Improving Responsiveness for Wide-Area Data Access®

Laurent Amsaleg Philippe Bonnet Michael J. Franklin

INRIA Bull University of Maryland
Anthony Tomasic Tolga Urhan
INRIA University of Maryland
Abstract

In a wide-area environment, the time required to obtain data from remote sources can vary
unpredictably due to network congestion, link failure or other problems. Traditional techniques
for query optimization and query execution do not cope well with such unpredictability. The
static nature of those techniques prevents them from adapting to remote access delays that arise
at runtime. In this paper we describe two separate, but related techniques aimed at tackling this
problem. The first technique, called Query Scrambling, hides relatively short, intermittent delays
by dynamically adjusting query execution plans on-the-fly. The second technique addresses the
longer-term unavailability of data sources by allowing the return of partial query answers when
some of the data needed to fully answer a query are missing.

1 Introduction

The continued dramatic growth in global interconnectivity via the Internet has made around-the-clock,
on-demand access to widely-distributed data a common expectation for many computer users. Ad-
vances in resource discovery, heterogeneous data management, and semi-structured data management
are providing semantic tools to enable the access and correlation of data from diverse, widely-distributed
sources. A limiting factor of such work however, is the difficulty of providing responsive data access to
users, due to the highly varying response-time and availability characteristics of remote data sources in
a wide-area environment. Data access over wide-area networks involves a large number of data sources,
intermediate sites, and communications links, all of which are vulnerable to congestion and failures.
Such problems can introduce significant and unpredictable delays in the access of information from
remote sources.

Current distributed query processing approaches perform poorly in the wide-area environment.
They permit unexpected delays to directly increase the query response time, allowing query execution

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEFE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*This work was partially supported by the NSF under Grant IRI-94-09575, by Bellcore, and by an IBM Shared
University Research award. Laurent Amsaleg did this work while he was at the University of Maryland and was supported
in part by an INRIA Fellowship. Philippe Bonnet and Anthony Tomasic performed this work in the context of Dyade,
an R&D joint venture between Bull and INRIA.



to be blocked for an arbitrarily long time when needed data fail to arrive from remote sites. The
problem with current approaches is that they generate query execution plans statically based on a set
of assumptions about the costs of performing various operations and the costs of obtaining data. Static
approaches do not cope well with large fluctuations in these costs at run-time. Unfortunately , the
apparent randomness of such delays makes planning for them during query optimization impossible.

We have developed two different but complementary approaches to address the issue of unpre-
dictable delays in the wide-area environment. In [AFTU96] we introduced the concept of Query
Scrambling, which reacts to delays by modifying the query execution plan on-the-fly so that progress
can be made on other parts of the plan. In other words, rather than simply stalling for delayed data
to arrive, as would happen in a typical query processing scheme, Query Scrambling attempts to hide
unexpected delays by performing other useful work.

Query Scrambling assumes that all the data required by a query will eventually be received so that a
complete result can be returned to the user. As such, once Query Scrambling has performed all possible
work, the system waits for the missing data and will return the full result only once this data has been
received. If the delays are too long, a user may not find it tolerable to wait for a complete answer.
An approach to coping with longer-term delays is described in [BT97]. This latter approach allows the
system to time-out on a data source or sources and return a partial answer, which encapsulates data
obtained from available sources along with a description of the work remaining to be done.

The approaches we describe differ significantly from previous dynamic query optimization tech-
niques. One popular approach to dynamic query optimization has been to delay binding of certain
execution choices until query execution time (e.g., [CG94, ACPS96, SAL196, LP97]). In these ap-
proaches the final query plan is produced immediately prior to execution and then remains fixed for
the duration of the query. Such approaches, therefore, cannot adapt to unexpected problems that
arise during the execution. Approaches that do change the query plan during execution, have been
proposed in [TTCT90, Ant93, ONKT96], to account for inaccurate estimates of selectivities, cardinal-
ities, or costs, etc. made during query optimization, and in [Sar95] to adjust to the location of data
in a deep-store memory hierarchy. In contrast, our work is focused on adjusting to the time-varying
performance of loosely-coupled data sources in a wide-area network, and as a result, we have developed
quite different solutions.

The reminder of this paper is organized as follows. Section 2 describes the query execution model
assumed in this work, and discusses the inadequacy of current query processing techniques in more
detail. Section 3 presents an overview of Query Scrambling. Section 4 presents the Partial Answer
technique. Finally, Section 5 presents conclusions and future work.

