Multi-Task Active Learning

Yi Zhang

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

- Select samples for labeling
 - Optimize model performance given the new label

Active Learning

Uncertainty sampling

$$\underset{\mathbf{x} \in \mathbf{U}}{\operatorname{argmax}} \ \left[-\sum_{y} \hat{p}(Y = y | \mathbf{x}) \log_2 \hat{p}(Y = y | \mathbf{x}) \right]$$

Maximize: the reduction of model entropy on x

Query by committee (e.g., vote entropy)

$$\underset{\mathbf{x} \in \mathbf{U}}{\operatorname{argmax}} \ \left[-\sum_{y} \hat{p}_{C}(Y = y | \mathbf{x}) \log_{2} \hat{p}_{C}(Y = y | \mathbf{x}) \right]$$

Maximize: the reduction of version space

Density-weighted entropy

$$\underset{\mathbf{x} \in \mathbf{U}}{\operatorname{argmax}} \ \left[\hat{P}_{\mathbf{U}}(\mathbf{x}) \cdot - \sum_{y} \hat{p}(Y = y | \mathbf{x}) \log_2 \hat{p}(Y = y | \mathbf{x}) \right]$$

Maximize: approx. entropy reduction over U

Estimated error (uncertainty) reduction

$$\underset{\mathbf{x} \in \mathbf{U}}{\operatorname{argmin}} \left[\sum_{y} \hat{p}(Y = y | \mathbf{x}) \sum_{\mathbf{x}' \in \mathbf{U}} Uncertain^{+(\mathbf{x}, y)}(\mathbf{x}') \right]$$

Maximize: reduction of uncertainty over *U*

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

The Problem

Select a sample → labeling all tasks

Methods

- Alternating selection
 - Iterate over tasks, sample a few from each task

Methods

- Rank combination
 - Combine rankings/scores from all single-task ALs

- Learning two (dissimilar) tasks
 - Named entity recognition: CRFs
 - Parsing: Collins' parsing model
- Competitive AL methods
 - Random selection
 - One-side active learning: choose samples from one task, and require labels for all tasks
 - Separate AL in each task is not studied (!)
 - Alternating selection
 - Ranking combination

Unanswered Questions

- Why "choose-one, labeling-all"?
 - Authors: annotators may prefer to annotate the same sample for all tasks
- Why learning two dissimilar tasks together?
 - Outputs of one task may be useful for the other
 - Not studied in the paper

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

The Problem: Multi-Label Image Classification

Select any sample-label pair for labeling

Proposed Method

$$\underset{\mathbf{x} \in \mathbf{D}, y_s \in \mathbf{U}(\mathbf{x})}{\operatorname{argmax}} \left[\sum_{i=1}^{m} MI(y_i, y_s | y_{\mathbf{L}(\mathbf{x})}, \mathbf{x}) \right]$$

- **D**: the set of samples
- x: a sample in D
- U(x): unknown labels of x
- L(x): known labels of x
- m: number of tasks
- y_s: a selected label from U(x)
- y_i: the label of the ith task (for a sample x)

- Why maximizing Mutual Information?
 - Connecting Bayes (binary) classification error to entropy and MI (Hellman and Raviv, 1970)

$$\mathcal{E}\left(y_i|y_s;y_{L(\boldsymbol{x})},\boldsymbol{x}\right) \stackrel{-}{\leq} \frac{1}{2}H\left(y_i|y_s;y_{L(\boldsymbol{x})},\boldsymbol{x}\right)$$

Proposed Method

- Why maximizing Mutual Information?
 - Connecting Bayes (binary) classification error to entropy and MI (Hellman and Raviv, 1970)

$$\mathcal{E}\left(y_i|y_s;y_{L(\boldsymbol{x})},\boldsymbol{x}\right) \stackrel{-}{\leq} \frac{1}{2}H\left(y_i|y_s;y_{L(\boldsymbol{x})},\boldsymbol{x}\right)$$

$$\mathcal{E}\left(\mathbf{y}|y_s;y_{L(\mathbf{x})},\mathbf{x}\right)$$

$$\stackrel{(1)}{=} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E} \left(y_i | y_s; y_{L(\mathbf{x})}, \mathbf{x} \right)$$

$$\stackrel{(2)}{\leq} \frac{1}{2m} \sum_{i=1}^{m} H\left(y_i | y_s; y_{L(\boldsymbol{x})}, \boldsymbol{x}\right)$$

$$\stackrel{(3)}{=} \frac{1}{2m} \sum_{i=1}^{m} \left\{ H\left(y_i | y_{L(x)}, x\right) - MI\left(y_i; y_s | y_{L(x)}, x\right) \right\}$$

