
�Stone� ����� Stone� H� S� �����	� Parallel querying of large databases
 A case study� IEEE Computer�
�����	
�����

�Tomasic and Garcia�Molina� ����a� Tomasic� A� and Garcia�Molina� H� �����a	� Caching and database
scaling in distributed shared�nothing information retrieval systems� In Buneman� P� and Jajodia� S��
editors� Proceedings of the ���� ACM SIGMOD International Conference on Management of Data�
pages ������� New York� ACM Press� Conference held in Washington� D�C� Also published as
SIGMOD Record Volume ��� Issue �� June �����

�Tomasic and Garcia�Molina� ����b� Tomasic� A� and Garcia�Molina� H� �����b	� Performance of in�
verted indices in shared�nothing distributed text document information retrieval systems� In Carey�
M� J� and Valduriez� P�� editors� Proceedings of the Second International Conference On Parallel
and Distributed Information Systems� pages ���� Los Alamitos� CA� IEEE Computer Society Press�
Conference took place in San Diego�

�Turtle and Croft� ����� Turtle� H� R� and Croft� W� B� �����	� Uncertainty in information retrieval sys�
tems� In Motro� A� and Smets� P�� editors� Proceedings of the Workshop on Uncertainty Management
in Information Systems� pages ������� Workshop held in Mallorca� Spain�

��

of about ��� MB �������� postings uncompressed	� on the order of ���� of the index� can improve
throughput by about ���� for the prefetch strategy� For the other strategies� improvements are smaller�
Although not reported here� we also experimented with various cache policies� For example� in one case�
lists above a given threshold were not cached� even if they �t in the cache� on the presumption that
they would �ush out too many useful lists� However� we observed no signi�cant improvement with this
caching variation�
In our study we assume that a single combined index was constructed for all �elds �see Section �	�

Although we have not yet experimented with partitioned indexes� our current results indicate that
performance will not improve by partitioning� Partitioned indexes force subject �eld searches to read
more� but shorter lists� which would only exacerbate the disk seek problem� Some systems actually have
both combined and partitioned indexes� This does not seem attractive either� For some queries� lists
read will be shorter� but the same number of disk seeks need to be performed� As long as seeks remain
the critical resource� the gains should not be signi�cant� �This assumes that the system is dedicated to
query processing� If the hosts are used for other tasks� then reducing the size of lists to intersect may
still be desirable�	 This conjecture needs to be veri�ed�

Acknowledgments� Thanks to Howard Marantz and Norman Roth who gathered the raw trace
and posting counts from FOLIO� Luis Gravano� Ben Kao and Masahiko Saito provided several useful
suggestions�

References

�Burkowski� ����� Burkowski� F� J� �����	� Retrieval performance of a distributed text database uti�
lizing a parallel processor document server� In Agrawal� R� and Bell� D�� editors� Proceedings of the
Second International Symposium on Databases in Parallel and Distributed Systems� pages ����� Los
Alamitos� CA� IEEE Computer Society Press� Conference held in Dublin� Ireland�

�Chervenak� ����� Chervenak� A� L� �����	� Performance measurements of the �rst RAID prototype�
Technical Report UCB�UCD ������� University of California� Berkeley� CA�

�Cringean et al�� ����� Cringean� J� K�� England� R�� Mason� G� A�� and Willett� P� �����	� Parallel
text searching in serial �les using a processor farm� In Vidick� J�� editor� Proceedings of the ��th
International Conference on Research and Development in Information Retrieval� pages �������
New York� NY� ACM Press� Conference held in Brussels� Belgium�

�DeFazio and Hull� ����� DeFazio� S� and Hull� J� �����	� Toward servicing textual database transac�
tions on symmetric shared memory multiprocessors� In Proceedings of the International Workshop
on High Performance Transaction Systems� Asilomar�

�Emrath� ����� Emrath� P� A� �����	� Page Indexing for Textual Information Retrieval Systems� PhD
thesis� University of Illinois at Urbana�Champaign�

�Frakes and Baeza�Yates� ����� Frakes� W� B� and Baeza�Yates� R� �����	� Information Retrieval� Data
Structures and Algorithms� Prentice�Hall� Englewood Cli�s� NJ�

�Gray and Reuter� ����� Gray� J� and Reuter� A� �����	� Transaction processing� concepts and tech�
niques� Morgan Kaufmann� San Mateo� CA�

�Jain� ����� Jain� R� �����	� The Art of Computer Systems Performance Analysis� John Wiley and
Sons� New York� NY�

�Jeong and Omiecinski� ����� Jeong� B��S� and Omiecinski� E� �����	� Inverted �le partitioning schemes
for a shared�everything multiprocessor� Technical Report GIT�CC������� Georgia Institute of Tech�
nology� College of Computing� Atlanta� GA�

�Salton� ����� Salton� G� �����	� Automatic Text Processing� Addison�Wesley� New York� NY�

�Stan�ll� ����� Stan�ll� C� �����	� Partitioned posting �les
 A parallel inverted �le structure for in�
formation retrieval� In Vidick� J� L�� editor� Proceedings of the ��th International Conference on
Research and Development in Information Retrieval� pages ������� New York� NY� ACM Press�
Conference held in Brussels� Belgium�

��

0

10

20

30

40

50

60

70

80

90

0 200000 400000 600000 800000 1e+06 1.2e+06

m
e
a
n

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

cache size (postings), hosts (4)

disk
I/O bus

host
system

prefetch I

Figure ��
 The impact of the cache size on throughput�

on throughput for the disk organization because it remains bottle necked on the disks�

� Conclusion

We have studied an information retrieval system for bibliographic entries or abstracts� Using queries
from the INSPEC database on the FOLIO system at Stanford University� we analyzed strategies for
distributing indexes across a set of processors and for performing queries in parallel�
Our main result is that inverted lists referenced by queries in such systems tend to be relatively short

and it does not pay o� to split them across hosts� much less across I�O subsystems or disks� Either
system index organization� or the system index organization with the prefetch I optimization� performs
best over wide ranges of parameter values� Prefetch I is especially good as the database size scales up�
However� the system organization does utilize the LAN or processor interconnect more heavily� so it
would not be appropriate for systems with slow networks�
Our conclusion is di�erent from that of our earlier work �Tomasic and Garcia�Molina� ����b� where

a full�text information retrieval system was analyzed� In that case� inverted lists are much longer� and
breaking them up �e�g�� striping them	 does pay o�� In particular� the host organization was superior
in that scenario�
In our experiments� we explored the �mainframes vs� workstations� issue� That is� we took a speci�c

