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Today 

•  Coupled Semi-supervised training of multiple 
functions 
–  Theory 
–  Algorithms Co-training,  CoEM, Co-regularization 

•  News: 
–  class Wiki (courtesy Mehrbod Sharifi) 
–  new software to access KBs 

•  HW for next week 



When can Unlabeled Data help supervised learning? 

Problem setting (the PAC learning setting): 
•  Set X of instances drawn from unknown distribution P(X) 
•  Wish to learn target function f: X Y (or, P(Y|X)) 
•  Given a set H of possible hypotheses for f 

Given: 
•  i.i.d. labeled examples 
•  i.i.d. unlabeled examples  

Wish to find hypothesis with lowest true error: 



One Idea: Coupled Training 

•  In some settings, available data features are redundant and we can 
train two classifiers based on disjoint features 

•  In this case, the two classifiers should agree on the classification for 
each unlabeled example 

•  Therefore, we can use the unlabeled data to constrain joint training of 
both classifiers  
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CoTraining Algorithm #1  
[Blum&Mitchell, 1998] 
Given: labeled data L,   

 unlabeled data U 

Loop: 

Train g1 (hyperlink classifier) using L 

Train g2 (page classifier) using L 

Allow g1 to label p positive, n negative examps from U 

Allow g2 to label p positive, n negative examps from U  

Add these self-labeled examples to L 



CoTraining: Experimental Results 
•  begin with 12 labeled web pages (academic course) 
•  provide 1,000 additional unlabeled web pages 
•  average error: learning from labeled data 11.1%;  
•  average error: cotraining 5.0% 

Typical run: 



One result [Blum&Mitchell 1998]:   
•  If 

–  X1 and X2 are conditionally independent given Y 
–  f  is PAC learnable from noisy labeled data 

•  Then 
–  f  is PAC learnable from weak initial classifier plus a polynomial 

number of unlabeled examples 

CoTraining setting: 
•  wish to learn f: X  Y, given L and U drawn from P(X) 

•  features describing X can be partitioned (X = X1 x X2) 

   such that f can be computed from either X1 or X2 

Classifier with 
accuracy > 0.5 



Example: Co-Training Rote Learners 
f1:hyperlink  Y,   f2: page  Y 
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Questions 

•  Draw a best-case bipartite graph 
•  Draw a worst-case bipartite graph 

–  consistent with co-training assumptions 
–  inconsistent with co-training assumption 

•  How does classifier accuracy depend on 
–  number of labeled examples? 
–  number of unlabeled examples? 



Expected Rote CoTraining error given m examples 

€ 

E error[ ] ≤ P(
j
∑ x ∈ g j )(1− P(x ∈ g j ))

m

Where g  is the jth connected component of graph 
of L+U,  m is number of labeled examples 

j 



How many unlabeled examples suffice? 

Want to assure that connected components in the underlying 
distribution, GD, are connected components in the observed 
sample, GS 

GD GS 

O(log(N)/α) examples assure that with high probability, GS has same 
connected components as GD [Karger, 94] 

N is size of GD, α is min cut over all connected components of GD  



PAC Generalization Bounds on CoTraining 
[Dasgupta et al., NIPS 2001] 

This theorem assumes X1 and X2 are conditionally independent given Y 



Example 2: Learning to extract named entities 

I arrived in Beijing on Saturday. 

location? 

If:   “I arrived in <X> on Saturday.” 

Then:   Location(X) 



Co-Training for Named Entity Extraction 
(i.e.,classifying which strings refer to people, 
places, dates, etc.) 

Answer1


Classifier1


Answer2 


Classifier2


I arrived in Beijing saturday.


Beijing
 I arrived in __ saturday


[Riloff&Jones 98; Collins et al., 98; Jones 05] 



Bootstrap learning to extract named entities 
[Riloff and Jones, 1999], [Collins and Singer, 1999], ... 

Iterations 

Initialization 
Australia 
Canada 
China 
England 
France 
Germany 
Japan Mexico 
Switzerland 
United_states 

locations in ?x


South Africa 
United Kingdom 
Warrenton 
Far_East 
Oregon 
Lexington 
Europe 
U.S._A. 
Eastern Canada 
Blair 
Southwestern_states 
Texas 
States 
Singapore … 

operations in ?x 


Thailand 
Maine 
production_control 
northern_Los 
New_Zealand 
eastern_Europe 
Americas 
Michigan  
New_Hampshire 
Hungary 
south_america 
district 
Latin_America 
Florida ... 

republic of ?x 


 … ... 



