
1

Tom Mitchell, April 2011

Machine Learning 10-701
Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

April 26, 2011

Today:

•  Learning of control policies
•  Markov Decision Processes
•  Temporal difference learning
•  Q learning

Readings:
•  Mitchell, chapter 13

•  Kaelbling, et al., Reinforcement
Learning: A Survey

Thanks to Aarti Singh for several slides

Tom Mitchell, April 2011

Reinforcement Learning
[Sutton and Barto 1981; Samuel 1957; ...]

2

Tom Mitchell, April 2011

Reinforcement Learning: Backgammon
[Tessauro, 1995]

Learning task:
•  chose move at arbitrary board states

Training signal:
•  final win or loss

Training:
•  played 300,000 games against itself

Algorithm:
•  reinforcement learning + neural network

Result:
•  World-class Backgammon player

Tom Mitchell, April 2011

Outline

•  Learning control strategies
–  Credit assignment and delayed reward
–  Discounted rewards

•  Markov Decision Processes
–  Solving a known MDP

•  Online learning of control strategies
–  When next-state function is known: value function V*(s)
–  When next-state function unknown: learning Q*(s,a)

•  Role in modeling reward learning in animals

3

Tom Mitchell, April 2011

Tom Mitchell, April 2011

•  Set of states S
•  Set of actions A
•  At each time, agent observes state st ∈ S, then chooses action at ∈ A
•  Then receives reward rt , and state changes to st+1
•  Markov assumption: P(st+1 | st, at, st-1, at-1, ...) = P(st+1 | st, at)
•  Also assume reward Markov: P(rt | st, at, st-1, at-1,...) = P(rt | st, at)

•  The task: learn a policy π: S A for choosing actions that maximizes

for every possible starting state s0

Markov Decision Process = Reinforcement Learning Setting

4

Tom Mitchell, April 2011

HMM, Markov Process, Markov Decision Process

Tom Mitchell, April 2011

HMM, Markov Process, Markov Decision Process

5

Tom Mitchell, April 2011

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and
•  Learn control policy π: SA that maximizes

from every state s ∈ S

Example: Robot grid world, deterministic reward r(s,a)

Tom Mitchell, April 2011

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and
•  Learn control policy π: SA that maximizes

from every state s ∈ S

Yikes!!
•  Function to be learned is π: SA
•  But training examples are not of the form <s, a>
•  They are instead of the form < <s,a>, r >

6

Tom Mitchell, April 2011

Value Function for each Policy

•  Given a policy π : S A, define

•  Then we want the optimal policy π* where

•  For any MDP, such a policy exists!
•  We’ll abbreviate Vπ *(s) as V*(s)
•  Note if we have V*(s) and P(st+1|st,a), we can compute
π*(s)

assuming action sequence chosen
according to π, starting at state s

Tom Mitchell, April 2011

Value Function – what are the Vπ(s) values?

7

Tom Mitchell, April 2011

Value Function – what are the V*(s) values?

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

8

Tom Mitchell, April 2011

Recursive definition for V*(S)

assuming actions are
chosen according to the
optimal policy, π*

Tom Mitchell, April 2011

Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) arbitrarily

Loop until policy good enough

 Loop for s in S

Loop for a in A

• 

 End loop

End loop

V(s) converges to V*(s)

Dynamic programming

9

Tom Mitchell, April 2011

Value Iteration

Interestingly, value iteration works even if we randomly
traverse the environment instead of looping through
each state and action methodically

•  but we must still visit each state infinitely often on an
infinite run

•  For details: [Bertsekas 1989]
•  Implications: online learning as agent randomly roams

If max (over states) difference between two successive
value function estimates is less than ε, then the value of
the greedy policy differs from the optimal policy by no
more than

Tom Mitchell, April 2011

So far: learning optimal policy when we
know P(st | st-1, at-1)

What if we don’t?

10

Tom Mitchell, April 2011

Q learning
Define new function, closely related to V*

If agent knows Q(s,a), it can choose optimal action
without knowing P(st+1|st,a) !

And, it can learn Q without knowing P(st+1|st,a)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

State-action values Q*(s,a)

Bellman equation.

Consider first the case where
P(s’| s,a) is deterministic

11

Tom Mitchell, April 2011

Tom Mitchell, April 2011

12

Tom Mitchell, April 2011

Tom Mitchell, April 2011

Use general fact:

13

Tom Mitchell, April 2011

Tom Mitchell, April 2011

14

Tom Mitchell, April 2011

Tom Mitchell, April 2011

•  Learning to choose optimal actions A
•  From delayed reward
•  By learning evaluation functions like V(S), Q(S,A)

Key ideas:
•  If next state function St x At St+1 is known

–  can use dynamic programming to learn V(S)
–  once learned, choose action At that maximizes V(St+1)

•  If next state function St x At St+1 unknown
–  learn Q(St,At) = E[V(St+1)]
–  to learn, sample St x At St+1 in actual world
–  once learned, choose action At that maximizes Q(St,At)

MDP’s and RL: What You Should Know

15

Tom Mitchell, April 2011

MDPs and Reinforcement Learning: Further Issues
•  What strategy for choosing actions will optimize

–  learning rate? (explore uninvestigated states)
–  obtained reward? (exploit what you know so far)

•  Partially observable Markov Decision Processes
–  state is not fully observable
–  maintain probability distribution over possible states you’re in

•  Convergence guarantee with function approximators?
–  our proof assumed a tabular representation for Q, V
–  some types of function approximators still converge (e.g., nearest

neighbor) [Gordon, 1999]

•  Correspondence to human learning?