index distributed over a �xed number of disks and I�O buses� Then we considered whether it would be
best to connect all these resources to a single fast processor� or to connect them to n processors each of
���n	th the speed� The mainframe does achieve moderately higher throughput� but the gains have to
be evaluated in light of the higher mainframe cost� In other words� one has to take the throughput rates
we report here� and divide them by the dollar cost of each con�guration� to obtain a query�sec�dollar
measure� as is done in transaction processing systems �Gray and Reuter� ������
We also explored the impact of truncation queries by running the same experiments with a trace with

the truncation queries removed� We found only a slight performance improvement and therefore have
not included results on these experiments� Our conclusion is that two factors contributed to this result�
First� truncation keywords are a small fraction of all the keywords which appear� Second� the data
structure used to model truncation queries is very e�cient� since the performance impact is restricted
to simply reading longer inverted lists �about twice as long on average	�
Our caching results indicate that a relatively small cache can improve performance signi�cantly�

For our INSPEC database that has an index size of ���MB ���� million postings compressed	 a cache

��

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1.5 2 2.5 3 3.5 4

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hosts (fixed resources), database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure ��
 The mainframe vs� workstation trade�o��

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06 1.2e+06

c
a
c
h
e

h
i
t

r
a
t
i
o

cache size (postings), hosts (4)

disk
I/O bus

host
system

prefetch I

Figure ��
 The improvement in the cache hit rate as the cache grows in size�

��

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

LAN bandwidth (Mb/s), hosts (4), database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure ��
 The sensitivity of mean query response time to LAN bandwidth�

Hosts I�OBusesPerHost Multiprogramming CPU Speed Database Scale
� � � �� ����
� � � �� ����
� � � � ����

Table ��
 Enumeration of variable values for �xed resources�

di�erence between a single host and multiple hosts is that the fast CPU has been replaced by several
slower CPUs interconnected by a LAN� Figure �� shows that the best index organization �system	 has
a response time of ���� sec�� ���� sec�� and ���� sec� for �� � and � hosts respectively� indicating about
a tenth of a second loss in response time when split among multiple hosts� Throughput for the system
index organization is ���� queries�sec�� ���� queries�sec�� and ���� queries�sec� for �� � and � hosts
respectively� Thus a minimal performance loss is incurred by using the multiple host organization� The
results indicates that a �mainframe� is slightly more e�ective� but the small improvement has to be
evaluated in light of the potentially higher mainframe cost �compared to workstations and a LAN	�
Finally� we turn to the issue of caching and address two simple questions� How rapidly does the

cache hit rate rise as the size of the cache increases� What is the e�ect of the rising cache hit rate on
performance� Figure �� shows the increase in the cache hit ratio as the size of the cache increases for
a four host system �database scale ���	� Since the total cache size is the same regardless of the index
organization� it is surprising that the cache hit rates vary depending on the organization� However� the
behavior of the caches under the various organizations is quite di�erent� For the system and prefetch I
index organizations an inverted list is cached in only one place in the system� Thus� there are e�ectively
Hosts number of independent caches� Also� suppose a list slightly larger in size than the cache is read
from disk� In the system and prefetch I organization� the list does not �t in the cache and thus the
caches would remain unchanged� In the disk� I�O bus� and host organizations� however� all four caches
would hold a list of quarter the size� requiring some other lists to be removed from the cache� The
�gure shows that for the base con�guration even a small cache has a good hit rate achieving almost
��� where the maximum possible cache hit rate is about ����� �see Table �	� The cache hit rates for
the disk� I�O bus� and host index organizations are the same since they access exactly the same lists
on each host and so the cache contents are changed in the same way over the course of the simulation�
Figure �� shows that the e�ect of caching is to free the I�O subsystem resources to speed up query

processing for the system and prefetch I index organizations� The cache does not have a dramatic e�ect

��

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

database scale

disk
I/O bus

host
system

prefetch I

Figure ��
 Scaling the database up to a � second response time for the best index organization�

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hosts, database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure ��
 Increasing the number of hosts with a scaled database�

��

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

experiment number

disk
I/O bus

host
system

prefetch I

Figure �
 A �k factor experiment of three variables�

of ���� DisksPerI�OBus of � and I�OBusesPerHost of � as the value for these variables in the base
con�guration� �Note that this the worst con�guration for the disk index organization�	
To study database scaling� we �rst maximize the size of the database which can be e�ectively

processed with the base con�guration� We choose a � second mean response time as the limit for an
e�ective information retrieval system� We scale the database on the base con�guration �as described in
Section �	 until the best response time increases to the threshold of � seconds� This graph is shown in
Figure ��� From this graph we choose the value of ���� for the maximum scaling of the database for a
single host�
We now wish to observe the e�ectiveness of the system as the number of hosts is increased� Increasing

the number of hosts also increases the total number of I�O buses� disks� and queries �since the number
of queries in the entire system is determined by Multiprogram � Hosts	� In Figure �� the increase
in response time is shown as the number of hosts is expanded�� The increase in response time is due
to two factors� First� the total load of the system is increasing in proportion to the number of hosts�
Second� as the number of hosts increases the tra�c across the LAN increases� We see this e�ect appear
at � hosts where the prefetch I index organization slightly outperforms the system index organization�
Thus� the prefetch I organization scales well as the number of hosts increases�
However� the performance of the system organization depends strongly on the speed of the LAN�

Figure �� shows the impact of this variable on mean query response time� The left hand side of the
graph represents a Ethernet type network at maximumbandwidth and the right hand side of the graph
represents an FDDI network� The graph shows that the system response time is highly sensitive to
the LAN bandwidth and that a su�ciently fast network eliminates the disadvantages of the system
organization� The prefetch I organization performs more poorly at a high bandwidth with four hosts
due to the sequential nature of the two phased approach� Note that the prefetch I organization is
relatively �at in this graph� Thus� even with a very fast network� this organization would be preferable
if the network cannot be utilized to its maximum capacity� In addition� any of a number of other
variables can make prefetching attractive e�g�� the number of hosts� or a larger database�
Given that an index organization does well as the number of hosts increases� we can compare the

base con�guration of a single host to con�gurations with more hosts but the same total resources in
terms of CPU speed� number of disks and I�O buses� This is essentially the trade�o� between buying
a single large mainframe processor or several slower workstation size processors� Table �� shows a
enumeration of con�gurations which explore this trade�o� under a �xed total system load� The main

�In subsequent graphs� we attempt to keep the axis scales �xed so that various graphs can be easily compared�

��

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

m
e
a
n

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

multiprogramming level (per host)

disk
I/O bus

host
system

prefetch I

Figure �
 The e�ect of the multiprogramming level on throughput�

Experiment BlockSize DisksPerI�OBus I�OBusesPerHost
� ��� � �
� ��� � �
� ��� � �
� ��� � �
� ��K � �
� ��K � �
� ��K � �
� ��K � �

Table �
 Enumeration of variable values�

to determine the con�guration with the best response time� Table � lists the enumeration of the values
of the variables�
The result of this experiment is graphed in Figure �� The data points for each index organization

have been connected by lines to aid the reader in understanding the graph� �Note that the a line
connecting two points may represent the changing of the values of several variables�	 We see that the
left�hand half of the graph �values ���	 is the same shape as the right�hand half �values ���	� This
means that BlockSize has little e�ect on the response time� since it is the only variable to change
value when comparing the halves of the graph� Next� examining each sequential pair of values ����	�
����	 etc� shows no change in the response time for the disk and I�O bus index organizations� For
each pair the only variable to change is I�OBusesPerHost which changes from � to �� Thus� adding
I�O buses �and implicitly� disks	 does not improve the performance of these two index organizations�
However� the response time for host� system� and prefetch organizations improve when more I�O buses
are added because the total resources of the system are increased� Finally� consider the transition from
the con�guration in Experiment � to the con�guration in Experiment �� Here� the total number of disks
is �xed at � but the arrangement of the disks changes because the number of I�O buses goes from �
to �� We see that disk index organization response time increases due to contention for the I�O bus
�disk transfers on the same I�O bus are processed serially by the I�O bus	� I�O bus index organization
response time decreases because there are fewer inverted lists to read per keyword �since there are fewer
I�O buses	�
From this graph we pick the best combination of these variables for response time� namelyBlockSize

��

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

disk seek time (ms)

disk
I/O bus

host
system

prefetch I

Figure �
 The sensitivity of response time to disk seek time�

the right could compare to optical disks� The graph shows that the disk index organization is most
sensitive �i�e�� has the largest slope	 to the change in seek time� followed by the I�O bus� host� system
and prefetch index organizations� respectively� This ordering of the index organizations is in decreasing
number of inverted lists reads done by each organization� For a given query� the disk index organization
does the largest number of reads� followed by the I�O bus index organization� etc� The increase in
the number of reads leads to a higher disk utilization and increased queuing delays at every disk� We
conclude that the seek time of the disk dominates the cost of accessing an inverted list as opposed to
the bandwidth limitations of the I�O subsystem� The host and system index organizations perform
identically in the base con�guration because there is only � host in the base con�guration� The prefetch
I index organization performs slightly worse than the host and system index organization because the
prefetch of an inverted list is performed sequentially with respect to the processing of the remainder of
the query� This slightly decreases the amount of parallelism in the processing of the query� �Recall that
prefetch I index organizations was designed to reduce LAN tra�c� which is not an issue in a one host
con�guration�	
Figure � shows the e�ect of the rise in the multiprogramming level on the mean throughput of queries

processed� The graphs shows that the disk and I�O bus index organizations are relatively insensitive to
the change in the multiprogramming level� Other collected data shows that these two organizations are
bottle necked in the I�O subsystem� As the multiprogramming level rises� the same number of queries
can be processed per second� but each query takes longer and longer� The host� system and prefetch I
index organizations continue to improve across the range of the multiprogramming level in the graph
because the resources are more evenly balanced� For a multiprogramming level of ��� the response times
for the disk� I�O bus� host� system and prefetch I index organizations are ����� sec�� ���� sec�� ���� sec��
���� sec� and ���� sec�� respectively� Thus good response times are still available on a heavily loaded
system�
Intuitively� experiments which vary the value of one variable in a con�guration examine the change

in a function along a single dimension� In some cases it is necessary to change the value of multiple
variables in a systematic fashion in a �k factor experiment �Jain� ������ For three variables� this can
intuitively be viewed as examining the values of a function at the corners of a three�dimensional cube
�each axis of the cube corresponds to a variable	�
To determine a reasonable base con�guration� some of the values of the variables are provided by ex�

isting hardware� but other variables such as DisksPerI�OBus are less easily determined� We conducted
a �k factor experiment for k � � on the variables BlockSize� I�OBusesPerHost and DisksPerI�OBus

��

Parameter Value Description
CPUSpeed �� Relative speed in MIPS
Multiprogram � Multiprogramming per Host
QueryInstr ������ Query start up CPU cost
SubqueryInstr ������ Subquery start up CPU cost
SubqueryLength ���� Base size of subquery message
FetchInstr ����� Disk fetch start up CPU cost
InterInstr �� Intersection CPU cost per byte

of a decompressed inverted list
Decompress �� Decompression CPU cost per

byte of inverted list on disk

Table �
 Base case parameter values and de�nitions�

Parameter Value Description
EntrySize �� Bits to represent an inverted list

entry on disk �uncompressed	
Compress ��� Compression Ratio
CacheSize ��� Inverted list cache �in postings	
ConcatInstr � Concatenation CPU cost per

byte of an answer set
AnswerEntry � Bytes to represent an entry

in an answer set
Documents ������� Number of documents
DatabaseScale ��� Database scale factor

Table �
 Base case parameter values and de�nitions�

bytes �postings �EntrySize	� Then the number of instructions for this part of the subquery processing
is ����� ����� �Decompress � �� � InterInstr	�
The size of the inverted list cache in postings is determined by the variable CacheSize which is

measured in number of postings� The policy for the cache is least�recently�used� When an inverted list
read is a cache miss� it is read from disk and the number of postings in the list is checked to determine
if it will �t in the cache� If the inverted list is smaller or equal in size to cache� the cache removes �in
a least recently used fashion	 enough inverted lists to make room for the new list� The new list is then
inserted in the cache� If the list is larger than the cache� the list is not placed in cache and no other
lists are �ushed� Both of these cases are cache misses� When an inverted list is a cache hit� it is moved
to the end of the list of the least recently used inverted lists� �Note that a possible improvement would
be to also cache the intermediate and �nal results from the intersection computations�	 For truncation
keywords� a cache hit occurs only if exactly the same truncation keyword is used�
The number of bytes needed to represent a document in an answer is given in AnswerEntry� The

instructions needed to concatenate the answers from the subqueries is given by ConcatInstr� The
number of documents in the database is given by the variableDocuments and is equal to the number of
abstracts in the INSPEC database� Finally� the variable DatabaseScale permits scaling of the database
as described in Section ��

� Results

In this section we present selected results of a set of experiments performed by the simulation� Space
limitations prevent us from showing all the results� In conducting these experiments sensitivity analysis
of all the variables in Section � were performed� An experiment is the execution of the simulation for
the entire trace with a given con�guration�
Figure � shows the mean response time of queries under the various index organizations as disk

seek time increases �the other simulation parameters for this con�guration are given in Tables ��	�
The seek values on the left of the graph �around �� ms	 represent a typical magnetic disk� Values on

��

Parameter Value Description
Hosts � Hosts
I�OBusesPerHost � Controllers and I�O Buses

per Host
DisksPerI�OBus � Disks for each I�O bus

Table �
 Hardware con�guration parameter variables� values and de�nitions�

Parameter Value Description
DiskBandwidth ���� Mbits�sec bandwidth per disk
DiskBuff ����� Size of a disk bu�er in bytes
BlockSize ��� Bytes per disk block
SeekT ime ���� Disk seek time in ms
TrackToTrack ��� Cost to seek one track in ms
I�OBusOverhead ��� I�O bus transfer in ms
I�OBusBandwidth ���� Mbits�sec bandwidth I�O bus
LANOverhead ��� LAN transfer in ms
LANBandwidth ����� Mbits�sec bandwidth LAN

Table �
 Hardware parameter values and de�nitions�

Typically an experiment systematically varies one or more of the values to determine the e�ect of the
variables� A con�guration is the total collection of variable�value pairs used in an experiment� The base
con�guration is the collection of variable�value pairs given in the tables in this section�
Table � shows the base con�guration variables for the hardware� The values for this table were taken

from �Chervenak� ������ The disks and I�O buses are simulated as follows� Requests for a disk read
arrive from the CPU �after determining that they are cache misses	� Each read has a speci�ed length
in bytes� The reads are queued at the disk in a �rst�come��rst�served �FCFS	 manner� Each request is
�rst serviced by the disk by waiting an initial SeekT ime milliseconds� The disk loads its track bu�er
at DiskBandwidth speed� When it �nishes� the disk requests access to its I�O bus �only one disk at a
time may occupy the I�O bus	� When the I�O bus grants access both the I�O bus and disk are occupied
for the transfer at I�OBusBandwidth speed� If multiple tracks must be loaded then the initial seek
time is extended by the needed track�to�track seeks �variable TrackToTrack	�
The LAN handles the transmission of subquery and answer messages� Messages are serviced in a

FCFS manner �except for messages that have the same source and destination � these are immediately
returned to the host� simulating software loop�back	� Each subquery has a length determined by
SubqueryLength and each answer has a length determined by AnswerEntry times the number of
postings in the answer� The service time for each message is LANOverhead plus the time taken to
transmit the message at the given LANBandwidth�
Table � shows the parameters which a�ect the CPU and the time taken to process a query� The

overall speed of a CPU is determined by the parameter CPUSpeed� Varying this value proportionately
varies the rate at which instructions are executed� The number of instructions needed to execute various
stages of the matching process are listed in the table� Note that the multiprogramming level of the
system is on a per host basis�
Finally� Table � lists the variables used to determine the size of the inverted lists� The variable

EntrySize determines the number of bits needed to record a posting in an inverted list� The variable
Compress determines the reduction in bytes in the inverted list due to compression�
To illustrate the use of the variables in Tables � and �� consider a subquery which intersects two

inverted lists with � and �� postings� respectively� The initial subquery CPU processing would be
������� instructions �SubqueryInstr�� �FetchInstr	 since each inverted list read is charged a start�up
cost of FetchInstr instructions� The length of one list is ��� bits �postings �EntrySize � Compress	�
The length of the other list is ��� bits� The disk read length for both lists is ��� bytes �rounded
up due to BlockSize	� After the disk data is fetched� only the bits in the actual lists are used for
subsequent computations� The number of instructions to process the intersection combines the costs of
decompression and intersecting the lists� The size of the uncompressed inverted lists is ��� bits or ��

��

for A and B are fetched from disk� however� only the postings of the appropriate type �title for A�
author for B	 are used� The number of A postings with title designation is given in the trace� call it
n�A	� the number of B author postings is n�B	� The expected size of the intersection of these lists is
thus n�A	n�B	�D� where D is the total number of documents in the database� This assumes that each
word is equally likely to appear in any of the D documents and that the words occur independently�
�If an additional C word were in the query� the expected size would be n�A	n�B	n�C	�D��	 �Emrath
�Emrath� ����� reports some measurements which support this model�	
For the disk� I�O bus and host index organizations� we believe the model is very accurate� For

the system index organizations� query terms are clearly not independent� However� there are several
mitigating factors in comparing our model with any particular actual subquery answer� For single word
subqueries� our model exactly matches an actual subquery� For two word subqueries� there are three
cases� In the case that both subqueries are frequent words� the result is near D in both the model
and the actual result� In the case that both subqueries are infrequent words� the result is small in
both the model and the actual result� and thus di�erence between the model and the actual result has
a small impact on our results� In the case that one word is frequent and the other infrequent� our
model underestimates the result size if the two query words are highly correlated� To compensate for
this e�ect� we use the result size �for the overall query	 in the trace as a lower bound to the expected
number of documents in a subquery� This adjustment is reasonable since the size of the �nal answer to
the match is bounded from above by the minimum of the sizes of the subquery answers in the system
organization� For multiword subqueries� as the number of keywords in the query increases� the expected
number of answers approaches zero� Our adjustment also compensates for this bias in our model�
Finally� we note one case in which we take license with the data in the previous section� Since the

date and time of each query issued is reported in the trace� it is possible to simulate the exact sequence
of query arrivals in the system in an open system type of queuing model� We have chosen a closed
queuing system model that permits studying the e�ects of varying the multiprogramming level �the
number of simultaneous queries in the system	� This is accomplished by starting a number of queries at
the beginning of the trace equal to the multiprogramming level and then starting the next query in the
trace whenever a query �nishes in the system� This method maintains a constant number of queries in
the system�
The e�ect of this is to concurrently simulate queries that are from the same user and thus could not

have been requested simultaneously� This situation introduces a race condition for two queries which
access the same inverted list� If the queries are executed sequentially� the second query will always be
a cache hit� But if the queries are executed concurrently� both queries may simultaneously check the
cache and both may miss� We believe that the negative impact of this loss in realism is minor and is
outweighed by the advantages of studying the e�ect of the multiprogramming level on response time
and throughput �cf� Section �	� Our cache hit results are slightly pessimistic due to the race condition�
To study the e�ects of scaling the database� the parameter DatabaseScale was added to the simula�

tion� This variable linearly scales the number of postings for each inverted list� the number of answers to
a query and the number of documents in the database� While this model of scaling is primitive� since it
does not account for the appearance of new words as documents are added� it does conservatively model
the impact of adding documents� A word of caution is in order with respect to the scaling the number
of answers� If a query matches �� documents� a user will simply read all �� documents to determine
which ones are of interest� Faced with a query with a result size of ����� a user would probably issue
a modi�ed query to produce a smaller answer� We believe that as the database grows in size �say�
linearly	 the mean result size grows more slowly as users continue to construct queries with manageable
result sizes� However� we do not incorporate this into the database scaling model�

� Simulation

In this section the hardware simulation is described� together with the parameters that specify the
resources consumed by each stage of query execution� An example hardware organization is shown in
Figure �� Every hardware organization consists of a local area network �LAN	 connecting several hosts
together� Each host has a CPU and memory� a number of I�O buses� and a number of disks� Every host
has the same number of I�O buses and every I�O bus has the same number of disks� Each host also has
a cache� Table � lists the variables that determine the hardware organization� The �Value� column in
the table shows the �base case� value of each variable used in the experiments described in Section ��

�

0

2000

4000

6000

8000

10000

12000

14000

0 200000 400000 600000 800000 1e+06 1.2e+06

c
u
m
u
l
a
t
i
v
e

n
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

length of inverted list (postings)

all keywords
simple keywords

Figure �
 The cumulative distribution of occurrences of inverted indexes of a given length which appear
in queries� Simple keywords do not use truncations�

�prefetch I� that operates as follows
 we divide the processing for a query into two phases� In the
�rst phase� the home site sends a subquery to the host holding the shortest inverted list for the query�
This host broadcasts the shortest list on the LAN to all other hosts� In the second phase� the re�
maining inverted lists are retrieved �and intersected if more than one list resides at the same host	�
except that before results are sent to the home host� they are intersected with the �rst list broad�
cast� This signi�cantly reduces the data volume on the LAN by reducing the mean subquery answer
size� �In �Tomasic and Garcia�Molina� ����b� two other prefetch variations are studied� For our current
study� we evaluated all three variations� Prefetch I was the variation with the best performance �as in
�Tomasic and Garcia�Molina� ����b�	� so to economize on space� we only describe the winning variation
and its performance�	
To simulate the processing of a query� we consider �ve stages� The �rst stage covers the initial CPU

processing for parsing the query and generating subqueries� Second� the subqueries are queued at the
LAN for transmission to other hosts� Third� the process blocks� waiting for the subqueries to complete�
When all the answers are returned the process wakes and simulates another CPU processing stage for
the intersecting of the inverted lists� Finally� the process terminates� indicating that the matching for
the query is complete� �If the prefetch algorithm is used� several additional stages are added to account
for the two phases�	
A subquery goes through �ve stages also� First� initial start�up CPU processing is simulated� Second�

the cache is checked for the words which appear in the query� For cache misses� reads are issued to the
disks for the inverted lists� The process blocks� waiting for the disk reads to be returned through the
I�O bus subsystem� When all the reads have returned� the subquery process wakes and simulates the
intersecting of the inverted lists into an answer by a CPU processing stage� The answer is then queued
at the LAN and the subquery terminates�
From our trace data� we can determine how many inverted lists have to be fetched to answer a given

query� and how large the lists are� However� our simulation also requires the sizes of the intermediate
results� and we estimate them by calculating the expect number of answers as follows� In the case of the
disk� I�O bus and host index organizations� we make the assumption that the answers are distributed
in equal proportion across all hosts� Thus� to compute the size of the subquery answer we simply divide
the result size reported in the trace by the number of hosts� For the system organization� however� each
subquery generally contains a subset of the keywords in the query� The following example illustrates
how the expected answer size is calculated� Say the subquery is �nd title A author B� The full lists

�

Description Words Postings Mean Median

Abstract ������ �������� ����� �
Author ���	�� ���
��� ���� �
Classi�cation ��	� ������	 ������ 	��
Conference ����� ���	��� 	
��� ��
Free Term ������ ����
�
� ���� �
ISBN et� al� ��	�� ������� ����� ��
Author Org� ����	 ������� ����� �
Document Org� ��
� ������� ����� 	�
Report ��
� ���� ��
 �
Thesaurus �	�� �����	�� �
�
�	 �
�
Publication ����� 	������ �	��
 �
Title ������ �
������ 	
�
 �

Total ��
���� ��������� ����� n�a

Table �
 The inverted indexes and associated statistics� The mean and median columns apply to the
number of postings per word�

The distribution of the lengths of the inverted lists which appear in the trace characterizes the work
required to process the queries� Figure � shows the cumulative distribution of list lengths� The steep
slope on the left�hand side of the �gure shows that almost all of the inverted lists are less than �������
postings in length� The �at slope on the right�hand side of the �gure shows that there are a few long
inverted lists� These observations are con�rmed by the following statistics
 There are ������ inverted
lists referenced in the trace� The mean length of an inverted list is a little more than ������ postings�
The median inverted list has ���� postings� From the �gure we see that the mean length is much larger
because of a few very long inverted lists�

� Query Processing

Information retrieval systems may partition their indexes by �eld designator or may build a combined
index� In the partitioned case� all occurrences of a word in a title �eld are listed in one index� all author
occurrences in another� and so on� In the combined case� a single index is built� and for each entry in
an inverted list� a type annotation indicates the �eld where the word was used� The main advantage
of the combined index is that a query such as �nd subject art can be answered by fetching the single
inverted list for art� as opposed to fetching the lists for art in the title� author� etc� indexes� �Recall that
a subject search is shorthand for a combined search� see Section ��	 On the other hand� a query �nd
title art can be processed faster with partitioned indexes� since only the relevant postings need to be
processed� Since ����� of our queries involve subject searches� here we assume a single combined index�
�In Section � we return to this issue�	
The use of a combined index allows a very simple model of truncation queries� We assume that

the posting lists are allocated sequentially and in alphabetical order� Thus� the matching inverted lists
can be read with a single disks access and the number of postings to read is the sum of the postings
of the individual matching words� For the keyword yak�� the inverted lists for keywords yak� yakube�
etc� cost only a single disk access� �Note that FOLIO does not allow truncations of the form �yak�	
The assumption of this data structure re�ects a realizable data structure and is the �best case� for
truncation processing with inverted lists� Furthermore� we assume the system organization can be
tuned so that words with the same alphabetical pre�x reside on the same host� Our simulation results
demonstrate that �with a proper data structure	 truncation processing can be done with a negligible
impact on performance�
We model continuation queries through a dummy index called user� To illustrate� suppose user �

issues the query �nd subject A and its returns ��� results� Then the continuation query and author B
would be simulated as the query �nd user � and author B where user � is an inverted list with ���
postings�
As discussed in the introduction� four physical index organizations are considered� We found in

previous work �Tomasic and Garcia�Molina� ����b� that the LAN may be the bottleneck for the system
index organization� To ameliorate this problem we adopt one query processing optimization named

