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When!Gottlieb!returns!to!his!office!that!
evening,!Driftwood!is!sitting!in!his!chair,!and!
Tomasso!is!pouring!drinks!with!his!feet!for!the!
stowaways.!When!Gottlieb!objects!and!
attempts!!to!phone!the!police!!!to!have!them!
arrested!,!Tomasso!strikes!the!Managing!
Director!on!the!head,!leaving!him!unconscious.
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Bella called Aunt Minnie to make a request .

Structural!characteristics!of!
semantics!include:
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Bella called Aunt Minnie to make a request .

Structural!characteristics!of!
semantics!include:

• Ambiguity

• Diversity

• Sharing

• Omission
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The!FrameNet!lexicon!(v.!1.3)!has!795!
frames,!7124!roles,!and!10195!lexical!units!
(word-frame!associations).!The!covered!
frames!tend!to!be!frequent,!structurally!

complex,!and!domain-general.
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• Introduced!semantic!role!labeling!(SRL)!as!a!
task

‣ Assume!the!frame,!target!word!are!given

• Train!a!supervised!probability!model!for!SRL!
with!FrameNet

‣ Requires!careful!smoothing

• Argument!phrases!are!selected!from!among!
the!constituents!of!the!sentence!parse

8

Gildea!&!Jurafsky!2002

8



• Linear!position!of!argument!with!respect!to!
target

• Syntactic!features!from!(constituency)!parse

‣ Parse!tree!path!from!the!target!to!the!
argument

• Voice:!the!board!changed!the!ruling!
!!!!vs.!!!the!ruling!was!changed!(by!the!board)

• Lexical!features,!e.g.!head!word!of!arg.!phrase

9

Gildea!&!Jurafsky:!Arg!
Classification!Features
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• The!FrameNet!lexicon!gives!the!inventory!of!
frames/roles/frame!relations,!as!well!as!
some!sparsely-annotated!exemplar!sentences

• For!training/test:!a!small!corpus!(29!
documents,!~50,000!words)!of!articles!which!
are!fully!annotated!(albeit!somewhat!noisily)!
for!their!FrameNet!frames.!This!corpus!
comprised!the!data!set!for!a!SemEval!2007!
task!on!predicting!frame-semantic!structure.
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Frame-semantic!Data!as!of!
2007
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Johansson!&!Nugues!2007

• Full!frame-semantic!parsing:!identifying!all!
predicates!(targets),!their!frames,!and!their!
arguments

• Pipeline!of!SVMs
• Explores!the!use!of!syntactic!dependency!
parses!for!features

• Winning!system!of!the!SemEval!2007!task

11

11



12

Bella called Aunt Minnie to make a request .Input

SUBJ

SMOD

VMOD
OBJ

NMOD
NN VBD NN NNP TO VB DT NN

12



12

Bella called Aunt Minnie to make a request .Input

SUBJ

SMOD

VMOD
OBJ

NMOD
NN VBD NN NNP TO VB DT NN

Bella called Aunt Minnie to make a request .Targets

12



12

Bella called Aunt Minnie to make a request .Input

SUBJ

SMOD

VMOD
OBJ

NMOD
NN VBD NN NNP TO VB DT NN

Bella called Aunt Minnie to make a request .Targets

Bella called Aunt Minnie to make a request .
CONTACTING

REQUEST

Frames

12



12

Bella called Aunt Minnie to make a request .Input

SUBJ

SMOD

VMOD
OBJ

NMOD
NN VBD NN NNP TO VB DT NN

Bella called Aunt Minnie to make a request .Targets

Bella called Aunt Minnie to make a request .
CONTACTING

REQUEST

Frames

Bella called Aunt Minnie to make a request .
CONTACTING

Communicator Addressee Reason

REQUEST
AddresseeSpeaker

Args

12



Results!from!Johansson!&!
Nugues
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Frames

coverage by up to 9%. In the test set, the new lexical

units account for 53 out of the 808 target words our

system detected (6.5%). We roughly estimated the

precision to 70% by manually inspecting 100 ran-

domly selected words in the extended dictionary.

