
Algorithms for k/n Power-Hours

Ben Blum Dr. William Lovas, Ph.D.
Chris Martens Dr. Tom Murphy VII, Ph.D.

1 April 2012

Abstract

Drinking games, while a fun activities, can lead to
memory leaks if performed to excess. In particular
the Power Hour, in which a shot of beer is drunk
every minute for an hour, may be modified to al-
low potentially arbitrarily customizably safely enjoy-
able consumption. We sketch some known solutions
and avenues for future research. ALSO WE ARE
DRINKING RIGHT NOW AND THIS PAPER WAS
COMPLETED IN ONE HOUR

Keywords: alcohol in computer science, algorithms for

the real world, chemically-assisted reasoning, drinking

game theory, hyper-driven devices

1 Introduction

A power hour1 is a drinking game in which partici-
pants drink a shot of beer every minute for an hour,
usually based on musical cues.

Using the standard of one shot = one fluid ounce
of 4% alcohol, a power hour equals approximately
five beers total. For an average-mass human with a
well-developed alcohol tolerance, the game results in
a pleasant level of inebriation.2

-1Copyright c© 2012 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2012 with the permission of the Asso-
ciation for Computational Heresy; IEEEEEE! press, Verlag-
Verlag volume no. 0x40-2A. £0.00

1Not to be confused with power sets, Powerade, Powerpuff
Girls, or Mighty Morphin’ Power Rangers

2Anonymous personal correspondance

However, in some cases, the game may result in un-
comfortable levels of inebriation. Participants there-
fore may wish to reduce the total amount of alcohol
consumed while still experiencing the process of col-
laborative inebration.

If, say, a participant wants to drink half as much
as everyone else, what options do they have avail-
able? One possibility is to simply drink once ev-
ery other song. This is problematic for two reasons.
The soft reason is that in the spirit of active partic-
ipation, they would ideally like to take some action
progressing their drunkenness at every song change.
See 3 for a formal discussion of this condition. A
more compelling reason is that humans in a state of
ever-increasing inebration probably cannot remem-
ber whether or not they drank last time due to im-
paired reasoning abilities3 Therefore, they must, as
a finite state automoton, determine their course of
action based solely on current state.

A known solution for the half power hour is to take
a different action based on shot glass state: fill when
the glass is empty and drink if the glass is full. This
elegant solution achieves the goal of consuming half
as much alcohol by the end but requires the par-
ticipant only to observe the most recent state, then
change that state in a single action.

The aim of this work is to generalize the 1/2 power
hour to general k/n (with m participants).

We provide some preliminary results, but primarily
we pose a call to action suggesting various avenues of
research.

3A non-judgmental reconstruction of drunken logic. Robert
J. Simmons. SIGBOVIK 2007. April 2007.

1



2 Desiderata

3 Desiderata

There are several properties we would like an algo-
rithm to satisfy in order to be considered a proper
power hour algorithm. In this section, we enumerate
these desiderata along with illustrative examples that
violate—and thus motivate—them. Without con-
straints, the space of potential power hour algorithms
is too large to be meaningfully analyzed and under-
stood; these desiderata serve to limit the space of
possible algorithms to those that are sufficiently sim-
ple and adequate to be implemented in a real-world
context.

In what follows, a power hour player is tasked with
taking an action each turn. Typically, a turn occurs
every minute. Each action involves some observation
of the current state and some change of state. The
classic power hour algorithm is for each action to be:
observe the empty shot glass in front of you, fill that
shot glass with beer, and drink that shot glass, re-
establishing the state invariant for the next round.

3.1 Discretion

The first and most important desideratum is that of
discretion: each player should drink only one shot
per turn. Anyone who has participated in a power
hour realizes the difficulty of drinking even a single
shot late in the game, and we wish to exclude algo-
rithms that require a player to exceed these natural
human limits.

An obvious violation is the 2-power hour (=
120/60-power hour), where a player must pour and
drink two shots each turn.

3.2 Simplicity

Relatedly, a power hour algorithm should consist of
only simple actions. There is some leeway in defining
precisely what it means for an action to be “simple”,
but the purpose of this constraint is to ensure maxi-
mal physical safety and minimal broken glass (desires
which are in synergistic harmony), so for example, in-
verting a full cup is disallowed, since the spilled beer

causes a sense of alarm, and stacking a cup on an up-
cup is unpermitted (e.g., ∩∪ ), since an up-cup does
not provide sufficient foundation for safe stacking.