Compare: maximize the reduction of entropy

Modeling Joint Label Probability

$$\underset{\mathbf{x} \in \mathbf{D}, y_s \in \mathbf{U}(\mathbf{x})}{\operatorname{argmax}} \left[\sum_{i=1}^{m} MI(y_i, y_s | y_{\mathbf{L}(\mathbf{x})}, \mathbf{x}) \right]$$

• But how to compute:

$$MI(y_i, y_s | y_{\mathbf{L}(\mathbf{x})}, \mathbf{x})$$

Need the joint conditional probability of labels

$$\hat{p}(\mathbf{y}|\mathbf{x}) = \hat{p}(y_1, y_2, \dots, y_m|\mathbf{x})$$

Modeling Joint Label Probability

Linear maximum entropy model

$$\hat{P}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp \left(\mathbf{y}^T(\mathbf{b} + R\mathbf{y} + W\mathbf{x})\right)$$

Kernelized version

$$\hat{P}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(\mathbf{y}^T(\mathbf{b} + R\mathbf{y}) + \mathbf{y}^T K(W, \mathbf{x}))$$

EM for incomplete labels

- Data
 - Image scene classification
 - Gene function classification
- Two competitive AL methods
 - Random selection of sample-label pairs
 - Choose one sample, labeling all tasks for it
 - Separate AL in each task is not studied (!)

Discussion

- Maximizing the joint mutual information is reasonable
- Directly estimate the joint label probability
 - Recognize the correlation between labels
 - Need more labeled examples
 - What if # tasks is large?
 - Cannot use specialized models for each task
 - Can we use external knowledge to couple tasks?

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

Constraint-Driven Multi-Task Active Learning

- Multiple tasks Y₁, Y₂, ..., Y_m
- Learners for each task $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_m$
- A set of constraints C among tasks
- May have new tasks to launch

Value of Information (VOI) for Active Learning

- Single-task AL
 - Value of information (VOI) for labeling a sample x

$$VOI(Y, \mathbf{x}) = VOI(\mathbf{x}) = \sum_{y \in Dom(Y)} P(Y = y | \mathbf{x}) R(Y = y, \mathbf{x})$$

Value of Information (VOI) for Active Learning

- Single-task AL
 - Value of information (VOI) for labeling a sample x

$$VOI(Y, \mathbf{x}) = VOI(\mathbf{x}) = \sum_{y \in Dom(Y)} P(Y = y | \mathbf{x}) R(Y = y, \mathbf{x})$$

• Reward R(Y=y, x), e.g., how surprising it is?

$$R(Y = y, \mathbf{x}) = -\log_2 \hat{p}(Y = y|\mathbf{x})$$

Value of Information (VOI) for Active Learning

- Single-task AL
 - Value of information (VOI) for labeling a sample x

$$VOI(Y, \mathbf{x}) = VOI(\mathbf{x}) = \sum_{y \in Dom(Y)} P(Y = y | \mathbf{x}) R(Y = y, \mathbf{x})$$

• Reward R(Y=y, x), e.g., how surprising it is?

$$R(Y = y, \mathbf{x}) = -\log_2 \hat{p}(Y = y|\mathbf{x})$$

• Finally, replace P(Y=y|x) with \hat{P}

$$VOI(\mathbf{x}) = \sum_{y \in Dom(Y)} -\hat{p}(Y = y|\mathbf{x}) \log_2 \hat{p}(Y = y|\mathbf{x})$$

Constraint-Driven Active Learning

Multiple tasks with constraints

$$VOI(Y_i, \mathbf{x}) = \sum_{y_i \in Dom(Y_i)} P(Y_i = y_i | \mathbf{x}) R(Y_i = y_i, \mathbf{x})$$
$$\mathbf{x} \in \mathbf{D}, Y_i \in U(\mathbf{x})$$

Probability estimate of outcomes

$$P(Y_i = y_i | \mathbf{x}) = \begin{cases} \hat{p}_i(Y_i = y_i | \mathbf{x}) & \text{if } Y_i \text{ is a learned task} \\ \frac{1}{|Dom(Y_i)|} & \text{if } Y_i \text{ is a new task} \end{cases}$$

Constraint-Driven Active Learning

• Reward function R(y, x) in:

$$VOI(Y_i, \mathbf{x}) = \sum_{y_i \in Dom(Y_i)} P(Y_i = y_i | \mathbf{x}) R(Y_i = y_i, \mathbf{x})$$

Constraint-Driven Active Learning

Propagate rewards via constraints

$$R(Y_i = y_i, \mathbf{x}) = \sum_{(Y_j = y_j) \in Prop(Y_i = y_i, \mathbf{x}, \mathbf{C})} -\log_2 \hat{p}_j(Y_j = y_j | \mathbf{x})$$

$$Prop(Y_i = y_i, \mathbf{x}, \mathbf{C}) = \{(Y_j = y_j) | (Y_i = y_i) \dashrightarrow_{\mathbf{C}} (Y_j = y_j), Y_j \in \mathbf{U}(\mathbf{x}) \}$$

Constraint-Driven Active Learning

Multi-task AL with constraints

$$VOI(Y_i, \mathbf{x}) = \sum_{y_i \in Dom(Y_i)} \hat{p}_i(Y_i = y_i | \mathbf{x}) \sum_{(Y_j = y_j) \in Prop(Y_i = y_i, \mathbf{C})} -\log_2 \hat{p}_j(Y_j = y_j | \mathbf{x})$$

$$\mathbf{x} \in \mathbf{D}, Y_i \in U(\mathbf{x})$$

- Recognize inconsistency of among tasks
- Launch new tasks
- Favor poorly performed tasks, and "pivot" tasks
- Density-weighted measure?
- Use state-of-the-art learners for single tasks

- Four named entity recognition tasks
 - "Animal"
 - "Mammal"
 - "Food"
 - "Celebrity"
- Constraints
 - 1 inheritance, 5 mutual exclusion
 - Lead to 12 propagation rules (plus 1 identity rule)

- Competitive methods for AL
 - VOI of sample-task pairs with constraints
 - VOI of sample-task pairs without constraints
 - Single-task AL

$$VOI(Y_i, \mathbf{x}) = \sum_{y_i \in Dom(Y_i)} \hat{p}_i(Y_i = y_i | \mathbf{x}) \sum_{(Y_j = y_j) \in Prop(Y_i = y_i, \mathbf{C})} -\log_2 \hat{p}_j(Y_j = y_j | \mathbf{x})$$

Results: MAP on animal, food and celebrity

Results: MAP on all four tasks

- Analysis
 - True labels from the NNLL system
 - 90% precision for "mammal"
 - 10% label noise on the task "mammal"
 - Tasks are generally "easy"
 - Positive examples are highly homogenous

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

- Which scenario is reasonable?
 - Choose one sample, label all tasks
 - Arbitrary sample-label pairs

- Costs for labeling multi tasks on a sample x
 - x is a long document

- Costs for labeling multi tasks on a sample x
 - x is a word or an image

- Learn a more realistic cost function?
- Active learning aware of labeling costs?

Outline

- Active Learning
- Multi-Task Active Learning
 - Linguistic Annotations (ACL' 08)
 - Image Classification (CVPR' 08)
- Current Work and Discussions
 - Constraint-Driven Active Learning Across Tasks
 - Cost-Sensitive Active Learning Across Tasks
 - Active Learning of Constraints and Categories

Active Constraint Learning

- New constraints/rules are highly valuable
- Find significant rules and avoid false discovery
 - Oversearching (Quinlan, et al. IJCAl' 95)
 - Multiple comparisons (Jensen, et al. MLJ' 00)
 - Statistical tests (Webb, MLJ' 06)
- Combining first-order logic with graphical models
 - Bayesian logic programs (logic + BN)
 - Markov logic networks (logic + MRF)
 - Structure sparsity on graphs?

Active Category Detection

- Automatically detect new categories
- Clustering
 - High-dimensional space
 - Co-clustering/bi-clustering
 - Local search vs. global partition
- Subgraph/community detection
 - A huge bipartite graph
 - Optimize modularity of the graph
 - Overlapping communities?

Thanks!

• Questions?