This strategy is most successful when the frame

is equivalent to one or a few synsets (and their

subtrees). For instance, for the frame MEDI-

CAL_CONDITION, we can add the complete sub-

tree of the synset pathological state, resulting in

641 new lemmas referring to all sorts of diseases.

On the other hand, the strategy also works well for

motion verbs (which often exhibit complex patterns

of polysemy): 137 lemmas could be added to the

SELF_MOTION frame. Examples of frames with fre-

quent errors are LEADERSHIP, which includes many

insects (probably because the most frequent sense

of queen in SemCor is the queen bee), and FOOD,

which included many chemical substances as well

as inedible plants and animals.

3.2 Frame Element Extraction

Following convention, we divided the FE extraction

into two subtasks: argument identification and argu-

ment classification. We did not try to assign multiple

labels to arguments. Figure 3 shows an overview. In

addition to detecing the FEs, the argument identifi-

cation classifier detects the dependency nodes that

should be tagged on the layers other than the frame

element layer: SUPP, COP, NULL, EXIST, and ASP.

The ANT and REL labels could be inserted using

simple rules. Similarly to Xue and Palmer (2004),

Argument
identification

FE

Supp
Cop

Asp
Exist
Null

Argument

None

Self_mover
Path

etc

classification

Figure 3: FE extraction steps.

we could filter away many nodes before the argu-

ment identification step by assuming that the argu-

ments for a given predicate correspond to a subset of

the dependents of the target or of its transitive heads.

Both classifiers were implemented using SVMs

and use the following features: target lemma, voice

(for verb targets only), subcategorization frame (for

verb targets only), the set of dependencies of the tar-

get, part of speech of the target node, path through

the dependency tree from the target to the node, po-

sition (before, after, or on), word and part of speech

for the head, word and part of speech for leftmost

and rightmost descendent.

In the path feature, we removed steps through

verb chains and coordination. For instance, in the

sentece I have seen and heard it, the path from heard

to I is only SBJ↓ and to it OBJ↓.

3.3 Named Entity Recognition

In addition to the frame-semantic information, the

SemEval task also scores named entities. We used

YamCha (Kudo and Matsumoto, 2003) to detect

named entities, and we trained it on the SemEval

full-text training sets. Apart from the word and part

of speech, we used suffixes up to length 5 as fea-

tures. We think that results could be improved fur-

ther by using an external NE tagger.

4 Results

The system was evaluated on three texts. Table 1

shows the results for frame detection averaged over

the test texts. In the Setting colums, the first shows

whether Exact or Partial frame matching was used

by the evaluation script, and the second whether La-

bels or Dependencies were used. Table 2 compares

the results of the system using the extended dictio-

nary with one using the orignal FrameNet dictio-

nary, using the Partial matching and Labels scoring.

The extended dictionary introduces some noise and

thus lowers the precision slightly, but the effects on

the recall are positive. Table 3 shows the aver-

Table 1: Results for frame detection.

Setting Recall Precision F1
E L 0.528 0.688 0.597
P L 0.581 0.758 0.657
E D 0.549 0.715 0.621
P D 0.601 0.784 0.681

Table 2: Comparison of dictionaries.

Dictionary Recall Precision F1
Original 0.550 0.767 0.634
Extended 0.581 0.758 0.657

229

• Partial!credit!
for!related!
frames
• Exact!labeling!
of!target/arg!
spans
• No!use!of!NER!
features
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The extended dictionary introduces some noise and
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the recall are positive. Table 3 shows the aver-
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aged precision, recall, and F1 measures for differ-
ent evaluation parameters. The third column shows

whether named entities were used (Y) or not (N).

Interestingly, the scores are higher for the seman-

tic dependency graphs than for flat labels, while the

two other teams generally had higher scores for flat

labels. We believe that the reason for this is that we

used a dependency parser, and that the rules that we

used to convert dependency nodes into spans may

have produced some errors. It is possible that the fig-

ures would have been slightly higher if our program

produced semantic dependency graphs directly.

Table 3: Results for frame and FE detection.

Setting Recall Precision F1
E L Y 0.372 0.532 0.438
P L Y 0.398 0.570 0.468
E D Y 0.389 0.557 0.458
P D Y 0.414 0.594 0.488
E L N 0.364 0.530 0.432
P L N 0.391 0.570 0.464
E D N 0.384 0.561 0.456
P D N 0.411 0.600 0.488

5 Conclusion and Future Work

We have presented a system for frame-semantic

structure extraction that achieves promising results.

While most previous systems have been based on

constituents, our system relies on a dependency

parser. We also described an automatic method to

add new units to the FrameNet lexical database.

To improve labeling quality, we would like to ap-

ply constraints to the semantic output so that se-

mantic type and coreness rules are obeyed. In ad-

dition, while the system described here is based on

pipelined classification, recent research on seman-

tic role labeling has shown that significant perfor-

mance improvements can be gained by exploiting

interdependencies between arguments (Toutanova et

al., 2005). With an increasing amount of running

text annotated with frame semantics, we believe that

this insight can be extended to model interdependen-

cies between frames as well.

Our motivation for using dependency grammar is

that we hope that it will eventually make semantic

structure extraction easier to implement and more

theoretically well-founded. How to best design the

dependency syntax is also still an open question.

Ideally, all arguments would be direct dependents of

the predicate node and we could get rid of the sparse

and brittle Path feature in the classifier.
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probabilistic model over frames for a target:

fi ← argmax
f

�

�∈Lf

p(f, � | ti,x) (1)

We adopt a conditional log-linear model; for f ∈
Fti and � ∈ Lf ,

pθ(f, � | ti,x) =
exp θ�g(f, �, ti,x)�

f �∈Fxti

�

��∈Lf �

exp θ�g(f �, ��, ti,x)

(2)

where θ are the model weights, and g is a fea-

ture vector function. This discriminative formu-

lation is extremely flexible, allowing us to intro-

duce a variety of features relating a frame type to a

prototype, lexical-semantic relationships between

a prototype and a target, attributes of the input sen-

tence like its dependency parse, and so forth.

Note that each frame is predicted independently

of the others in this model. In this way the model is

similar to ?), but we use a single conditional model

that shares features and weights across all targets,

frames, and prototypes, instead of many separately

trained models; the inclusion of the prototype ran-

dom variable is also novel.

4.2.3 Features
Frame identification features depend on the pre-

processed sentence x, the prototype � and its

WordNet lexical-semantic relationship with the

target xti , and of course the frame f :

• WordNet relations between � and ti5

• �, and the WordNet relations between � and ti
• WordNet relations between the � and ti, the

POS tag sequence of �, the POS tag sequence

of ti
• the set of words in �
• the set of lemmas of words in �
• the set of lemmas of words in � and their POS

tags [
NA

S
POS tags here come from FrameNet,

right?]

• the sets of dependencies of the head word in

the target [
NA

S
how do you choose the head-

word if ti is not a subtree?]

• if the head word of � is a verb, then the sub-

categorization frame of the verb [
NA

S
not suf-

ficiently detailed]

5
These are: identical-word, synonym, antonym (including

extended and indirect antonym), hypernym, hyponym, de-

rived form, morphological variation (e.g., plural form), verb

group, entailment, entailed-by, see-also, causal relation and

no relation.

• the POS of the parent of the head word of �
[
NA

S
in the exemplar?]

• the dependency label on the edge connecting

the head of � and its parent [
NA

S
in the exem-

plar?]

[
NA

S
thought: in error analysis, need to show

some examples of OOVs and the prototypes the

model would have picked for them, if one had to

be picked]

4.3 Argument Identification
Given x, t, and the list of evoked frames f =
�f1, . . . , fm�, argument identification is the task of

choosing which of each fi’s roles are filled, and by

which parts of the sentence x.

4.3.1 Model
Let Rfi = {r1, . . . , r|Rfi

|} denote frame fi’s

roles (named frame element types) defined in the

lexicon. A subset of each frame’s roles are marked

as core roles; these roles are conceptually and/or

syntactically necessary for any given use of the

frame (though they need not be overt in every

sentence involving the frame). Non-core roles

loosely correspond to syntactic adjuncts, and carry

broadly-applicable information such as the time,

place, or purpose of an event. The lexicon imposes

some additional structure on roles, including rela-

tions to other roles in the same or related frames,

and semantic types with respect to a small ontol-

ogy (marking, for instance, that the entity filling

the protagonist role must be sentient for frames

of cognition). Figure 2 illustrates of some of

the structural elements comprising the frame lexi-

con by considering the CAUSE TO MAKE NOISE

frame.

