Reading the Web: Advanced Statistical Language Processing

www.cs.cmu.edu/~tom/rtw09/

Machine Learning 10-709

September 24, 2009

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

Today

- Coupled Semi-supervised training of multiple functions
 - Theory
 - Algorithms Co-training, CoEM, Co-regularization
- News:
 - class Wiki (courtesy Mehrbod Sharifi)
 - new software to access KBs
- HW for next week

When can Unlabeled Data help supervised learning?

Problem setting (the PAC learning setting):

- Set X of instances drawn from unknown distribution P(X)
- Wish to learn target function f: X→ Y (or, P(Y|X))
- Given a set H of possible hypotheses for f

Given:

- i.i.d. labeled examples $L = \{\langle x_1, y_1 \rangle \dots \langle x_m, y_m \rangle\}$
- i.i.d. unlabeled examples $U = \{x_{m+1}, \dots x_{m+n}\}$

Wish to find hypothesis with lowest true error:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \Pr_{x \in P(X)} [h(x) \neq f(x)]$$

One Idea: Coupled Training

- In some settings, available data features are redundant and we can train two classifiers based on disjoint features
- In this case, the two classifiers should agree on the classification for each unlabeled example
- Therefore, we can use the unlabeled data to constrain joint training of both classifiers

Professor Faloutsos

my advisor



U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

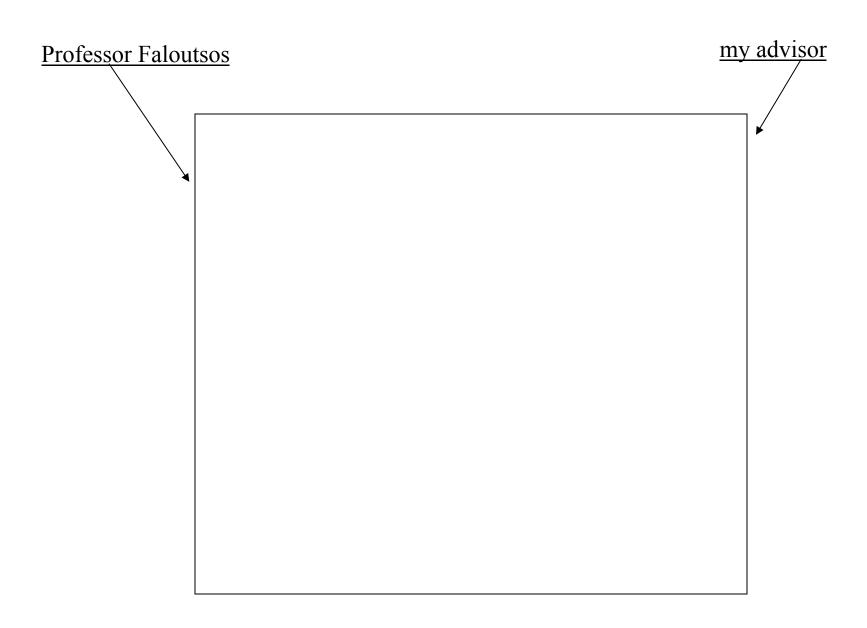
Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

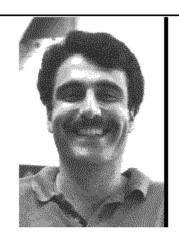
Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- · Data mining;





U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

Professor Faloutsos

my advisor



U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- · Data mining;

CoTraining Algorithm #1

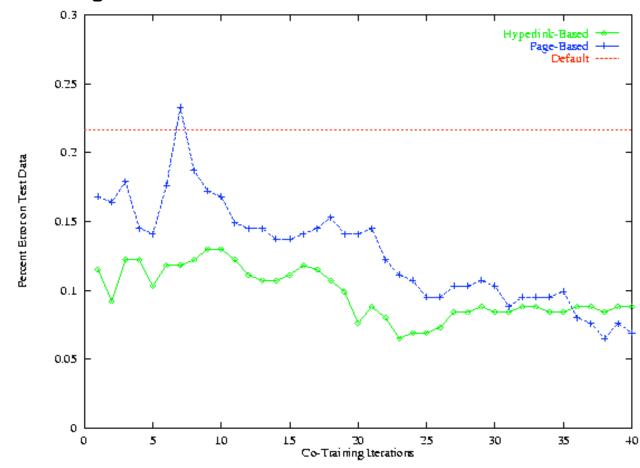
[Blum&Mitchell, 1998]

```
Given: labeled data L,
       unlabeled data U
Loop:
    Train g1 (hyperlink classifier) using L
    Train g2 (page classifier) using L
   Allow g1 to label p positive, n negative examps from U
   Allow g2 to label p positive, n negative examps from U
   Add these self-labeled examples to L
```

CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0%

Typical run:



CoTraining setting:

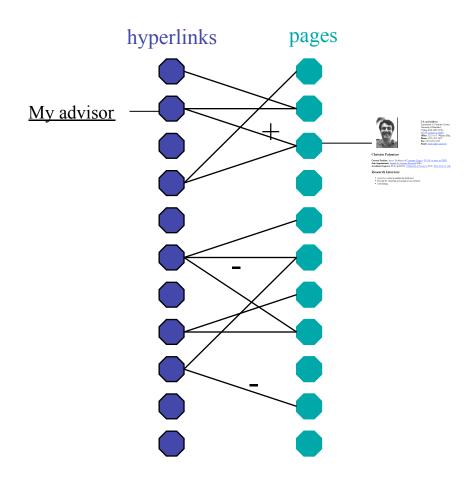
- wish to learn f: X → Y, given L and U drawn from P(X)
- features describing X can be partitioned (X = X1 x X2) such that f can be computed from either X1 or X2 $(\exists g_1, g_2)(\forall x \in X)$ $g_1(x_1) = f(x) = g_2(x_2)$

One result [Blum&Mitchell 1998]:

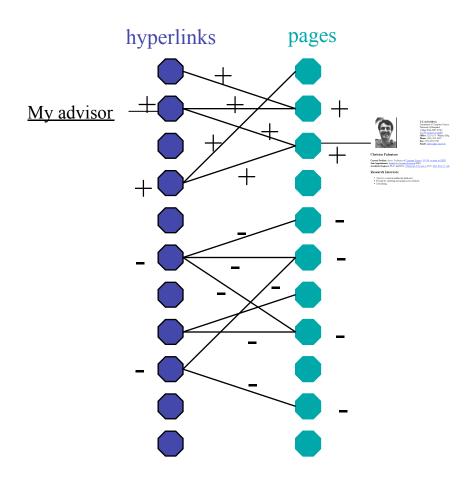
- If
 - X1 and X2 are conditionally independent given Y
- Classifier with accuracy > 0.5

- f is PAC learnable from noisy labeled data
- Then
 - f is PAC learnable from weak initial classifier plus a polynomial number of unlabeled examples

Example: Co-Training Rote Learners f1:hyperlink → Y, f2: page → Y



Example: Co-Training Rote Learner



Questions

- Draw a best-case bipartite graph
- Draw a worst-case bipartite graph
 - consistent with co-training assumptions
 - inconsistent with co-training assumption
- How does classifier accuracy depend on
 - number of labeled examples?
 - number of unlabeled examples?

Expected Rote CoTraining error given *m* examples

CoTraining setting:

learn
$$f: X \rightarrow Y$$

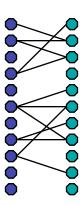
where
$$X = X_1 \times X_2$$

where x drawn from unknown distribution

and
$$\exists g_1, g_2 \ (\forall x)g_1(x_1) = g_2(x_2) = f(x)$$

$$E[error] \le \sum_{j} P(x \in g_{j}) (1 - P(x \in g_{j}))^{m}$$

Where g_j is the *j*th connected component of graph of L+U, m is number of labeled examples



How many unlabeled examples suffice?

Want to assure that connected components in the underlying distribution, G_D , are connected components in the observed sample, G_S

 $O(log(N)/\alpha)$ examples assure that with high probability, G_S has same connected components as G_D [Karger, 94]

N is size of G_D , α is min cut over all connected components of G_D

PAC Generalization Bounds on CoTraining

[Dasgupta et al., NIPS 2001]

This theorem assumes X1 and X2 are conditionally independent given Y

Theorem 1 With probability at least $1 - \delta$ over the choice of the sample S, we have that for all h_1 and h_2 , if $\gamma_i(h_1, h_2, \delta) > 0$ for $1 \le i \le k$ then (a) f is a permutation and (b) for all $1 \le i \le k$,

$$P(h_1 \neq i \mid f(y) = i, h_1 \neq \bot) \leq \frac{\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \bot) + \epsilon_i(h_1, h_2, \delta)}{\gamma_i(h_1, h_2, \delta)}.$$

The theorem states, in essence, that if the sample size is large, and h_1 and h_2 largely agree on the unlabeled data, then $\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \bot)$ is a good estimate of the error rate $P(h_1 \neq i \mid f(y) = i, h_1 \neq \bot)$.

$$\gamma_{i}(h_{1}, h_{2}, \delta) = \widehat{P}(h_{1} = i \mid h_{2} = i, h_{1} \neq \bot) - \widehat{P}(h_{1} \neq i \mid h_{2} = i, h_{1} \neq \bot) - 2\epsilon_{i}(h_{1}, h_{2}, \delta)$$

$$\epsilon_{i}(h_{1}, h_{2}, \delta) = \sqrt{\frac{(\ln 2)(|h_{1}| + |h_{2}|) + \ln \frac{2k}{\delta}}{2|S(h_{2} = i, h_{1} \neq \bot)|}}$$

Example 2: Learning to extract named entities

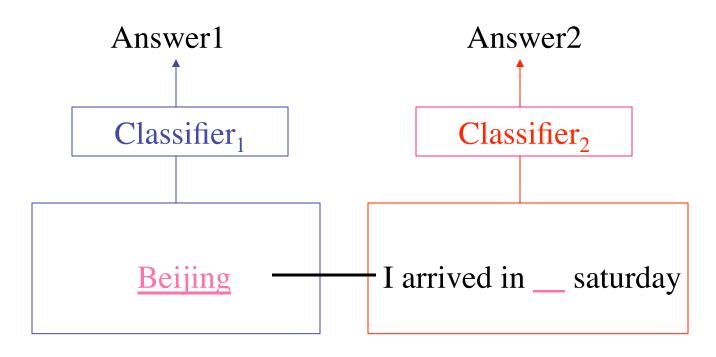
location?

I arrived in Beijing on Saturday.

If: "I arrived in <X> on Saturday."

Then: Location(X)

Co-Training for Named Entity Extraction (i.e., classifying which strings refer to people, places, dates, etc.) [Riloff&Jones 98; Collins et al., 98; Jones 05]

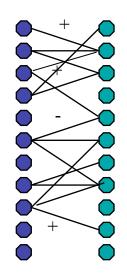


I arrived in **Beijing** saturday.

Bootstrap learning to extract named entities [Riloff and Jones, 1999], [Collins and Singer, 1999], ...

South Africa Thailand Maine **United Kingdom** Warrenton production control Far East northern Los Initialization Oregon New Zealand Australia Lexington eastern Europe Canada Europe Americas China U.S. A. Michigan **England** Eastern Canada New Hampshire France Hungary Blair Germany Southwestern states south america Japan Mexico district Texas Switzerland States Latin America United states Singapore ... Florida ... locations in ?x republic of ?x operations in ?x

What if CoTraining Assumption Not Perfectly Satisfied?



- Idea: Want classifiers that produce a maximally consistent labeling of the data
- If learning is an optimization problem, what function should we optimize?

Co-EM [Nigam & Ghani, 2000; Jones 2005]

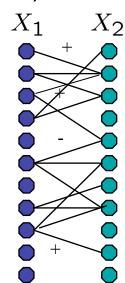
Idea:

- Like co-training, train two coupled functions
 - P(class | X1), P(class | X2)
- Like EM, iterative probabilistic algorithm
 - Assign probabilistic values to unobserved class labels
 - Updating model parameters (= labels of other feature set)

Goal to learn
$$X_1 \rightarrow Y, \ X_2 \rightarrow Y, \ X_1 \times X_2 \rightarrow Y$$

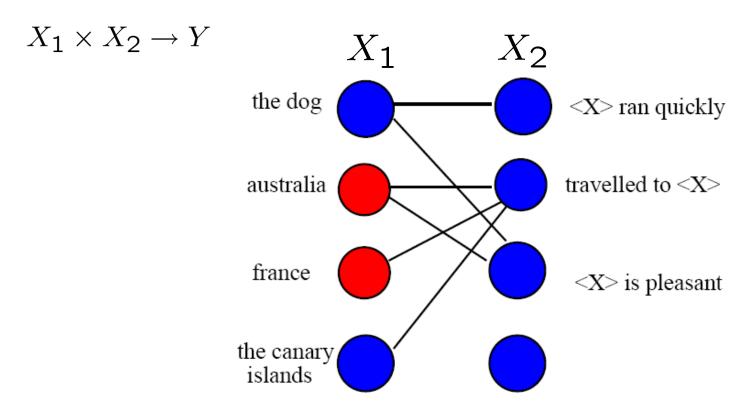
$$P(Y|X_1 = k) = \sum_{j} P(Y|X_2 = j)P(X_2 = j|X_1 = k)$$

$$P(Y|X_2 = j) = \sum_{k} P(Y|X_1 = k)P(X_1 = k|X_2 = j)$$



CoEM applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]



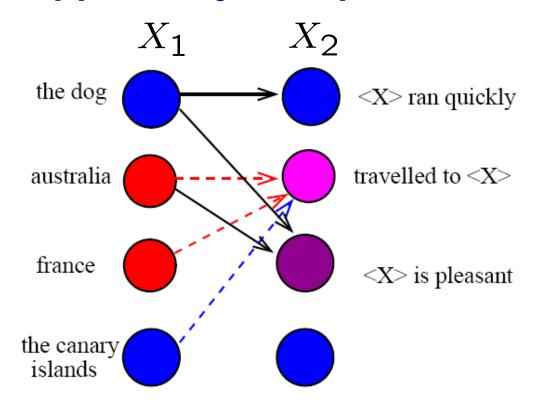
Update rules:

$$P(Y|X_1 = k) = \sum_{j} P(Y|X_2 = j)P(X_2 = j|X_1 = k)$$

$$P(Y|X_2 = j) = \sum_{k} P(Y|X_1 = k)P(X_1 = k|X_2 = j)$$

CoEM applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]



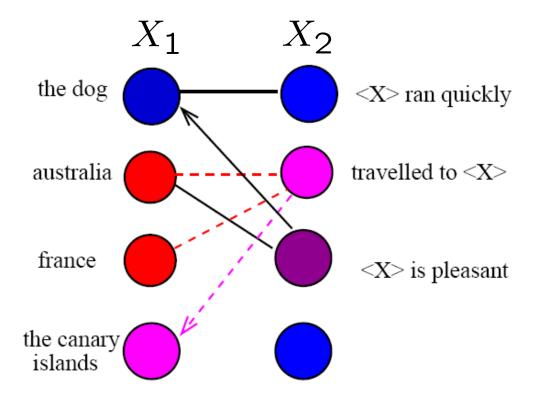
Update rules:

$$P(Y|X_1 = k) = \sum_{j} P(Y|X_2 = j)P(X_2 = j|X_1 = k)$$

$$P(Y|X_2 = j) = \sum_k P(Y|X_1 = k)P(X_1 = k|X_2 = j)$$

CoEM applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]



Update rules:

$$P(Y|X_1 = k) = \sum_{j} P(Y|X_2 = j)P(X_2 = j|X_1 = k)$$

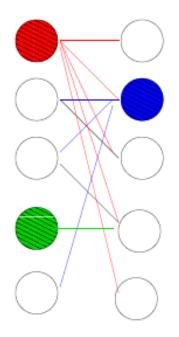
$$P(Y|X_2 = j) = \sum_k P(Y|X_1 = k)P(X_1 = k|X_2 = j)$$

Co-EM Applied to our NPxContext data

[work by Weam AbuZaki]

- Train boolean classifiers for categories
 - organization ../CoEM/category organization.coem.xls
 - company ../CoEM/category company.coem.xls
 - person <u>../CoEM/category person.coem.xls</u>
 - **—** ...
- ~50 seed examples taken from RTW KB
- high accuracies for many categories
- macro-reading
- how would you do micro-reading?

Some nodes are more important than others [Jones, 2005]



Can use this for active learning...