2 Considerations for Wide-Area Query Processing

2.1 The Query Execution Model

We assume a query execution environment consisting of query source sites and a number of remote
data sources. The processing work for a given query is split between the query source and the remote
sites.! Query plans are produced by a query optimizer, based on its cost model, statistics, and ob-
jective functions. This arrangement is typical of mediated database systems that integrate data from
distributed, heterogeneous sources.

An example query execution plan for such an environment is shown in Figure 1. The query involves
five different base relations stored at four different sites. In the example, relations A and B reside at

!Note that as currently specified, both the Query Scrambling and Partial Answer approaches treat remote sources as
black boxes, regardless of whether they provide raw data or the answers to sub-queries (e.g., [TRV96]). Therefore, both
approaches operate solely at the query source site.



separate remote sites (sites 2 and 3 respectively), relation C resides locally at the query source (i.e.,
site 1), and relations D and E are co-located at site 4. In the plan shown in Figure 1, site 1 joins
selected data received from sites 2 and 3, and joins C with the result of (DXE) that has been computed
remotely at site 4. Site 1 also computes the final result delivered to the user.

Figure 1: Example of a Complex Query Tree

The actual schedule of the operators that comprise the query shown in Figure 1 (joins, selects,
etc.) depends on the execution model used (e.g., iterators, activation records) and on whether or not
parallelism is supported. For simplicity, assume an iterator-based scheduler [Gra93], where the first
data access would be to request a tuple of Relation A (from site 2). If there is a delay in accessing that
site (say, because the site is temporarily down), then the scan of A is blocked until the site recovers.
Using a static, iterator-based scheduler, the entire query execution would remain blocked until site 2
responded (i.e., pending the recovery of the remote site).

2.2 Inadequacy of Static Scheduling

The previous example demonstrated of the kind of problems that can arise due to unexpected delays
when a traditional, iterator-based scheduling approach is used. A key point however, is that similar
problems can arise with any static scheduling approach. In general, the producer-consumer relationships
that exist between the operators of a query determine the impact of delays on query execution. When
an operator that is accessing remote data from a particular site encounters a delay, that operator stalls.
The operator itself stops producing data and thus, stalling propagates up the query plan through the
producer-consumer pairs. Furthermore, in some cases the problem can even propagate to other parts
of the plan. For example, when certain binary operations (e.g., merge joins) become blocked because
of a delay experienced by one of their children, they stop consuming the tuples produced by their other
child, which can eventually cause that child to stop producing tuples.

Parallelism can, to a limited extent, ameliorate some of the problems caused by remote access
delays. In general, parallelism allows concurrent execution of operations at the expense of a more
complex management of resources. A query optimizer can consider three types of parallelism: intra-
operator, pipeline, and bushy tree. The optimizer chooses the appropriate type and degree of parallelism
to exploit, but not overburden the resources of the system. For example, parallelism is limited by
(among other things) the amount of memory expected to be available when the plan executes.

Like most other optimization decisions, parallelism is typically planned for in a static fashion. As a
result, delayed data will impact parallel plans as well as sequential ones. For example, using pipelined
parallelism, a blocked operator may eventually block the entire pipe; for intra-operator parallelism,
the siblings of a blocked thread of a parallel operator may continue processing, but the operator itself
will not be able to complete; for inter-operator parallelism, blocked operators will continue to consume
resources (e.g., memory) that will limit the amount of other work the system can perform.



In summary, static scheduling limits the extent to which the DBMS can cope with delays that
arise at run-time, regardless of whether or not parallelism is pre-compiled into a plan. Adapting to
unexpected delays requires more flexible approaches, such as those we describe in the following sections.

3 Query Scrambling

Using Query Scrambling [AFTU96, AFT97], a query is initially executed according to the original

plan and associated schedule generated by the query optimizer. If, however, a significant performance

problem arises during the execution, then Scrambling is invoked to modify the execution on-the-fly, so

that progress can be made on other parts of the plan. In other words, rather than simply stalling for

delayed data, Query Scrambling attempts to hide unexpected delays by performing other useful work.
Query Scrambling reacts to delays in receiving data from remote data sources in two ways:

e Rescheduling - the execution plan of a query can be dynamically rescheduled when a delay is
detected. That is, operators that already exist in the plan can be scheduled in response to delays
detected with other operators. In this case, the basic shape of the query plan remains unchanged.

o Operator Synthesis - new operators (e.g., a join between two relations that were not directly
joined in the original plan) can be created when there are no other operators that can execute. In
this case, the shape of the query plan can be significantly modified through the addition, removal
and/or re-arrangement of query operators.

Query Scrambling works by repeatedly (if necessary) applying these two techniques to a query plan.
For example, assume that the query shown in Figure 1 stalls while retrieving tuples of A. Instead of
waiting for the remote site to recover, Query Scrambling could perform rescheduling, and retrieve the
tuples of B while A is unavailable. Note that these tuples would need to be stored temporarily at
the query site. If, after obtaining B, A is still unavailable, then rescheduling could be invoked again,
for example, to trigger the execution of (DXE) at site 4, and to join this result with C. If at this
point, A is still unavailable, then Operator Synthesis can be invoked to create a new join between
B and (DXE)XC. Note that in general, Operator Synthesis may result in new operators, which may
later be run by a subsequent Rescheduling. Also note that operators initiated by Query Scrambling
may as well experience delays, which may cause Scrambling to be invoked further.

3.1 Implementing Scrambling

To implement Query Scrambling, a scrambling coordinator must be added to the query execution
engine. This coordinator passively supervises the execution of the query and watches for remote
access delays. When a delay is detected, the coordinator reacts by performing Scrambling actions that
it deems to be advantageous based on the current state of the system. In [AFTU96] we described
a simple, heuristic-based algorithm for choosing scrambling actions. In our current work, we have
developed cost-based scrambling policies, that use a query optimizer to help direct Scrambling.

The features that must be incorporated into a query processing system in order to support Query
Scrambling include the following;:

Detecting Delayed Sources. The coordinator has to detect when delays arise during remote data
access. A timer associated with each operator that directly accesses data from a remote site can
be used for this purpose.

Detecting Resumed Sources. The coordinator also has to detect the arrival of data from a remote
source that was previously delayed.



Patching the Query Tree. To implement Scrambling Rescheduling, the coordinator needs to intro-
duce a materialization operator between the rescheduled operator and its original parent. A
materialization is a unary operator, which when opened, obtains the entire input from its child
and places it in storage (typically disk). This operator enables a producer to run independently
of its original consumer, at the expense of using local resources.

Thread Management. Scrambling also requires thread management in order to allow the scheduling
of existing and newly synthesized operators to be changed dynamically.

Scrambling-enabled Optimizer. A cost-based optimizer is needed in order to make intelligent
scrambling decisions. While a traditional optimizer can be used, a better solution is to develop
a lightweight optimizer that would take an existing plan and quickly generate an appropriate
modification to that plan in response to recently discovered delayed or resumed sources.

3.2 Making Intelligent Scrambling Decisions

Given the above features, it is possible to develop of a number of different Scrambling policies. Fach
policy can be designed to provide the best reaction to a given delay scenario and may differ, for example,
by the degree of parallelism introduced into the execution of the query or the aggressiveness with which
scrambling changes the existing query plan. In general, two basic questions must be addressed by
the scrambling policy: 1) which and how many operators should be rescheduled and/or synthesized
when a delay is detected, and 2) what should happen to the rescheduled operators when delayed data
eventually arrives. The answers to these questions depend on a number of tradeoffs, which differ for
the Rescheduling and Operator Synthesis phases of Query Scrambling,.

3.2.1 Trade-offs for Rescheduling

One important question that arises during Rescheduling is that of how many operators to reschedule
concurrently. The tradeoff here is one between the benefits of overlapping multiple delays and the cost
of the materializations used to achieve this overlapping. Initiating more operators allows more remote
sources to be accessed in parallel, and hence, a greater potential for overlapping the delays encountered
from those remote sources. Not surprisingly, however, more materializations incur more overhead due
to I/O at the query source. As a result, materializing remote data is beneficial only when the amount of
hidden delay is greater than the cost of the additional I/Os. Materializations also have the potential to
randomize disk I/O (particularly if multiple relations are materialized in parallel), which can reduce the
efficiency of algorithms that could otherwise exploit (faster) sequential I/Os. Two factors are relevant
here: the speed of the network compared to the speed of the local disk(s) and the way data is obtained
through the network (i.e., page-at-a-time versus streaming) [AFT97].