�

Description Value
Total Keywords �����
Number of Subject Field Keywords ����
Percent Subject Field of All Fields ����
Number of Truncation Keywords ���
Unique Keywords ����
Maximum Cache Hit Percent ����
Description Mean Median
Keywords per Query ���� �
Result Size per Query ����� ��
Matches per Keyword ������� ����
Matches per Truncation Keyword ������� ����
Postings per Keyword ������� ����
Postings per Truncation Keyword ������� �����
Words Matched per Truncation Keyword ���� ��

Table �
 Statistical properties of the simulation trace�

Count� � Key� CITRENBAUM

Count� �� Key� CITRIN

Count� � Key� CITRINI

Count� � Key� CITRINOVITCH

Count� � Key� CITROEN

Figure �
 The number of postings for a sample set of words which appear in the author portion of the
documents�

documents� The number of bytes per document is roughly ������ The total database size can be �very
roughly	 estimated at ��� Gigabytes�
For the matching of queries� the total of lengths of the inverted lists �i�e� total number of postings	

read is important in determining the amount of work done in the matching process� As mentioned
earlier� we scanned the actual INSPEC inverted lists recording the number of postings and their �eld
designations� For example� Figure � shows a sample of the �le containing the number of postings for
words with the abstract �eld designation� Table � lists for each �eld designation some statistics on the
postings�
To drive our simulation� we combine the information from the trace and postings �les into a single

trace �le that is easy to use� Figure � shows a sample of this �nal trace �le� For example� the �rst line
of the example shows query number �� where user �� issued a query which had � results� The query
referred to the author CITRIN and the subject BROMINE� The value ������ is a hashed �but unique	
value of the keyword CITRIN and is used to determine the disk or disks which the inverted list or
lists will reside for the various index organizations� The next number� ��� is the number of posting for
CITRIN that have the author �eld designation� The �nal number� ��� is the total number of posting
entries for CITRIN� i�e�� the total number of documents where CITRIN appears� regardless of the �eld
designation� The number of postings for a subject �eld designation is the total of the postings for the
constituent parts� Note that this number is typically much higher than the number of documents that
match� due to the duplication of matches in the various �eld designations� For this sample trace �le�
two cache hits would occur �one for author CITRIN and one for subject EXAFS	 assuming that the
cache is initially empty�

� �� � � CITRIN author 	�
�	� �� �� � � BROMINE subject 	��
	� ���� ���� �

 �� � � CITRIN author 	�
�	� �� �� � � EXAFS subject 	���	� �		� �		� �

�� �� 	� � EXAFS subject 	���	� �		� �		� � � CHLORINE subject 	����� ���� ��
� �

Figure �
 Queries � through �� of the trace input to the simulation�

�

�� ��	�
� �������	 CMD� fin a citrin and s exafs

�� ��	�
� �������� SEA� CPU�	�	� Res��� Find AUTHOR citrin and SUBJECT exafs

�� ��	�
� �������� CMD� �DISPLAY �

Figure �
 Some example data from the raw trace� The �rst column is a unique integer representing the
user login�

Total Raw Trace Queries ���� ����� �
Discarded Queries ��� ��� �
Nonexistent Terms ���� ���� �
Simulation Experiment Queries ���� ���� �

Table �
 Breakdown of raw trace and simulation trace�

in the �rst line� �The trace repeats the query here�	 The third line reports that the result of the query
�short descriptions of each document in this case	 where shown to the user�
To drive the simulation� only a subset of the raw trace is considered� Queries that have terms

with no associated inverted list ������	 �e�g� misspellings	 are ignored since the FOLIO query parser
catches these queries and rejects them� Thus� they have no impact on performance beyond a small
CPU overhead for parsing� To be more precise� we assume a negligible performance cost for detecting
query terms with no associated inverted list� Queries consisting of boolean AND operations on terms
or truncation matching of terms are simulated� We also simulate queries which are continuations of
previous queries or are subject queries �discussed later in this section	� We do not consider ���� of the
queries which are errors in the log� phrase queries� boolean OR queries� boolean NOT queries� or queries
on chemical compounds� We believe that these queries have very little impact on the performance results
presented here� The raw trace contained ���� query commands� The remaining queries used to drive
the simulation constitute ����� of the original queries �or ����� of the queries not caught as a zero
result by the parser	�
One important feature of FOLIO is the designation of the subject �eld in query matching� This

�eld designation is a syntactic shorthand for matching the union of the �eld designations abstract�
conference� freeterm� document organization� thesaurus� and title simultaneously� Thus� the query �nd
subject theory is conceptually a shorthand for the query �nd abstract theory or conference theory or
freeterm theory or document organization theory or thesaurus theory or title theory� The subject �eld
designation constitutes ����� of all �eld designations� Subject queries are handled by our simulation
�see Section �	�
Two other features features of FOLIO handled by our simulation are truncation matching and contin�

uation queries� A truncation match is a keyword containing a ��� that matches zero or more characters�
Thus� the keyword yak� matches yak� yakube� etc� The addition of truncations can introduce perfor�
mance problems and we discuss a speci�c data structure to handle them in Section �� A continuation
query adds extra conditions to the current query by using the command and instead of the command
�nd� For example� the query �nd subject exafs produces ���� answers� This query can be re�ned with
the continuation query and author citrin which produces the same � results as the query �nd author
citrin and subject exafs� The simulation of this feature is discussed in Section ��
Some statistics of the traces will be helpful in interpreting the results of the simulation� Table �

summarizes some properties of the query traces� To our surprise� the mean number of keywords per
query is less than two and the median is two� However� note that each use of the subject �eld designation
is a shorthand for a query with multiple keywords� The mean size of the result of a query is large �over
seven hundred	 but the median result size is small at ��� We suspect that the queries with large results
are immediately re�ned to produce smaller results�
Issuing multiple queries to re�ne an answer set is common in information retrieval systems� This

query re�nement behavior by a user provides an opportunity for the caching of inverted lists� Of all the
keywords appearing in the traces� ����� of them are duplicate appearances� Thus� if we cached every
single read of an inverted list in the system we would achieve a maximum cache hit ratio of ����� over
the entire trace� �While this �gure is not a high as those reported in the �le system literature� Section �
shows that caching does have a signi�cant impact on mean throughput�	
For the database� total number of documents for the INSPEC database is reported at ���������

�

�� What is the impact of caching inverted lists in main memory� Is there enough locality of reference
between queries to make caching worthwhile�

�� What is a good data structure for truncation matching� What is the impact of truncation match�
ing on performance�

Our evaluation is based on query traces from the FOLIO library information retrieval system at
Stanford University� run against a detailed event�driven simulation of the hardware and query processing�
The trace data is described in Section �� while our processing model is described in Section �� The
simulation model is presented in Section �� Our results are given in Section � and conclusions in
Section ��

��� Previous Work

A substantial amount of work has been done in the general area of Information Retrieval� For a good
explanation of the current state of the art in terms of improved precision and recall� see �Salton� �����
Turtle and Croft� ������
Not that much has published on distributing inverted lists and searching them in parallel� The

four index organization we have described are from �Tomasic and Garcia�Molina� ����b�� Reference
�Stone� ����� discusses some of the basic issues� Burkowski simulates a shared�nothing information
retrieval system �Burkowski� ����� to study the performance impact of the placement of documents and
inverted indexes� Jeong and Omiecinski �Jeong and Omiecinski� ����� independently study for a shared�
everything architecture similar issues of the physical index design as in this article� Work has also been
done on searching with a variety of other architectures� e�g�� processor farms �Cringean et al�� ������
�ne�grained parallelism �Stan�ll� ������ and shared�memory multiprocessors �DeFazio and Hull� ������
Here we study an abstracts database as opposed to a full�text system �Tomasic and Garcia�Molina� ����b��

This article extends the preliminary results reported in �Tomasic and Garcia�Molina� ����a�� In a full�
text system� every single word occurrence is indexed� In an abstracts system� only the abstract is
indexed� If we compare two systems with the same number of documents� the index in the full�text case
will be much larger� Even if the volume of raw data is equal �for example� abstracts that are a tenth
of the size of the full�text documents but there are �� times as many abstracts	� the inverted lists for
the abstracts case will still be smaller� This is because repeated words are indexed in the full�text case
only� For instance� if a word appears �� times in a document� there will be �� index entries �pointing
to each occurrence	 in the full�text case� and only one entry in the abstracts case� As we will see� the
fact that inverted lists are shorter for abstracts dramatically changes the relative performance of the
various organizations� �Emrath �Emrath� ����� focuses on the performance trade�o�s involved in partial
or complete indexing�	

� Data

Stanford University provides on�campus access to its information retrieval system FOLIO from terminals
in libraries and from workstations via telnet sessions� FOLIO gives access to several databases� one of
these is INSPEC� an abstracts database for technical documents in disciplines such as physics� electrical
engineering� and computer science� A trace of all user commands for the INSPEC database were
collected from ������� to �������� In addition� the number of postings of every word in the INSPEC
database inverted index was also collected�
Each INSPEC abstract is divided into �elds such as title and author	 One of these �elds is called

abstract	 To avoid confusion between the �eld and the complete record name� we will henceforth refer
to the complete abstract as the document� In a query� a user speci�es the �eld where each word should
appear� This is called the �eld designation�
An example of the raw trace is shown in Figure �� The �rst column is the user identi�cation�� the

second and third columns are the date and time of the command� and the fourth column speci�es the
type of data� The �rst line of the �gure shows that user �� issued a query for author Citrin and the
subject exafs� The user types �n as shorthand for �nd� a as a shorthand for the author �eld designation
and s for subject� The second line of the raw trace shows that six documents are the result for the query

�To insure the privacy of the data� the user login identi�cation has been replaced by a unique integer�

�

Index Disk Inverted Lists in word�
Id� Field� form

Disk d � a
 ��� A	� ��� B	� theory
 ��� T	�
system
 ��� A	� ��� T	� ��� B	

d � a
 ��� B	� theory
 ��� A	� ��� T	� ��� B	
d � a
 ��� B	� hard
 ��� T	� ��� B	
d � a
 ��� B	�

Host d � a
 ��� A	� ��� B	� ��� B	�
I�O bus theory
 ��� T	� ��� A	� ��� T	� ��� B	

d � system
 ��� A	� ��� T	� ��� B	
d � a
 ��� B	� ��� B	
d � hard
 ��� T	� ��� B	

System d � a
 ��� A	� ��� B	� ��� B	� ��� B	� ��� B	
d � system
 ��� A	� ��� T	� ��� B	
d � hard
 ��� T	� ��� B	
d � theory
 ��� T	� ��� A	� ��� T	� ��� B	

Table �
 The four inverted index organizations for the words �a�� �hard�� �system�� and �theory� in
Figures � and �� The �eld �A� is for author� �T! is for title� and �B� is for abstract� �Other lists are
not shown�	

the hosts�	 The subqueries are processed in the same manner as the other index organizations� When
the answers to the subqueries are returned to the home host� another intersection is performed on the
answers to produce the �nal answer�
To illustrate� consider the query �nd abstract system and title theory issued to the home host CPU

�� In the system index organization two subqueries are issued� One is the subquery �nd abstract system
and is sent to the host CPU �� the other is the subquery �nd title theory and is sent to host CPU ��
The subqueries are processed in parallel� CPU � generates the subquery answer �the list of matching
abstracts	 ��	 and CPU � generates the answer ��� �	� Both answers are transmitted to the home host
which constructs the intersection of the answers producing the answer ��	 indicating that document �
matched the query� In the host index organization two subqueries are also issued� each consisting of
the query �nd title theory and abstract system� The subqueries are processed in parallel� Host CPU �
transmits the answer ��	 and host CPU � transmits the empty answer� The home host concatenates
the two answers to produce �nal answer to the query�
Note that the abstracts themselves do not have to reside on the same disks as the inverted index�

That is� for constructing the various index organizations� abstracts were logically assigned to disks or
hosts� but they can be physically stored wherever we wish� Also note that the abstracts themselves
are not accessed during query processing� to see an abstract the user must issue a separate display
command� In this article we assume that abstracts are stored on separate disks �a common technique
in practice	 and we only study query processing� i�e�� we ignore display commands�
In this article we address �ve basic types of questions