3.3 Locality

For practical purposes, a player participating in a
proper power hour can perform only very simple ob-
servations: to that end, we posit the desideratum of
locality : a player’s action may depend only upon ob-
serving the state of the shot glass directly in front of
them, and not, say, the state of some other player’s
glass or some written memory. This desideratum rep-
resents a kind of “memory safety”: players need not
have too much memory from turn to turn, since in
our experience, they won’t.

3.4 Singularity

Simplicity and locality together suggest the desider-
atum of singularity : a player should have at most
one shot glass in front of them at any given moment.
Generalizations are possible: for instance, every shot
glass in front of a player must have the same state
(e.g., all filled, all empty, all inverted, etc.), but the
resultant protocols become prohibitively complex due
to the explosion of possible states and the necessity
of maintaining state invariants on each action.

3.5 Liveness

Another desideratum is the property of liveness: we
would like every player to drink infinitely often, in the
limit. The goal here is to ensure that every player
continues to enjoy in the camaraderie at all times,
and to a certain extend to maintain their buzz at a
smooth and constant level. Liveness does, however,
rule out many potential interesting algorithms like
the 0/60-power hour, the 1/60-power hour, etc.

3.6 Extensibility

In addition to bounding the lower limit of a player’s
drinking (liveness, above), we would like to bound
their upper limit: the desideratum of extensibility
captures this idea. Extensibility dictates that for any

2



generalized extension of the hour to n′ > n minutes,
there must be some further extension to n′′ ≥ n′

minutes such that after n′′ minutes, a player has con-
sumed k′′ drinks such that k′′/n′′ = k/n, exactly. In
other words, in the limit, a k/n-player must always
have drunk k/n times, or be on the way to drink-
ing k/n times. Extensibility rules out algorithms like
the 58/60-power hour, the 59/60-power hour, and the
61/60-power hour, where the player has some initial
sequence of actions before they enter their main loop.

In the case of non-trivial (i.e., non-zero) power
hours, extensibilty is a strictly stronger constraint
than liveness, since for any 0 < x ≤ 1, in the limit,
a player will eventually have to drink to maintain a
fraction of x drinks per turn.

3.7 Asynchrony

In the case of distributed power hour algorithms (as
in Section 5.1 and 4), we posit the desideratum of
asynchrony : a player’s action should not depend
on any coordination with other players. Formally,
and practically speaking, asynchrony requires that a
player’s action during a turn depend only upon the
observations that player could have made at the be-
ginning of the turn. Otherwise, you know, things just
get too, uh. . . complicated.

4 Known Results

Solo arrangements. In the solo case, we know ex-
actly what power hours are possible and which are
not. Let us exhaust these before moving onto the
more difficult distributed case.

0/60 Trivial, with multiple solutions. Start
with ∪, never fill it, and never drink.

1/60 Many solutions. For example, start
with ]. Drink on ], leave ∪upon see-
ing ∪.

2/60 Start with ]. On ], drink and leave
∪. On ∪, fill and drink, and leave ∩.
On ∩, do nothing.

3/60 Impossible. Would require four dis-
tinct states, but there are only three.

4...19/60 Even more impossible. XXX is 19 ac-
tually impossible?

20/60 Drinking one shot out of three. Start
with ]. On ], drink and leave ∪. On
∪, flip to ∩. On ∩, flip, fill, and leave
].

21...29/60 Even more impossible. XX are 21, 29
actually impossible?

30/60 Drinking every other shot. Start with
]. On ], drink and leave ∪. On ∪, fill
and leave ].

31...39/60 Super impossible.
40/60 Drinking two shots out of three. Start

with ]. On ], drink and leave ∪. On
∪, fill, drink, and flip to ∩. On ∩, flip,
fill, and leave ].

41...57/60 Totally impossible!
58/60 Symmetric to the 2/60 case. Start with

∩. On ∩, flip and leave ∪. On ∪, fill
and leave ]. On ], drink, fill, and
leave ].

59/60 Symmetric to the 1/60 case. Start with
∪. On ∪, fill and leave ]. On ], drink,
fill, and leave ].

60/60 Easy; this is a normal power-hour.
Start with ∪. On ∪, fill, drink, and
leave ∪.

Distributed algorithms. Generalizing to the
distributed case unlocks many more possibilities.
Even for just a small number of participants, it be-
comes quite difficult to exhaustively explore the pos-
sibilities. These algorithms are a class of finite state
machines, probably excluding analytical approaches
(note that it is not even simple to count the number
of possible strategies, since some are illegal because
they put more than one cup in front of a player, per-

3



haps in a rare configuration). Here we give some
known results to give a sense of what solutions look
like.

A problem in the distributed case consists of play-
ers P1, . . . Pm. Each Pi wants to perform a ki/n power
hour for the same global n, coordinating with the
other players.

First, observe that any participant in a distributed
setting can use a solo strategy and not interact with
the rest of the group. Thus, if ki is one of the the
possible solo cases above, this player can use that
strategy if the remaining players are able to solve the
smaller distributed problem. This if course includes
the case that every player wants to perform a k/n
power hour that is one of the possible solo cases.

With two players it is possible to perform power
hours that are not possible solo, however. For exam-
ple, two simultaneous 10/60 performances are achiev-
able as follows. Only use one shotglass. Each player
does the 20/60 strategy, transitioning ∩ to ∪, and ∪
to ]. A player receiving ] drinks and transitions to
∩. In each case, the single shotglass is passed to the
other player, cutting the normal 20/60 in half by split-
ting it evenly. ∩ to ∪ and place it in front of the other
player. This is the power of teamwork!!

More complex arrangements are possible, like
where you pass to a different dude depending on what
orientation the cup is in, and who knows what hap-
pens?!

5 Future Work

5.1 Distributed Algorithms

In future research we plan to study distributed algo-
rithms involving more than one person and/or more
than one shot-glass. With multiple people cooper-
ating during one power hour, we observe many ad-
ditional possibilities for tracking the state. Assume
that instead of 1 participant with one shot-glass, we
have p participants with q shot-glasses among them.

5.1.1 Rotation

5.1.2 Shotglass Interactions

There are also many combinations that may result
if we allow for a state to be represented by multiple
(presumed indistinguishable) shotglasses. As a basic
example, using two empty shotglasses, we can repre-
sent three states: ∪∪, and ∪∩, and ∩∩.

If we allow filling one or both of the cups in the
former two states, this allows for even more states,
but with less possibilities to transition between states
without drinking.

If we allow stacking of shotglasses, we enable even

more states:
∪
∪,
∪
∩,
∩
∪, and

∩
∩. In total, this allows for

seven states with two shotglasses.
This can be extended to arbitrarily high stacks,

with absurd consequences. We plan to hire a set the-
orist to study the interactions of countably infinite
and possibly even uncountably infinite stacks.

5.2 Controversy

As discussed in section 3, there are several constraints
on the legitimacy of power hour algorithms. In the
future we will consider potential algorithms that may
result if we relax these constraints.

5.2.1 Multiple Shots per Minute

If we extend the set of possible state transitions to
allow the participant to drink multiple times per
minute, we enable algorithms in which k > n. We
write (A, . . .Z)m to denote performing the actions A
through Z in sequence m times repeated.

The most basic example is to extend the classic
algorithm to enable a m ∗ n power hour, as follows.
On each tick, (fill, drink)m, and leave ∪.

We can also write algorithms for non-integral irreg-
ular fractional power hours. For a m/3 power hour
(with m ≥ 1): If ∩, flip and leave ∪. If ∪, fill and
leave ]. If ], drink, (fill, drink)m−1, flip, leave ∩.

However, the algorithm described above provides
poor load-balancing in the case of large m. We
can solve this problem by distributing the multiple-
drinks, as follows. (In the following description,
we assume m ∼= 1mod3, for simplicity.) If ∩,

4



flip, (fill, drink)(m−1)/3 and leave ∪. If ∪, fill,
(drink, fill)(m−1)/3 and leave ]. If ], drink, (fill,
drink)(m−1)/3, flip, leave ∩.

We postulate that a similar load-balancing algo-
rithm can be applied to any existing conventional al-
gorithm for k ≤ n.

5.2.2 Non-Extensibility

As discussed in section 4, there are certain algorithms
that provide results for k additively dependent on n.
The possibilities for these are also greatly expanded
given the techniques described above. One example
algorithm is shown below.

If ∩∩, stack and leave
∩
∩. If

∩
∩, flip the top cup and

leave
∪
∩. If

∪
∩, flip both cups and leave

∩
∪. If

∩
∪, flip

the top cup and leave
∪
∪. If

∪
∪, un-stack and leave ∪∪.

If ∪∪, fill both glasses and drink, leaving ∪∪.
With one participant using two cups, this causes

a 110/60 power hour. With two participants, one
drinking from each cup in the final step, this causes
a 55/60 power hour.

6 Conclusion

We have presented some algorithms for k/n Power
Hours, woohoo!

We wrote this paper in one hour while drinking
beer.

7 Cheers

Cheers to Rob Simmons for spreading the knowledge
of the original Half Power Hour formulation; to Jamie
Morgenstern, Rob Arnold, and Anders “POWAH
HOWAH” Schack-Nielsen for providing inspiration in
the form of Power Hour Participation; to Ali Spag-
nola for providing musical accompaniment to our
writing sprint.

5