A second set of tradeoffs revolve around the question of whether to Reschedule individual operators
(in a bottom-up fashion) or entire subtrees. Subtrees can be rescheduled (i.e., executed out of order)
given sufficient available memory. Such rescheduling enables the entire subtree to be executed at the
cost of only a single extra materialization, thereby taking advantage of any pipelining that is possible
within the subtree. This is especially interesting if the data produced by the subtree is much smaller
than the amount of base data used at the leaves of the subtree. When memory is limited however,
the scheduling of whole subtrees becomes difficult to manage. For example, finding enough memory to
allow the rescheduling of a subtree might require swapping out the memory frames occupied by stalled
operators. Thrashing could then arise due to operators that repeatedly stall and un-stall. In contrast,
materializing base relations to the local disk requires only minimal memory, but of course, requires

additional 1/0.



Finally, choosing which specific operator(s) to reschedule is also fundamental. In [AFTU96] the
operator to reschedule was elected depending on the original order of the operators in the query before
any rescheduling. As illustrated in [AFTU96], this simplistic policy has several severe performance
drawbacks. As with Operator Synthesis, we have developed cost-based approaches to this problem
that avoid the pitfalls of the simpler heuristic policies. The decision in this regard is based on the ratio
of useful work performed by the operator (i.e., how much closer it gets us to the final answer) to the
amount of extra work rescheduling it will cause.

3.2.2 Trade-offs for Operator Synthesis

Creating new operations also raises a number of interesting trade-offs. Because the operations that
may be created were not originally chosen by the optimizer they may entail a significant amount of
additional work. If the synthesized operations are too expensive Query Scrambling could result in a
net degradation in performance. Operation Synthesis, therefore, has the potential to negate or even
reverse the benefits of Scrambling if care is not taken. In [AFTU96] we used the simple heuristic of
avoiding Cartesian products to prevent the creation of overly expensive joins. This approach has the
advantage of avoiding the need to do cost-based optimization, but its performance was shown to be
highly sensitive to the cardinalities of the new operators created.

More recently, we have developed and studied several different ways of to use a query optimizer
in Operator Synthesis process. One policy, called Pair, is similar to the original heuristic in that it
considers creating only one new operator at a time, but differs in that it uses the cost-model of the
optimizer to choose which operator is likely to be most beneficial. A second policy, called Fzclude
Delay, uses the cost-based optimizer to generate execution plans for each of the connected components
of the query join graph that remain when the delayed data source is removed. A third policy, called
Include Delay, uses a query optimizer that is targeted to minimize response time rather than cost.
In this approach, the optimizer is told that delayed relations will not arrive until far in the future.
Because the optimizer tries to optimize response time, it tends to generate plans where the delayed
relations are used as late as possible. This has the effect of causing other useful work to be performed
first. QOur fourth policy, called Fstimated Delay works similarly to Include Delay but rather than
assuming that the delay is effectively infinite, it initially generates plans assuming that delays will be
relatively short, and successively increases its estimate if the delayed relations fail to arrive during the
previous estimated delay period. This latter approach has the effect of making increasingly aggressive
Scrambling decisions as delays increase. Qur preliminary results indicate that while none of these
policies is perfect, Fstimated Delay provides the most robust performance over a range of query plans
and delay scenarios.

3.2.3 When to Stop Scrambling

A remaining question is when to stop scrambled operations once they have been initiated. One approach
is to suspend all scrambling operations as soon as a blocked operator becomes unblocked, and to resume
normal processing. Since Scrambling is a reaction to an unanticipated event, it intuitively makes sense
to resume the original plan as soon as possible. This is because Scrambling has the potential to add costs
to the query execution and stopping it can help avoid such costs. Returning to the original schedule,
however, raises other questions. First, there are costs associated with rescheduling operators, and as
stated above, thrashing could be induced in the presence of repeated, intermittent delays. Secondly,
since Scrambling performed some work while a delay was experienced, there is the question of what
to do with the results of that work. Using the results in further computations may or may not be
beneficial. For example, reading a materialized relation may be more costly than requesting it again



through the network if the network behaves well. In contrast, using intermediate results computed by
Scrambling might save time. The investigation of such trade-offs is one aspect of our ongoing research.

