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Today: 

•  Learning of control policies 
•  Markov Decision Processes 
•  Temporal difference learning 
•  Q learning 

Readings: 
•  Mitchell, chapter 13 

•  Kaelbling, et al., Reinforcement 
Learning: A Survey 

Thanks to Aarti Singh for several slides 
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Reinforcement Learning 
[Sutton and Barto 1981; Samuel 1957; ...] 
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Reinforcement Learning: Backgammon 
[Tessauro, 1995] 

Learning task:  
•  chose move at arbitrary board states 

Training signal:  
•  final win or loss 

Training: 
•  played 300,000 games against itself 

Algorithm: 
•  reinforcement learning + neural network 

Result: 
•  World-class Backgammon player 
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Outline 

•  Learning control strategies 
–  Credit assignment and delayed reward 
–  Discounted rewards 

•  Markov Decision Processes 
–  Solving a known MDP 

•  Online learning of control strategies 
–  When next-state function is known: value function V*(s) 
–  When next-state function unknown: learning Q*(s,a) 

•  Role in modeling reward learning in animals 
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•  Set of states S 
•  Set of actions A 
•  At each time, agent observes state st ∈ S, then chooses action at ∈ A 
•  Then receives reward rt , and state changes to st+1 
•  Markov assumption: P(st+1 | st, at, st-1, at-1, ...) = P(st+1 | st, at) 
•  Also assume reward Markov:   P(rt | st, at, st-1, at-1,...) = P(rt | st, at) 

•  The task: learn a policy π: S  A for choosing actions that maximizes 

for every possible starting state s0 

Markov Decision Process = Reinforcement Learning Setting 
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HMM, Markov Process, Markov Decision Process 
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HMM, Markov Process, Markov Decision Process 
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Reinforcement Learning Task for Autonomous Agent 

Execute actions in environment, observe results, and 
•  Learn control policy π: SA that maximizes                

from every state s ∈ S 

Example: Robot grid world, deterministic reward r(s,a) 
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Reinforcement Learning Task for Autonomous Agent 

Execute actions in environment, observe results, and 
•  Learn control policy π: SA that maximizes                

from every state s ∈ S 

Yikes!! 
•  Function to be learned is π: SA  
•  But training examples are not of the form <s, a> 
•  They are instead of the form < <s,a>, r > 
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Value Function for each Policy 

•  Given a policy π : S  A, define  

•  Then we want the optimal policy π* where 

•  For any MDP, such a policy exists! 
•  We’ll abbreviate Vπ *(s) as V*(s) 
•  Note if we have V*(s) and P(st+1|st,a), we can compute 
π*(s)     

assuming action sequence chosen 
according to π, starting at state s
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Value Function – what are the Vπ(s) values? 
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Value Function – what are the V*(s) values? 
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Immediate rewards r(s,a) 

State values V*(s) 
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Recursive definition for V*(S) 

assuming actions are 
chosen according to the 
optimal policy, π*
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Value Iteration for learning V* : assumes P(St+1|St, A) known 

Initialize V(s) arbitrarily 

Loop until policy good enough 

   Loop for s in S 

Loop for a in A 

•     

   End loop 

End loop 

V(s) converges to V*(s) 

Dynamic programming 
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Value Iteration 

Interestingly, value iteration works even if we randomly 
traverse the environment instead of looping through 
each state and action methodically  

•  but we must still visit each state infinitely often on an 
infinite run 

•  For details: [Bertsekas 1989] 
•  Implications: online learning as agent randomly roams 

If max (over states) difference between two successive 
value function estimates is less than ε, then the value of 
the greedy policy differs from the optimal policy by no 
more than  

Tom Mitchell, April 2011 

So far: learning optimal policy when we 
know P(st | st-1, at-1) 

What if we don’t? 
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Q learning 
Define new function, closely related to V* 

If agent knows Q(s,a), it can choose optimal action 
without knowing P(st+1|st,a)  ! 

And, it can learn Q without knowing P(st+1|st,a) 

Tom Mitchell, April 2011 

Immediate rewards r(s,a) 

State values V*(s) 

State-action values Q*(s,a) 

Bellman equation.   

Consider first the case where 
P(s’| s,a) is deterministic 
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Use general fact: 
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•  Learning to choose optimal actions A 
•  From delayed reward 
•  By learning evaluation functions like V(S), Q(S,A) 

Key ideas: 
•  If next state function St x At  St+1 is known 

–  can use dynamic programming to learn V(S) 
–  once learned, choose action At that maximizes V(St+1) 

•  If next state function St x At  St+1 unknown 
–  learn Q(St,At) = E[V(St+1)] 
–  to learn, sample St x At  St+1 in actual world 
–  once learned, choose action At that maximizes Q(St,At) 

MDP’s and RL: What You Should Know 



15 

Tom Mitchell, April 2011 

MDPs and Reinforcement Learning: Further Issues 
•  What strategy for choosing actions will optimize 

–  learning rate? (explore uninvestigated states) 
–  obtained reward?  (exploit what you know so far) 

•  Partially observable Markov Decision Processes 
–  state is not fully observable 
–  maintain probability distribution over possible states you’re in 

•  Convergence guarantee with function approximators? 
–  our proof assumed a tabular representation for Q, V 
–  some types of function approximators still converge (e.g., nearest 

neighbor) [Gordon, 1999] 

•  Correspondence to human learning? 