We identify a set S of spans that are candi-

dates for filling any role r ∈ Rfi . In princi-

ple, S could contain any subsequence of x, but in

this work we permit only spans corresponding to

[
NA

S
need to clearly state exactly how the syntactic

parse defines S; note that most people don’t know

what a “constituent” is in a dependency parse, so

you need to be careful ... explain here the upper

bounds, as you had it in a footnote: The heuris-

tic covers [
NS

S
PERCENT] of arguments in the dev

set, and all arguments for [
NS

S
PERCENT] of anno-

tated frame instances.]. The empty span, denoted

∅, is also included in S, since some roles are not

explicitly filled; in the development data, the av-

erage number of roles an evoked frame defines is

Targets

Frames

rule-based!segmenter

for!each!frame!target!ti,!choose!a!frame!
label!f!independently!of!other!targets

Joint work with Dipanjan Das, Desai Chen, Noah Smith
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• the set of lemmas of words in � and their POS

tags [
NA

S
POS tags here come from FrameNet,

right?]

• the sets of dependencies of the head word in

the target [
NA

S
how do you choose the head-

word if ti is not a subtree?]

• if the head word of � is a verb, then the sub-

categorization frame of the verb [
NA

S
not suf-

ficiently detailed]

5
These are: identical-word, synonym, antonym (including

extended and indirect antonym), hypernym, hyponym, de-

rived form, morphological variation (e.g., plural form), verb

group, entailment, entailed-by, see-also, causal relation and

no relation.

• the POS of the parent of the head word of �
[
NA

S
in the exemplar?]

• the dependency label on the edge connecting

the head of � and its parent [
NA

S
in the exem-

plar?]

[
NA

S
thought: in error analysis, need to show

some examples of OOVs and the prototypes the

model would have picked for them, if one had to

be picked]

4.3 Argument Identification
Given x, t, and the list of evoked frames f =
�f1, . . . , fm�, argument identification is the task of

choosing which of each fi’s roles are filled, and by

which parts of the sentence x.

4.3.1 Model
Let Rfi = {r1, . . . , r|Rfi

|} denote frame fi’s

roles (named frame element types) defined in the

lexicon. A subset of each frame’s roles are marked

as core roles; these roles are conceptually and/or

syntactically necessary for any given use of the

frame (though they need not be overt in every

sentence involving the frame). Non-core roles

loosely correspond to syntactic adjuncts, and carry

broadly-applicable information such as the time,

place, or purpose of an event. The lexicon imposes

some additional structure on roles, including rela-

tions to other roles in the same or related frames,

and semantic types with respect to a small ontol-

ogy (marking, for instance, that the entity filling

the protagonist role must be sentient for frames

of cognition). Figure 2 illustrates of some of

the structural elements comprising the frame lexi-

con by considering the CAUSE TO MAKE NOISE

frame.

We identify a set S of spans that are candi-

dates for filling any role r ∈ Rfi . In princi-

ple, S could contain any subsequence of x, but in

this work we permit only spans corresponding to

[
NA

S
need to clearly state exactly how the syntactic

parse defines S; note that most people don’t know

what a “constituent” is in a dependency parse, so

you need to be careful ... explain here the upper

bounds, as you had it in a footnote: The heuris-

tic covers [
NS

S
PERCENT] of arguments in the dev

set, and all arguments for [
NS

S
PERCENT] of anno-

tated frame instances.]. The empty span, denoted

∅, is also included in S, since some roles are not

explicitly filled; in the development data, the av-

erage number of roles an evoked frame defines is

Targets

Frames

Args

6.7, but the average number of overt arguments is

only 1.7.
6

LetAi denote the mapping of rolesRfi to spans

S. Our model makes a prediction for each Ai(rj)
(for all roles rj ∈ Rfi) using:

Ai(rj) ← argmax
s∈S

p(s | x, ti, fi, rj) (3)

Again, we use a conditional log-linear model over

spans for each role of each evoked frame in the

given sentence:

pψ(s | x, ti, fi) =
exp ψ�h(x, ti, fi, rj , s)�

s�∈S
exp ψ�h(x, ti, fi, rj , s

�)

(4)

[
NA

S
latex source has a comment here; not sure

if that’s supposedto be included or not]

Note that our model chooses the span for each

role separately from the other roles, and ignores

all frames except the frame the role belongs to.

4.3.2 Approximate Joint Decoding

Naı̈ve prediction of roles using Eq. 3 may re-

sult in overlap among arguments filling different

roles of a frame, since the argument identification

model fills each role independently of the others.

We want to enforce the constraint that two roles

of a single frame cannot be filled by overlapping

spans.
7

To eliminate illegal overlap, we adopt the ap-

proximate decoding algorithm described in Algo-

rithm 1. The algorithm produces a set of k-best hy-

potheses for a frame instance’s full set of role/span

pairs, but uses an approximation in order to avoid

scoring an exponential number of hypotheses. Af-

ter determining which roles are most likely not ex-

plicitly filled, it considers each of the other roles

in turn, extending hypotheses with spans, always

maintaining k alternatives. With k = [
NA

S
???],

this algorithm avoided all overlapping arguments

6
In the annotated data, each core role is filled with one

of three types of null instantiations indicating that the role is

conveyed implicitly—for instance, the imperative construc-

tion implicitly designates a role as filled by the addressee,

and the corresponding filler is thus CNI (constructional null

instantiation). In this work, however, we do not distinguish

different types of null instantiations.
7
On rare occasions a frame annotation may include a sec-

ondary frame element layer, allowing arguments to be shared

among multiple roles in the frame; see Ruppenhofer et al.

(2006) for details. The evaluation for this task, however, only

considers the primary layer, which is guaranteed to have dis-

joint arguments.

Algorithm 1 Joint decoding of arguments.

topk(S, pψ, rj) extracts the k most proba-

ble spans from S, under pψ, for role rj .

cubeExtend(D0:(i−1),S �) extends each span

vector in D0:(i−1)
with a compatible (non-

overlapping) span from S �, choosing the k best

extensions overall. [
NA

S
check this]

Input: k > 0, Rfi , S, the distribution pψ from

Eq. 4 for each role rj ∈ Rfi

Output: A∗
i , a high-scoring mapping of roles to

spans with minimal [
NA

S
no token overlap?]

token overlap among roles’ spans

1: Calculate Ai according to Eq. 3

2: ∀r ∈ Rfi such that Ai(r) = ∅, let A∗
i (r) ← ∅

3: R+
fi
← {r : r ∈ Rfi ,Ai(r) �= ∅}

4: n ← |R+
ft
|

5: Arbitrarily order R+
ft

as {r1, r2, . . . rn}
6: Let D0:i = �D0:i

1 , . . . ,D0:i
k � refer to the k-

best list of vectors of compatible filler spans

for roles r1 through ri

7: Initialize D0:0
to be empty

8: for j = 1 to n do

9: D0:i ← cubeExtend(D0:(i−1), topk(S, pψ, rj))
10: end for

11: ∀j ∈ {1, . . . , n},A∗
i (rj) ← D0:n

1 [j]
12: return A∗

i

rule-based!segmenter

for!each!frame!target!ti,!choose!a!frame!
label!f!independently!of!other!targets

for!each!role!rj!of!fi,!choose!an!argument!
filler!span!s!independently!of!other!roles

Joint work with Dipanjan Das, Desai Chen, Noah Smith

Our!Approach
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• We!use!log-linear!models!in!order!to!
formulate!a!full!probability!model!in!a!
discriminative!setting

‣ Latent!variable!provides!smoothing!for!
unseen!targets

‣ Enables!us!to!consider!joint!inference!
techniques!to!break!independence!
assumptions,!e.g.!between!arguments!of!a!
frame

15

Our!Approach:!Differences!
from!Johansson!&!Nugues

Joint work with Dipanjan Das, Desai Chen, Noah Smith

15



• Our!argument!identification!model!is!a!
single!role-filling!model!rather!than!a!
sequence!of!argument-finding!+!
‑classification!models
‣ Beam!search!at!the!end!to!ensure!there!
are!no!overlapping!arguments

• State-of-the-art!results!(numbers!still!
preliminary,!but!we!win!on!all!stages).!"50!
F1!means!there’s!room!for!improvement!

