developed
quite di�erent solutions�

The reminder of this paper is organized as follows� Section � describes the query execution model
assumed in this work� and discusses the inadequacy of current query processing techniques in more
detail� Section � presents an overview of Query Scrambling� Section � presents the Partial Answer
technique� Finally� Section � presents conclusions and future work�

� Considerations for Wide�Area Query Processing

��� The Query Execution Model

We assume a query execution environment consisting of query source sites and a number of remote
data sources� The processing work for a given query is split between the query source and the remote
sites�� Query plans are produced by a query optimizer� based on its cost model� statistics� and ob�
jective functions� This arrangement is typical of mediated database systems that integrate data from
distributed� heterogeneous sources�

An example query execution plan for such an environment is shown in Figure �� The query involves
�ve di�erent base relations stored at four di�erent sites� In the example� relations A and B reside at

�Note that as currently speci	ed� both the Query Scrambling and Partial Answer approaches treat remote sources as
black boxes� regardless of whether they provide raw data or the answers to sub�queries 
e�g�� �TRV��
�� Therefore� both
approaches operate solely at the query source site�

�



separate remote sites 
sites � and � respectively�� relation C resides locally at the query source 
i�e��
site ��� and relations D and E are co�located at site �� In the plan shown in Figure �� site � joins
selected data received from sites � and �� and joins C with the result of 
D�E� that has been computed
remotely at site �� Site � also computes the �nal result delivered to the user�

A

C

 

Site 4

Site 2

 

 

D E

 

Site 3

B

Join

Select

Communication Link
Site 1 Query Result

Figure �� Example of a Complex Query Tree

The actual schedule of the operators that comprise the query shown in Figure � 
joins� selects�
etc�� depends on the execution model used 
e�g�� iterators� activation records� and on whether or not
parallelism is supported� For simplicity� assume an iterator�based scheduler �Gra	��� where the �rst
data access would be to request a tuple of Relation A 
from site ��� If there is a delay in accessing that
site 
say� because the site is temporarily down�� then the scan of A is blocked until the site recovers�
Using a static� iterator�based scheduler� the entire query execution would remain blocked until site �
responded 
i�e�� pending the recovery of the remote site��

��� Inadequacy of Static Scheduling

The previous example demonstrated of the kind of problems that can arise due to unexpected delays
when a traditional� iterator�based scheduling approach is used� A key point however� is that similar
problems can arise with any static scheduling approach� In general� the producer�consumer relationships
that exist between the operators of a query determine the impact of delays on query execution� When
an operator that is accessing remote data from a particular site encounters a delay� that operator stalls �
The operator itself stops producing data and thus� stalling propagates up the query plan through the
producer�consumer pairs� Furthermore� in some cases the problem can even propagate to other parts
of the plan� For example� when certain binary operations 
e�g�� merge joins� become blocked because
of a delay experienced by one of their children� they stop consuming the tuples produced by their other
child� which can eventually cause that child to stop producing tuples�

Parallelism can� to a limited extent� ameliorate some of the problems caused by remote access
delays� In general� parallelism allows concurrent execution of operations at the expense of a more
complex management of resources� A query optimizer can consider three types of parallelism� intra�

operator� pipeline� and bushy tree� The optimizer chooses the appropriate type and degree of parallelism
to exploit� but not overburden the resources of the system� For example� parallelism is limited by

among other things� the amount of memory expected to be available when the plan executes�

Like most other optimization decisions� parallelism is typically planned for in a static fashion� As a
result� delayed data will impact parallel plans as well as sequential ones� For example� using pipelined
parallelism� a blocked operator may eventually block the entire pipe� for intra�operator parallelism�
the siblings of a blocked thread of a parallel operator may continue processing� but the operator itself
will not be able to complete� for inter�operator parallelism� blocked operators will continue to consume
resources 
e�g�� memory� that will limit the amount of other work the system can perform�

�



In summary� static scheduling limits the extent to which the DBMS can cope with delays that
arise at run�time� regardless of whether or not parallelism is pre�compiled into a plan� Adapting to
unexpected delays requires more �exible approaches� such as those we describe in the following sections�

� Query Scrambling

Using Query Scrambling �AFTU	
� AFT	��� a query is initially executed according to the original
plan and associated schedule generated by the query optimizer� If� however� a signi�cant performance
problem arises during the execution� then Scrambling is invoked to modify the execution on�the��y� so
that progress can be made on other parts of the plan� In other words� rather than simply stalling for
delayed data� Query Scrambling attempts to hide unexpected delays by performing other useful work�

Query Scrambling reacts to delays in receiving data from remote data sources in two ways�

� Rescheduling � the execution plan of a query can be dynamically rescheduled when a delay is
detected� That is� operators that already exist in the plan can be scheduled in response to delays
detected with other operators� In this case� the basic shape of the query plan remains unchanged�

� Operator Synthesis � new operators 
e�g�� a join between two relations that were not directly
joined in the original plan� can be created when there are no other operators that can execute� In
this case� the shape of the query plan can be signi�cantly modi�ed through the addition� removal
and�or re�arrangement of query operators�

Query Scrambling works by repeatedly 
if necessary� applying these two techniques to a query plan�
For example� assume that the query shown in Figure � stalls while retrieving tuples of A� Instead of
waiting for the remote site to recover� Query Scrambling could perform rescheduling� and retrieve the
tuples of B while A is unavailable� Note that these tuples would need to be stored temporarily at
the query site� If� after obtaining B� A is still unavailable� then rescheduling could be invoked again�
for example� to trigger the execution of 
D�E� at site �� and to join this result with C� If at this
point� A is still unavailable� then Operator Synthesis can be invoked to create a new join between
B and 
D�E��C� Note that in general� Operator Synthesis may result in new operators� which may
later be run by a subsequent Rescheduling� Also note that operators initiated by Query Scrambling
may as well experience delays� which may cause Scrambling to be invoked further�

��� Implementing Scrambling

To implement Query Scrambling� a scrambling coordinator must be added to the query execution
engine� This coordinator passively supervises the execution of the query and watches for remote
access delays� When a delay is detected� the coordinator reacts by performing Scrambling actions that
it deems to be advantageous based on the current state of the system� In �AFTU	
� we described
a simple� heuristic�based algorithm for choosing scrambling actions� In our current work� we have
developed cost�based scrambling policies� that use a query optimizer to help direct Scrambling�

The features that must be incorporated into a query processing system in order to support Query
Scrambling include the following�

Detecting Delayed Sources� The coordinator has to detect when delays arise during remote data
access� A timer associated with each operator that directly accesses data from a remote site can
be used for this purpose�

Detecting Resumed Sources� The coordinator also has to detect the arrival of data from a remote
source that was previously delayed�

�



Patching the Query Tree� To implement Scrambling Rescheduling� the coordinator needs to intro�
duce a materialization operator between the rescheduled operator and its original parent� A
materialization is a unary operator� which when opened� obtains the entire input from its child
and places it in storage 
typically disk�� This operator enables a producer to run independently

of its original consumer� at the expense of using local resources�

Thread Management� Scrambling also requires thread management in order to allow the scheduling
of existing and newly synthesized operators to be changed dynamically�

Scrambling�enabled Optimizer� A cost�based optimizer is needed in order to make intelligent
scrambling decisions� While a traditional optimizer can be used� a better solution is to develop
a lightweight optimizer that would take an existing plan and quickly generate an appropriate
modi�cation to that plan in response to recently discovered delayed or resumed sources�

��� Making Intelligent Scrambling Decisions

Given the above features� it is possible to develop of a number of di�erent Scrambling policies� Each
policy can be designed to provide the best reaction to a given delay scenario and may di�er� for example�
by the degree of parallelism introduced into the execution of the query or the aggressiveness with which
scrambling changes the existing query plan� In general� two basic questions must be addressed by
the scrambling policy� �� which and how many operators should be rescheduled and�or synthesized
when a delay is detected� and �� what should happen to the rescheduled operators when delayed data
eventually arrives� The answers to these questions depend on a number of tradeo�s� which di�er for
the Rescheduling and Operator Synthesis phases of Query Scrambling�

����� Trade�o�s for Rescheduling

One important question that arises during Rescheduling is that of how many operators to reschedule
concurrently� The tradeo� here is one between the bene�ts of overlapping multiple delays and the cost
of the materializations used to achieve this overlapping� Initiating more operators allows more remote
sources to be accessed in parallel� and hence� a greater potential for overlapping the delays encountered
from those remote sources� Not surprisingly� however� more materializations incur more overhead due
to I�O at the query source� As a result� materializing remote data is bene�cial only when the amount of
hidden delay is greater than the cost of the additional I�Os� Materializations also have the potential to
randomize disk I�O 
particularly if multiple relations are materialized in parallel�� which can reduce the
e�ciency of algorithms that could otherwise exploit 
faster� sequential I�Os� Two factors are relevant
here� the speed of the network compared to the speed of the local disk
s� and the way data is obtained
through the network 
i�e�� page�at�a�time versus streaming� �AFT	���

A second set of tradeo�s revolve around the question of whether to Reschedule individual operators

in a bottom�up fashion� or entire subtrees� Subtrees can be rescheduled 
i�e�� executed out of order�
given su�cient available memory� Such rescheduling enables the entire subtree to be executed at the
cost of only a single extra materialization� thereby taking advantage of any pipelining that is possible
within the subtree� This is especially interesting if the data produced by the subtree is much smaller
than the amount of base data used at the leaves of the subtree� When memory is limited however�
the scheduling of whole subtrees becomes di�cult to manage� For example� �nding enough memory to
allow the rescheduling of a subtree might require swapping out the memory frames occupied by stalled
operators� Thrashing could then arise due to operators that repeatedly stall and un�stall� In contrast�
materializing base relations to the local disk requires only minimal memory� but of course� requires
additional I�O�

�



Finally� choosing which speci�c operator
s� to reschedule is also fundamental� In �AFTU	
� the
operator to reschedule was elected depending on the original order of the operators in the query before
any rescheduling� As illustrated in �AFTU	
�� this simplistic policy has several severe performance
drawbacks� As with Operator Synthesis� we have developed cost�based approaches to this problem
that avoid the pitfalls of the simpler heuristic policies� The decision in this regard is based on the ratio
of useful work performed by the operator 
i�e�� how much closer it gets us to the �nal answer� to the
amount of extra work rescheduling it will cause�

����� Trade�o�s for Operator Synthesis

Creating new operations also raises a number of interesting trade�o�s� Because the operations that
may be created were not originally chosen by the optimizer they may entail a signi�cant amount of
additional work� If the synthesized operations are too expensive Query Scrambling could result in a
net degradation in performance� Operation Synthesis� therefore� has the potential to negate or even
reverse the bene�ts of Scrambling if care is not taken� In �AFTU	
� we used the simple heuristic of
avoiding Cartesian products to prevent the creation of overly expensive joins� This approach has the
advantage of avoiding the need to do cost�based optimization� but its performance was shown to be
highly sensitive to the cardinalities of the new operators created�

More recently� we have developed and studied several di�erent ways of to use a query optimizer
in Operator Synthesis process� One policy� called Pair� is similar to the original heuristic in that it
considers creating only one new operator at a time� but di�ers in that it uses the cost�model of the
optimizer to choose which operator is likely to be most bene�cial� A second policy� called Exclude

Delay� uses the cost�based optimizer to generate execution plans for each of the connected components
of the query join graph that remain when the delayed data source is removed� A third policy� called
Include Delay� uses a query optimizer that is targeted to minimize response time rather than cost�
In this approach� the optimizer is told that delayed relations will not arrive until far in the future�
Because the optimizer tries to optimize response time� it tends to generate plans where the delayed
relations are used as late as possible� This has the e�ect of causing other useful work to be performed
�rst� Our fourth policy� called Estimated Delay works similarly to Include Delay but rather than
assuming that the delay is e�ectively in�nite� it initially generates plans assuming that delays will be
relatively short� and successively increases its estimate if the delayed relations fail to arrive during the
previous estimated delay period� This latter approach has the e�ect of making increasingly aggressive
Scrambling decisions as delays increase� Our preliminary results indicate that while none of these
policies is perfect� Estimated Delay provides the most robust performance over a range of query plans
and delay scenarios�

����� When to Stop Scrambling

A remaining question is when to stop scrambled operations once they have been initiated� One approach
is to suspend all scrambling operations as soon as a blocked operator becomes unblocked� and to resume
normal processing� Since Scrambling is a reaction to an unanticipated event� it intuitively makes sense
to resume the original plan as soon as possible� This is because Scrambling has the potential to add costs
to the query execution and stopping it can help avoid such costs� Returning to the original schedule�
however� raises other questions� First� there are costs associated with rescheduling operators� and as
stated above� thrashing could be induced in the presence of repeated� intermittent delays� Secondly�
since Scrambling performed some work while a delay was experienced� there is the question of what
to do with the results of that work� Using the results in further computations may or may not be
bene�cial� For example� reading a materialized relation may be more costly than requesting it again






through the network if the network behaves well� In contrast� using intermediate results computed by
Scrambling might save time� The investigation of such trade�o�s is one aspect of our ongoing research�

� Partial Answers for Unavailable Data Sources

��� Overview

Because Scrambling uses the tactic of performing other useful parts of a query when a delay is detected�
the amount of delay that it can successfully hide is limited by the amount of work that is contained in
the original query� In a wide�area environment� however� data might be delayed for a very long period
of time� For an interactive system� if a delay lasts longer than a user is willing to wait� then in e�ect�
the delayed data is unavailable� Because Query Scrambling returns only complete answers to users� it
does not solve the problem of unavailable data�

�BT	�� proposes an approach where in the presence of unavailable data� a partial answer is returned
to the user� The motivation behind this approach is that even when one or more needed sites are
unavailable� some useful work can be done with the data from the sites that are available� A partial
answer is a representation of this work� and of the work that remains to be done in order to obtain the
complete answer�

The uses of partial answers are twofold� First� a partial answer contains a query that can be
submitted to the system in order to later obtain the complete answer e�ciently� Second� a partial
answer contains data from the available sites that can be extracted using secondary queries that we
call parachute queries� Associated with each original query is a set of parachute queries that can be
asked if the complete answer cannot be produced� The answer to a parachute query is a set of tuples�
it is not necessarily a subset or a superset of the complete answer�

��� Framework for Partial Answers

We now detail the framework we have de�ned for partial answers� We assume that sites have atomic
behavior� they are either available or unavailable� If a site starts producing an answer to a sub�query�
we assume it is available and it produces its result completely� If the delay in the arrival of the �rst
tuple is above a given limit� then we assume that the site is unavailable and produces no tuples� We
plan to relax this atomicity assumption in our future work�

To understand our approach� consider a query that involves several sites� such as the query of
Figure �� select � from 
A �� B� �� 
C �� 
D �� E��� If all sites are available� then the system returns a
complete answer� Suppose� however� that site B is unavailable� In this case a complete answer to this
query cannot be produced� The system proposed in �BT	�� would perform the following steps�

� Phase � � each available site is contacted� and all processing based on available data is performed�
The results that are obtained are materialized on the query source site� In our example� tuples of
A will be selected� the subquery will be evaluated by site �� the result returned and joined with
C� These results are materialized in temporary relations on site ��

� Phase � � queries representing the data obtained in Phase � are constructed� In our example�

Q� � select � from A where c�

Q� � select � from C �� 
D �� E� where c�

These queries can be evaluated without contacting the remote sources� They denote data mate�
rialized locally�

�



� Phase � � a query semantically equivalent to the original query is constructed using the queries
constructed in Phase � and the relations from the unavailable sites� In our example�

Qor � select � from 
Q� �� B� �� Q� where c�

When this processing is �nished� a partial answer is returned to the user� The partial answer is
a handle for the data obtained and materialized in Phase �� as well as for the queries constructed in
Phase � and Phase �� One way to use a partial answer is to submit the query Qor in order to obtain
the complete answer� Evaluating Qor requires contacting only the remote sites that were unavailable
when the original query was evaluated� In the example� Q� and Q� denote local data� only B is located
on a remote site� When Qor is submitted to the system� the query processor considers it in the same
way as a regular query� and it is optimized accordingly� If Qor is evaluated when the remote sites are
available� then a complete answer is returned� Under the assumption that no updates are performed
on the remote sites� this answer is the answer to the original query� If some of the sources that were
unavailable during the previous evaluations remain unavailable� then another partial answer is returned�
Possibly� successive partial answers are produced before the complete answer can be obtained�

Submitting Qor instead of resubmitting the original query has two advantages� First� a complete
answer can be produced even if all the sites are never simultaneously available� It su�ces that a site is
available during the evaluation of one of the successive partial answers to ensure that the data from this
site is used for the complete answer� Second� as Qor involves temporary relations that are materialized
locally� evaluating Qor is typically more e�cient than evaluating the original query�

An alternative way to use a partial answer is to extract data from it using parachute queries�
Parachute queries are associated with the original query� they may be asked in case the complete
answer to the original query cannot be produced� Consider a system where the relations patient and
surgeon are on di�erent sites and the query� 	list the names of all surgeons who have operated on patient

X
� In this scenario� some example parachute queries are� 	list the identi�ers of all the surgeries patient
X has undergone
� or 	list the names of all surgeons
� Using parachute queries� the user can still collect
useful information concerning patients or surgeons in case the complete answer to the original query
cannot be computed�

�BT	�� proposes an initial algorithm for the extraction of information using parachute queries�
When a parachute query is submitted� it is tested for containment against the queries generated in
Phase �� If the parachute query is contained in one of these queries then the system returns the
complete answer to the parachute query� otherwise it returns null� The set of parachute queries that
can be evaluated is limited in this scheme� however� because Phase � operates without knowledge of
the parachute queries that may be asked� To overcome this limitation� we envisage a system where the
parachute queries could be asked together with the original query� In such a system� parachute queries
are no longer used solely to extract materialized information� rather� they are alternative queries that
the system tries to evaluate if the complete answer to the original query cannot be produced� De�ning
such a system is part of our ongoing work�

� Conclusions

Accessing distributed data across wide�area networks poses signi�cant new problems for database query
processing� In a wide�area environment� the time required to obtain data from remote sources can vary
unpredictably due to network congestion� link failure or other problems� Traditional techniques for
query optimization and query execution do not cope well with such unpredictability� In this paper we
presented two di�erent but complementary techniques to address the problem of unpredictable delays
in remote data access� The �rst technique� called Query Scrambling� hides relatively short� intermittent

�



delays by dynamically adjusting query execution plans on�the��y� The second technique addresses the
longer�term unavailability of data sources by allowing the return of partial query answers when some
of the data needed to fully answer a query are missing�

This paper represents a current snapshot of our explorations into the development of �exible systems
that dynamically adapt to the changing properties of the run�time environment� In our ongoing work�
we are continuing to develop these ideas by improving our cost�based decision making� exploring the
tradeo�s we have outlined� and examining a wider array of delay scenarios� Furthermore� the approaches
presented in this paper may be useful for other types of problems that have been targeted by previous
approaches to dynamic query optimization� such as optimizer estimation errors and the lack of cost
information for remote data sources in heterogeneous environments� In the longer term� we plan to
look at other approaches to reactive query processing� such as choosing among similar data sources
that possibly vary in completeness� consistency� or �quality� in order to �nd useful trade�o�s between
responsiveness and accuracy� As distributed systems continue to grow in size� complexity� and general
unmanagability� such adaptive techniques will continue to become increasingly important for providing
users with responsive access to the data they need�

References

�ACPS��� S� Adali� K� Candan� Y� Papakonstantinou� and V� Subrahmanian� Query caching and optimization
in distributed mediator systems� In Proc� of the ACM SIGMOD Int� Conf�� Montreal� Canada� �����

�AFT��� L� Amsaleg� M� Franklin� and A� Tomasic� Dynamic query operator scheduling for wide�area remote
access� Tech� Report CS�TR�	
�� and UMIACS�TR������� Univ� of MD� College Park� July �����

�AFTU��� L� Amsaleg� M� Franklin� A� Tomasic� and T� Urhan� Scrambling query plans to cope with unexpected
delays� In Proc� of the Int� Conf� on Parallel and Distributed Information Systems �PDIS�� Miami
Beach� Florida� December �����

�Ant�	� G� Antoshenkov� Dynamic query optimization in Rdb
VMS� In Proc� of the Data Engineering Int�
Conf�� pages �	
����� Vienna� Austria� ���	�

�BT��� P� Bonnet and A� Tomasic� Partial answers for unavailable data sources� Technical Report RR�	����
INRIA� Rocquencourt� France� March �����

�CG��� R� Cole and G� Graefe� Optimization of dynamic query execution plans� In Proc� of the ACM
SIGMOD Int� Conf�� pages �������� Minneapolis� Minnesota� May �����

�Gra�	� G� Graefe� Query evaluation techniques for large databases� ACM Computing Surveys� �������	�����
June ���	�

�LP��� L� Liu and C� Pu� A dynamic query scheduling framework for distributed and evolving information
systems� In The IEEE Int� Conf� on Distributed Computing Systems �ICDCS����� Baltimore� �����

�ONK���� F� Ozcan� S� Nural� P� Koksal� C� Evrendilek� and A� Dogac� Dynamic query optimization on a
distributed object management platform� InConference on Information and Knowledge Management�
Baltimore� Maryland� November �����

�SAL���� M� Stonebraker� P� Aoki� W� Litwin� A� Pfe�er� A� Sah� J� Sidell� C� Staelin� and A� Yu� Mariposa�
A wide�area distributed database system� The VLDB Journal� ������
��	� January �����

�Sar��� S� Sarawagi� Query processing and caching in tertiary memory� In Proc� of the ��st Conference on
Very Large Databases� Zurich� �����

�TRV��� A� Tomasic� L� Raschid� and P� Valduriez� Scaling heterogeneous databases and the design of DISCO�
In The IEEE Int� Conf� on Distributed Computing Systems �ICDCS����� Hong Kong� �����

�TTC���� G� Thomas� G� Thompson� C� Chung� E� Barkmeyer� F� Carter� M� Templeton� S� Fox� and B� Hart�
man� Heterogeneous distributed database systems for product use� ACM Computing Surveys� ���	��
�����

	