�� What index organization yields best performance� In the system organization� typically a query
only involves a subset of the hosts� leaving the irrelevant hosts free to process other queries� On
the other hand� the other strategies allow more intra�query parallelism and may generate more
uniform loads at the hosts� So which one leads to lower response times or higher throughputs�
Also� there are various optimizations to the system organization� dealing with the order in which
lists are fetched and intersected �see Section �	� How do these improve performance�

�� What are the critical hardware resources� What is the optimal arrangement for a given set
of hardware resources� In particular� many current information retrieval systems run on large
mainframes� Can we really improve performance by having instead a collection of less expensive
machines� implementing distributed indexes�

�� How well do the algorithms and hardware scale as the database size grows� As mentioned earlier�
current data collections are growing rapidly� and it is not clear what index organization scales
best� or whether it is more important to add disk or processor or communication resources as the
database grows�

�

id�
 author� A� System Title� Theory of System ab�

stract� A practical system good for one year or one
million dollars whichever comes �rst�

id� � author� B� Theory Title� Theory of Theory ab�

stract� A theory might be useful might not�

id� � author� C� Hardware Title� Hard Ware abstract�

A very hard piece of ware�

id� � author� D� Student Title� Thesis abstract� A
direct extension of my advisor�s will�

Figure �
 A example set of four documents�

LAN

 d 0 d 1 d 2 d 3

CPU 0 CPU 1
cache cache

BUS 0 BUS 1

Figure �
 An example hardware con�guration�

�� Host Organization� An inverted index is constructed for the abstracts assigned to the disks of
each host� The inverted lists are spread across the disks of the host�

�� System Organization� In the previous organizations� for each word� there are multiple inverted
lists� one at each disk� I�O bus� or host� In the system organization� a single inverted list is
generated for each word� Each inverted list is allotted to one of the disks of the system�

To illustrate these organizations� consider the four documents in Figure �� Each document contains
four �elds
 author� title� abstract� and id� An example hardware organization is shown Figure �� it
has two hosts� labeled CPU � and CPU �� each with a cache� one I�O bus and two disks� Table �
shows the various inverted index organizations for the �gures� �The Host and I�O Bus organization are
equivalent in this example since each host has a single I�O bus�	 Note that in this table� each entry in
an inverted list is typed with the �eld name where the word appears ��A� for author� �T� for title� �B�
for abstract	�
For instance� the word a appears �ve times in the example set of documents� The word appears in

each abstract and it appears in the author �eld for document �� For the system organization� all the
appearances of a word are in the same inverted list� In the table this inverted list in located on disk d
�� For a given keyword and �eld designation� all the corresponding entries in the inverted list are the
postings for that keyword and �eld designation� Thus� this inverted index organization combines all the
postings of a word for all the �eld designations into a single inverted list� In the other organizations�
the a list is split� For example� in the Host organization� there is one a list covering abstracts in disks
d� and d� �stored in d� in this example	� and another a list for the d�� d� abstracts �stored in d�	�
To answer a query originating on a host �the home host	 in the disk� I�O bus� and host index

organizations� a copy of the query is made for each host� This subquery is sent to each host which then
matches the subquery against its inverted lists� Since queries consist of keyword��eld pairs connected
by boolean ANDs� matching is accomplished by constructing the intersection of the inverted lists� The
result of the intersection� the answer to the subquery� is then transmitted to the home host� The home
host concatenates all the subquery answers to produce the �nal answer�
To answer a query in the system index organization� a subquery is sent to each host relevant to the

query� �A host is relevant to a query if the inverted list for at least one keyword in the query resides on

�

Performance Issues in Distributed Shared�Nothing Information

Retrieval Systems �

Anthony Tomasicyand Hector Garcia�Molina

Stanford University Department of Computer Science

August �� ����

Abstract

Many information retrieval systems provides access to abstracts� For example Stanford Uni�
versity through its FOLIO system provides access to the INSPEC database of abstracts of the
literature on physics computer science electrical engineering etc� In this article this database is
studied by using a trace�driven simulation� We focus on a physical index design which accommodates
truncations inverted index caching and database scaling in a distributed shared�nothing system�
All three issues are shown to have a strong e�ect on response time and throughput� Database
scaling is explored in two ways� One way assumes an �optimal� con�guration for a single host and
then linearly scales the database by duplicating the host architecture as needed� The second way
determines the optimal number of hosts given a �xed database size�

� Introduction

Information retrieval �IR	 systems� of the type found in libraries� provide indexed access to the abstracts
of documents� Information vendors such as Dialog and BRS Search also provide access to such abstracts
databases� The number of such databases is rapidly growing� as more and more information is stored
digitally� At the same time� an increasing number of users have access to these databases through the
networks� To handle the increased load� a distributed architecture can be used� dispersing the data and
index structures across several computers and performing searches in parallel� This article studies the
performance trade�o�s in such a shared�nothing distributed information retrieval system� By shared�
nothing� we mean that processors do not share memory or disks� Our work complements an earlier
paper �Tomasic and Garcia�Molina� ����b� where a full�text information retrieval system was studied
�where an entire document is indexed� as opposed to just its abstract	� Research in IR has given rise to
many retrieval models� e�g� the boolean model� the vector space model� and probabilistic models� Since
the user data used here is based on a boolean model of abstract�only databases� we consider only this
class of systems in this article�
An abstracts database typically uses an inverted index to speed up query processing �see �Frakes and Baeza�Yates� �����

for a survey of access methods for text	�� For each word� an inverted list is constructed that gives all
the abstracts in which the word appears� In a multiprocessor environment� the inverted lists can be
distributed in various ways

�� Disk Organization� The abstracts are logically partitioned by physical disk� that is� each disk is
assigned a �hopefully equal	 number of abstracts� An inverted index is then constructed for the
abstracts of each disk�

�� I�O Bus Organization� Each I�O bus controls a subset of disks� An inverted index is constructed
for all the abstracts of the disks on each I�O bus� Each inverted list is stored on a disk in the I�O
bus group�

�This research was partially supported by the Defense Advanced Research Projects Agency of the Department of

Defense under Contract No� DABT������C���	
�
yCurrent address� INRIA Rocquencourt� ��
� Le Chesnay� France� e�mail� Anthony�Tomasic�inria�fr
�Other data structures� such as signature schemes and PATRICIA trees� can also be used for IR� We focus on an

inverted index in this article�

�

