Ontology Extension for Reading the Web

Mohamed Thahir

Outline

- Traditional and Open Relation Extraction
- Read the Web Relation Extraction
- Experimental Results
- Coupled learning of Predicates
- Challenges and ongoing work

Traditional Relation Extraction

- A relation is instantiated with a set of manually provided positive and negative examples
- city "capital of" Country Positive Seeds: {"washington d.c, USA";"New Delhi, India"...} Negative Seeds: {"USA, Canada";"London, India"....}

Open Relation Extraction

- Proposed by Banko et.al 2007
- A classifier is built which given the entities and their context, identifies if there a valid relation
- Performs "Unlexicalized" extraction
- E1 Context E2 Some Features:
 - Part of Speech (POS) tags in 'Context'
 - Number of tokens and stop words in 'Context'
 - POS tag to left of E1 and to right of E2

Comparison

- Banko et.al 2008 "TradeOff between Open and Traditional RE"
- Comparison between Traditional (R1-CRF) and Open RE (O-CRF)

Averaged results for 4 common relations

O-CRF (P)		R1-CRF (P)	R1-CRF (R)	Train Ex
75.0	18.4	73.9	58.4	5930

Open RE vs. Traditional RE

Pros:

- Open RE can scale to the size of the web (hundreds of thousands of relation predicates)
- Does not require human input unlike traditional RE
- Pretty reasonable level of precision

Open RE vs. Traditional RE

Cons:

- Open RE has much lower recall
- 30% of extracted tuples are not well-formed (does not imply a relation)
 - (demands, securing of, border)
 - (29, dropped, instruments)
- 87% of well-formed tuples are abstract/ underspecified
 - (Einstein, derived, theory) abstract tuple
 - (Washington dc, capital of, USA) concrete tuple

RTW Relation Extraction

Combine beneficial aspects of Traditional and Open Relation Extraction with RTW

- Find new Relation Predicates automatically
- Also extract positive seed examples and negative seed examples automatically
- Leverage the constrained & coupled learning offered by RTW
- Improve learning of the existing category and relation predicates as well

Actor "stars in" Movie
Actor "starring in" Movie
Movie "movie" Actor
Actor "praised" Movie
Actor "sang in" Movie

- Patterns which are rare are removed
- Patterns which have either a very small Domain or very small Range are removed
 - Removes many irrelevant patterns (caused due to ambiguity)

NP "was engulfed in" flames

Vehicle Sportsteam

Removes very specific patterns

	starring	stars in	movie	sang in	praised
DeCaprio:Titanic	10	22	15	0	2
Depp:Pirates of	22	10	19	0	0
Arnold:Terminat.	12	15	20	0	1
Arnold:Titanic	0	0	0	0	6
X:Y	0	0	0	7	3
XX:YY	3	5	2	0	0

	starring	stars in	movie	sang in	praised
DeCaprio:Titanic	10	22	15	0	2
Depp:Pirates of	7.2	10	19	0	0
Arnold:Terminat.	12	15	20	0	1
Arnold:Titanic	0	0	0	0	6
X:Y	0	0	0	7	3
XX:YY	3	5	2	0	0

- TF/IDF Normalization
- K-means clustering

- Each cluster with sufficient instances is taken as a new relation predicate (*NR*)
- Instances near the centroid of the cluster are taken as seed instances
- Relations whose domain and range are mutually exclusive to the domain and range of NR are considered as mutually exclusive for NR
- NR is introduced to RTW system as a new predicate

RTW Category Instance Promotion

Movie category predicate classifier

RTW Relation Instance Promotion

Actor-Movie relation predicate classifier

New Relation helps learning new Category instances

Experimental Results

- Improved learning for existing category predicates
- Validation without running the RTW
- Actor : Movie predicate and its high confidence relation pattern set R
- Obtained all instances of "NP1 Context NP2" Where,
 - Context is in R
 - Either NP1 or NP2 is a promoted Actor instance
 - List the other NP that is not the Actor

Experimental Results

- ▶ 200+ new movie instances
- Constrained by the number of promoted Actor instances (~800 in CBL)
- Future iterations should cause further increase in Actor and Movie instances.
- > 80% precision
 - Negatives: comedy film
- RTW system category predicate classifiers would ideally not promote these negatives

RTW Relation Instance Promotion

Actor-Movie relation predicate classifier

 Promoted only when category classifier is reasonably confident about the instance

Experimental Results

Repeated same experiment for *Food–Food* relation predicates

Two relations were extracted

Relation	Patterns	Instances	Precision
Contains	"contain", "is rich in", "are rich in"	>700	~60%
typeOf	"Such as", "and other", "including"	>3000	~70%

Negatives: apple "contains" few calories

Learning more Relation Instances

- Learning of Horn Clause rules
- foodTreatsDisease(food, disease) existing predicate
- ▶ isTypeOf(food1,food2) learnt predicate
- isTypeOf(food1,food2) & foodTreatsDisease(food2,disease)
 - → foodTreatsDisease(food1,disease)
- Relation instances could be learnt even without direct contextual patterns connecting them (not possible in Open RE)

Coupled Learning of Predicates

- We saw that new relation predicates leads to learning more category & relation instances
- Learning more category & relation instances would also lead to learning new predicates

Coupled Learning of Predicates

- Many invalid relations are retrieved
- Un-lexicalized approaches to tackle them
- Banko & Etzioni 2008, suggest that 95% of relation patterns are classified into 8 categories

Rel. Frequency	Category	Pattern
37.8	E1 Verb E2	X established Y
22.8	E1 Noun+Prep E2	X settlement with Y
16.0	E1 Verb+Prep E2	X moved to Y
9.4	E1 Infinitive E2	X plans to acquire Y
5.2	E1 Modifier E2	X is Y winner

- Build a model which would estimate the validity of an extracted relation predicate
- Possible Features
 - Un–lexicalized features
 - One-One relations are mostly valid
 - Relations with Hearst's patterns (isA /part of relation – "such as") have high chance of being valid. (Hearst 1992)

Invalid Relations and causes

- Error in the promoted instances
 - CBL promotes Months of the year as countries
 - Organization 'meeting in' Country
 US Senate 'meeting in' November
 - Cluster all country instances using the category patterns. Months might form a unique sub cluster.
 - If the Organization instances link only to a particular sub-cluster then it indicates a weak relation
 - Above metric could be used as another feature

Invalid Relations and causes

- Ambiguity
 - Animal names match with sports team names
 - Animal 'won' trophy
 - Compare with other predicates which are mutex to it (Sportsteam won Trophy) and check if there have exactly matching patterns.
 - If the 'animal' instances associated with the animal 'won' trophy relation also have evidence that it is a 'Sportsteam' then this is a feature indicating the weakness of Animal 'won' trophy relation

Invalid Relations and causes

- Underspecified Relations
 - These relations require more entities to be useful
 - SportsTeam 'defeated' SportsTeam
 - X defeated Y, Y defeated X etc.
 - There should be temporal and location information for this relation to make sense