16

Our!Approach:!Differences!
from!Johansson!&!Nugues

Joint work with Dipanjan Das, Desai Chen, Noah Smith

16



• Can!the!argument!identification!subtask!be!
improved!by!exploiting

‣ features!based!on!selectional!restrictions!
(semantic!type!annotations!on!roles)?

‣ sparsely!annotated!exemplars!from!the!
lexicon?

‣ learned!RTW!instances/patterns!via!a!
mapping!from!RTW!ontology!types!to!
FrameNet!frames,!roles,!or!semantic!types?

17

My!Questions
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N roles
N typed roles
N core roles
N non-core roles
N lexical units*

Histogram of role counts by frame in the lexicon. For instance, the dot at (1, 88) 
means that 88 frames have exactly 1 typed role. Weighting all frames equally, the 
average frame has 9.0 roles, 4.5 typed roles, 3.0 core roles, and 12.8 lexical units.

* Not depicted here are 75 frames (9.4%) which have over 30 lexical units. The 
EMOTION_DIRECTED frame has the largest number of lexical units (179).
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CONTACTING

REQUEST

COMMUNICATION
Communicator

Message
Medium

Time
Manner
Place

Addressee

Sentient

Semantic!types!are!specified!for!some!
roles!of!some!frames!in!the!lexicon.

Message

Sentient

Locative_relation

Time

Manner

Speaker
Message
Medium

Addressee
Manner
Time

Sentient

Message

Time

Sentient

Manner

Communicator
Communication

Reason
Addressee

Place
Time

Sentient

Time

Sentient

Locative_relation

State_of_affairs
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• Above:!semantic!types!most!likely!to!be!associated!
with!roles!filled!by!arguments!in!the!SemEval!2007!
training!data!(and!their!counts)

‣ These!16!types!capture!42%!of!arguments!(to!roles!
defined!in!the!lexicon)!

‣ If!these!few!can!be!mapped!to!types!in!another!
ontology!covering!a!lot!of!data,!it!is!likely!to!help

20

Sentient 1912Manner 198
Artifact 871Locative_relation 192
State_of_affairs 693Degree 187
Location 638Quantity 171
Time 540Content 171
Physical_object 423Human 156
Physical_entity 408Goal 147
Message 292Source 80

20



Possible!features!leveraging!
unstructured!text
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In unsupervised data In test sentence being FN parsed Other possible 
constraints

CooccurInSentence
(w1,w2) is large

w1, w2 are involved in the same 
frame instance (as arg* or target)

w1, w2 are 
linearly ordered 
or syntactically 
linked the same 
way in 
unsupervised 
and test 
sentence

CooccurInSentence
(w1,w2) is large

w1 heads an argument to the 
frame evoked by w2

w1, w2 are 
linearly ordered 
or syntactically 
linked the same 
way in 
unsupervised 
and test 
sentence

CooccurInSentence
(w1,w2) is large

w1 and w2 are arguments to the 
same frame instance*

w1, w2 are 
linearly ordered 
or syntactically 
linked the same 
way in 
unsupervised 
and test 
sentence

w1 and w2 often occur in 
the same (word or 
syntactic) contexts

w2 fills role r which is often filled by 
w1 in the training data

w1, w2 might refer to words heading disjoint NPs. 
* using for features would require joint decision about a frameʼs arguments

How!to!factor!out!topical!coocurrence?!What!about!e.g.!“president”!and!“politics”!
cooccurring?!Topic!model!or!domain!classification?

21



Training!with!the!Lexicon

• Due!to!biases!in!the!choice!of!exemplar!
sentences,!including!these!in!training!data!
hurts!if!evaluated!for!full-text!frame!parsing

‣ Almost!2!orders!of!magnitude!more!
exemplars!than!SemEval!training!sentences

‣ Exemplars!were!chosen!because!they!were!
lexicographically!interesting;!not!IID

‣ Is!there!a!way!to!exclude!or!downweight!
certain!data!points!w.r.t.!specific!features?
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139K lexicon exemplar sentences (3,100,00 words)
1.7K SemEval training sentences (43,300 words)
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