L	Noun-phrase	Outdegree
Γ	you	1656
ı	we	1479
ı	it	1173
ı	company	1043
ı	this	635
ı	all	520
ı	they	500
ı	information	448
ı	us	367
ı	any	339
ı	products	332
ı	i	319
ı	site	314
ı	one	311
ı	1996	282
ı	he	269
ı	customers	269
ı	these	263
ı	them	263
L	time	234

Context	Outdegree		
<x> including</x>	683		
including <x></x>	612		
<x> provides</x>	565		
provides <x></x>	565		
provide <x></x>	390		
<x> include</x>	389		
include <x></x>	375		
<x> provide</x>	364		
one of <x></x>	354		
<x> made</x>	345		
<x> offers</x>	338		
offers <x></x>	320		
<x> said</x>	287		
<x> used</x>	283		
includes <x></x>	279		
to provide <x></x>	266		
use <x></x>	263		
like <x></x>	260		
variety of <x></x>	252		
<x> includes</x>	250		

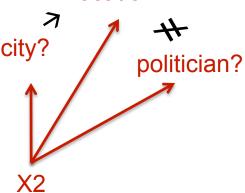
CoTraining Summary

- Unlabeled data improves supervised learning when example features are redundantly sufficient
 - Family of algorithms that train multiple classifiers
- Theoretical results
 - Expected error for rote learning
 - If X1,X2 conditionally independent given Y, Then
 - PAC learnable from weak initial classifier plus unlabeled data
 - disagreement between g1(x1) and g2(x2) bounds final classifier error
- Many real-world problems of this type
 - Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
 - Web page classification [Blum, Mitchell 98]
 - Word sense disambiguation [Yarowsky 95]
 - Speech recognition [de Sa, Ballard 98]
 - Visual classification of cars [Levin, Viola, Freund 03]

Coupled training type 2

```
Wish to learn f1: X \rightarrow Y1, f2: X \rightarrow Y2, such that: (\forall x) g(f1(x), f2(x)) e.g.
```

location: NounPhraseInSentence \rightarrow {0,1} politician: NounPhraseInSentence \rightarrow {0,1} g(y1,y2) = not (and(y1,y2)) location?



Luke is mayor of Pittsburgh.

Coupling functions with different outputs

[Daume, 2008]

Wish to learn f1: $X \rightarrow Y1$, f2: $X \rightarrow Y2$,

such that: $(\forall x)$ g(f1(x), f2(x))

Key theoretical question: what is sample complexity? How does it depend on g?

Key insight:

 g will be most useful if the probability that it is satisfied by random y1, y2 is low

Coupling functions with different outputs

[Daume, 2008]

Consider simpler one-sided learning of f2, given we know f1

- Learn h₂ directly on D
- 2: For each example $(x, y_1) \in D^{\text{unlab}}$
- 3: Compute $y_2 = h_2(x)$
- 4: If $\chi(y_1, y_2)$, add (x, y_2) to D
- 5: Relearn h_2 on the (augmented) D
- Go to (2) if desired

Definition 4. We say the discrimination of χ for h^0 is $\Pr_{\mathcal{D}}[\chi(f_1(x), h^0(x))]^{-1}$.

Coupling functions with different outputs

[Daume, 2008]

Theorem 1. Suppose C_2 is PAC-learnable with noise in the structured setting, h_2^0 is a weakly useful predictor of f_2 , and χ is correct with respect to \mathcal{D} , f_1 , f_2 , h_2^0 , and has discrimination $\geq 2(|\mathcal{Y}| - 1)$. Then C_2 is also PAC-learnable with one-sided hints.

(here |Y|= |Y1| x |Y2| is the number of values the two functions can take on)

Further Reading

- <u>Semi-Supervised Learning</u>, O. Chapelle, B. Sholkopf, and A. Zien (eds.), MIT Press, 2006. (excellent book)
- Semi-Supervised Learning for Computational Linguistics, S. Abney, Springer, 2007. (pretty good, pretty basic)
- <u>EM for Naïve Bayes classifiers</u>: K.Nigam, et al., 2000. "Text Classification from Labeled and Unlabeled Documents using EM", *Machine Learning*, 39, pp.103—134.
- <u>CoTraining</u>: A. Blum and T. Mitchell, 1998. "Combining Labeled and Unlabeled Data with Co-Training," *Proceedings of the 11th* Annual Conference on Computational Learning Theory (COLT-98).
- S. Dasgupta, et al., "PAC Generalization Bounds for Co-training", NIPS 2001
- Model selection: D. Schuurmans and F. Southey, 2002. "Metric-Based methods for Adaptive Model Selection and Regularization," Machine Learning, 48, 51—84.