•  Idea: Want classifiers that produce a maximally 
consistent labeling of the data 

•  If learning is an optimization problem, what 
function should we optimize? 

What if CoTraining Assumption  
Not Perfectly Satisfied? 

- 

+ 

+ 

+ 



Co-EM  [Nigam & Ghani, 2000; Jones 2005] 

Idea: 
•  Like co-training, train two coupled functions 

–  P(class | X1),  P(class | X2) 

•  Like EM, iterative probabilistic algorithm 
–  Assign probabilistic values to unobserved class labels 
–  Updating model parameters (= labels of other feature set) 

- 

+ 

+ 

+ 

Goal to learn 



CoEM applied to Named Entity Recognition 
[Rosie Jones, 2005], [Ghani & Nigam, 2000]  

Update 
rules: 
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Co-EM Applied to our NPxContext data 

•  Train boolean classifiers for categories 
–  organization ../CoEM/category_organization.coem.xls 
–  company ../CoEM/category_company.coem.xls 
–  person ../CoEM/category_person.coem.xls 
–  … 

•  ~50 seed examples taken from RTW KB 
•  high accuracies for many categories 

•  macro-reading 
•  how would you do micro-reading? 

[work by Weam AbuZaki] 



[Jones, 2005] 

Can use this for active learning... 



CoTraining Summary 
•  Unlabeled data improves supervised learning when example features 

are redundantly sufficient  
–  Family of algorithms that train multiple classifiers 

•  Theoretical results 
–  Expected error for rote learning 
–  If X1,X2 conditionally independent given Y, Then 

•  PAC learnable from weak initial classifier plus unlabeled data 
•  disagreement between g1(x1) and g2(x2) bounds final classifier error 

•  Many real-world problems of this type 
–  Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99] 

–  Web page classification [Blum, Mitchell 98] 
–  Word sense disambiguation [Yarowsky 95] 
–  Speech recognition [de Sa, Ballard 98] 

–  Visual classification of cars [Levin, Viola, Freund 03] 



Coupled training type 2 
Wish to learn f1: X  Y1, f2: X  Y2,  
such that: (   x) g(f1(x), f2(x))   
e.g. 

    location: NounPhraseInSentence  {0,1} 
   politician: NounPhraseInSentence  {0,1} 
   g(y1,y2) =  not (and(y1,y2)) 

Luke is mayor of Pittsburgh. 

X2 

city? 
politician? 

location? 

Α 



Coupling functions with different outputs 
[Daume, 2008] 

Wish to learn f1: X  Y1, f2: X  Y2,  
such that: (   x) g(f1(x), f2(x))   

Key theoretical question: what is sample complexity?  How 
does it depend on g? 

Key insight: 
•  g will be most useful if the probability that it is satisfied by 

random y1, y2 is low 
Α 



Coupling functions with different outputs 
[Daume, 2008] 

Consider simpler one-sided learning of f2, given we know f1  



(here |Y|= |Y1| x |Y2| is the number of values the 
two functions can take on) 

Coupling functions with different outputs 
[Daume, 2008] 



Further Reading 
•  Semi-Supervised Learning, O. Chapelle, B. Sholkopf, and A. Zien 

(eds.), MIT Press, 2006. (excellent book) 

•  Semi-Supervised Learning for Computational Linguistics, S. 
Abney, Springer, 2007. (pretty good, pretty basic) 

•  EM for Naïve Bayes classifiers: K.Nigam, et al., 2000. "Text 
Classification from Labeled and Unlabeled Documents using EM", 
Machine Learning, 39, pp.103—134. 

•  CoTraining: A. Blum and T. Mitchell, 1998. “Combining Labeled 
and Unlabeled Data with Co-Training,” Proceedings of the 11th 
Annual Conference on Computational Learning Theory 
(COLT-98).  

•  S. Dasgupta, et al., “PAC Generalization Bounds for Co-training”, 
NIPS 2001 

•  Model selection: D. Schuurmans and F. Southey, 2002. “Metric-
Based methods for Adaptive Model Selection and 
Regularization,” Machine Learning, 48, 51—84. 