4 Partial Answers for Unavailable Data Sources

4.1 Overview

Because Scrambling uses the tactic of performing other useful parts of a query when a delay is detected,
the amount of delay that it can successfully hide is limited by the amount of work that is contained in
the original query. In a wide-area environment, however, data might be delayed for a very long period
of time. For an interactive system, if a delay lasts longer than a user is willing to wait, then in effect,
the delayed data is unavailable. Because Query Scrambling returns only complete answers to users, it
does not solve the problem of unavailable data.

[BT97] proposes an approach where in the presence of unavailable data, a partial answeris returned
to the user. The motivation behind this approach is that even when one or more needed sites are
unavailable, some useful work can be done with the data from the sites that are available. A partial
answer is a representation of this work, and of the work that remains to be done in order to obtain the
complete answer.

The uses of partial answers are twofold. First, a partial answer contains a query that can be
submitted to the system in order to later obtain the complete answer efficiently. Second, a partial
answer contains data from the available sites that can be extracted using secondary queries that we
call parachute queries. Associated with each original query is a set of parachute queries that can be
asked if the complete answer cannot be produced. The answer to a parachute query is a set of tuples;
it is not necessarily a subset or a superset of the complete answer.

4.2 Framework for Partial Answers

We now detail the framework we have defined for partial answers. We assume that sites have atomic
behavior: they are either available or unavailable. If a site starts producing an answer to a sub-query,
we assume it is available and it produces its result completely. If the delay in the arrival of the first
tuple is above a given limit, then we assume that the site is unavailable and produces no tuples. We
plan to relax this atomicity assumption in our future work.

To understand our approach, consider a query that involves several sites, such as the query of
Figure 1: select * from (A va B)a (C pa (Do E)). If all sites are available, then the system returns a
complete answer. Suppose, however, that site B is unavailable. In this case a complete answer to this
query cannot be produced. The system proposed in [BT97] would perform the following steps:

o Phase 1 - each available site is contacted, and all processing based on available data is performed.
The results that are obtained are materialized on the query source site. In our example, tuples of
A will be selected; the subquery will be evaluated by site 4, the result returned and joined with
C. These results are materialized in temporary relations on site 1.

o Phase 2 - queries representing the data obtained in Phase 1 are constructed. In our example:

Q1 = select * from A where ¢q

Q2 = select * from C v (D va E) where ¢y

These queries can be evaluated without contacting the remote sources. They denote data mate-
rialized locally.



e Phase 3 - a query semantically equivalent to the original query is constructed using the queries
constructed in Phase 2 and the relations from the unavailable sites. In our example:

Qor = select * from (Q1 < B) 01 Q2 where c3

When this processing is finished, a partial answer is returned to the user. The partial answer is
a handle for the data obtained and materialized in Phase 1, as well as for the queries constructed in
Phase 2 and Phase 3. One way to use a partial answer is to submit the query Qor in order to obtain
the complete answer. Evaluating Qor requires contacting only the remote sites that were unavailable
when the original query was evaluated. In the example, Q1 and Q2 denote local data, only B is located
on a remote site. When Qor is submitted to the system, the query processor considers it in the same
way as a regular query, and it is optimized accordingly. If Qor is evaluated when the remote sites are
available, then a complete answer is returned. Under the assumption that no updates are performed
on the remote sites, this answer is the answer to the original query. If some of the sources that were
unavailable during the previous evaluations remain unavailable, then another partial answer is returned.
Possibly, successive partial answers are produced before the complete answer can be obtained.

Submitting Qor instead of resubmitting the original query has two advantages: First, a complete
answer can be produced even if all the sites are never simultaneously available. It suffices that a site is
available during the evaluation of one of the successive partial answers to ensure that the data from this
site is used for the complete answer. Second, as Qor involves temporary relations that are materialized
locally, evaluating Qor is typically more efficient than evaluating the original query.

An alternative way to use a partial answer is to extract data from it using parachute queries.
Parachute queries are associated with the original query; they may be asked in case the complete
answer to the original query cannot be produced. Consider a system where the relations patient and
surgeon are on different sites and the query: “list the names of all surgeons who have operated on patient
X7, In this scenario, some example parachute queries are: “list the identifiers of all the surgeries patient
X has undergone”, or “list the names of all surgeons”. Using parachute queries, the user can still collect
useful information concerning patients or surgeons in case the complete answer to the original query
cannot be computed.

[BT97] proposes an initial algorithm for the extraction of information using parachute queries.
When a parachute query is submitted, it is tested for containment against the queries generated in
Phase 2. If the parachute query is contained in one of these queries then the system returns the
complete answer to the parachute query, otherwise it returns null. The set of parachute queries that
can be evaluated is limited in this scheme, however, because Phase 1 operates without knowledge of
the parachute queries that may be asked. To overcome this limitation, we envisage a system where the
parachute queries could be asked together with the original query. In such a system, parachute queries
are no longer used solely to extract materialized information, rather, they are alternative queries that
the system tries to evaluate if the complete answer to the original query cannot be produced. Defining
such a system is part of our ongoing work.

5 Conclusions

Accessing distributed data across wide-area networks poses significant new problems for database query
processing. In a wide-area environment, the time required to obtain data from remote sources can vary
unpredictably due to network congestion, link failure or other problems. Traditional techniques for
query optimization and query execution do not cope well with such unpredictability. In this paper we
presented two different but complementary techniques to address the problem of unpredictable delays
in remote data access. The first technique, called Query Scrambling, hides relatively short, intermittent



delays by dynamically adjusting query execution plans on-the-fly. The second technique addresses the
longer-term unavailability of data sources by allowing the return of partial query answers when some
of the data needed to fully answer a query are missing.

This paper represents a current snapshot of our explorations into the development of flexible systems
that dynamically adapt to the changing properties of the run-time environment. In our ongoing work,
we are continuing to develop these ideas by improving our cost-based decision making, exploring the
tradeoffs we have outlined, and examining a wider array of delay scenarios. Furthermore, the approaches
presented in this paper may be useful for other types of problems that have been targeted by previous
approaches to dynamic query optimization, such as optimizer estimation errors and the lack of cost
information for remote data sources in heterogeneous environments. In the longer term, we plan to
look at other approaches to reactive query processing, such as choosing among similar data sources
that possibly vary in completeness, consistency, or “quality” in order to find useful trade-offs between
responsiveness and accuracy. As distributed systems continue to grow in size, complexity, and general
unmanagability, such adaptive techniques will continue to become increasingly important for providing
users with responsive access to the data they need.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query caching and optimization
in distributed mediator systems. In Proc. of the ACM SIGMOD Int. Conf., Montreal, Canada, 1996.

[AFT97] L. Amsaleg, M. Franklin, and A. Tomasic. Dynamic query operator scheduling for wide-area remote
access. Tech. Report CS-TR-3811 and UMIACS-TR-97-54, Univ. of MD, College Park, July 1997.

[AFTU96] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling query plans to cope with unexpected
delays. In Proc. of the Int. Conf. on Parallel and Distributed Information Systems (PDIS), Miami
Beach, Florida, December 1996.

[Ant93] G. Antoshenkov. Dynamic query optimization in Rdb/VMS. In Proc. of the Data Engineering Inl.
Conf., pages 538-547, Vienna, Austria, 1993.

[BTI7] P. Bonnet and A. Tomasic. Partial answers for unavailable data sources. Technical Report RR-3127,
INRIA, Rocquencourt, France, March 1997.

[CGY4] R. Cole and G. Graefe. Optimization of dynamic query execution plans. In Proc. of the ACM
SIGMOD Int. Conf., pages 150-160, Minneapolis, Minnesota, May 1994.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73-170,
June 1993.

[LPIT7] L. Liu and C. Pu. A dynamic query scheduling framework for distributed and evolving information
systems. In The IEEE Int. Conf. on Distributed Computing Systems (ICDCS-17), Baltimore, 1997.

[ONK*96] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic query optimization on a
distributed object management platform. In Conference on Information and Knowledge Management,
Baltimore, Maryland, November 1996.

[SALT96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa:
A wide-area distributed database system. The VLDB Journal, 5(1):48-63, January 1996.

[Sar95] S. Sarawagi. Query processing and caching in tertiary memory. In Proc. of the 21st Conference on
Very Large Databases, Zurich, 1995.

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases and the design of DISCO.
In The IEEE Int. Conf. on Distributed Computing Systems (ICDCS-16), Hong Kong, 1996.

[TTCT90] G. Thomas, G. Thompson, C. Chung, E. Barkmeyer, F. Carter, M. Templeton, S. Fox, and B. Hart-
man. Heterogeneous distributed database systems for product use. ACM Computing Surveys, 22(3),
1990.



