Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

April 26, 2011

Today:

* Learning of control policies
* Markov Decision Processes
» Temporal difference learning
* Q/learning

Readings:
* Mitchell, chapter 13

* Kaelbling, et al., Reinforcement
Learning: A Survey

Thanks to Aarti Singh for several slides

Tom Mitchell, April 2011

Reinforcement Learning
[Sutton and Barto 1981; Samuel 1957; ...]

V*(S) = E[rt + y I‘t+1 + ert+2 +]

Tom Mitchell, April 2011

Reinforcement Learning: Backgammon

[Tessauro, 1995]

Learning task:
+ chose move at arbitrary board states

Training signal:
+ final win or loss

Training:
+ played 300,000 games against itself

Algorithm:
+ reinforcement learning + neural network

Result:
» World-class Backgammon player

.......... Tom Mitchell, April 2011

Outline

* Learning control strategies
— Credit assignment and delayed reward
— Discounted rewards

Markov Decision Processes
— Solving a known MDP

* Online learning of control strategies
— When next-state function is known: value function V*(s)

— When next-state function unknown: learning Q’(s,a)

* Role in modeling reward learning in animals

,,,,,,,,,, Tom Mitchell, April 2011

Jows?

o7

Reinforcement Learning Problem

Agent
State/l%eward \ction
Environment
a a a
N 0 0 S 1 1 s 2 2
o])

Goal: Learn to choose actions that maximize

2 -
XYL YTt where 0 <7 <!

Tom Mitchell, April 2011

Markov Decision Process = Reinforcement Learning Setting

G

Agent

Sm[e/‘/ksward \cnou

[Environment |

Set of states S 0 o 2

Set of actions A ! ! :

At each time, agent observes state s, € S, then chooses action 13 € A

Then receives reward r,, and state changes to s,

Markov assumption: P(s. | s, @, S, @y, --.) = P(Syeq | Sy, @

Also assume reward Markov: P(r,|s,, a; S, @15---) = P(r| Sy, @)
\

—_—

The task: learn a policy «t: S > A for choosing actions that maximizes
Elre + 41+ 7m0 +.] 0<y<1

for every possit&starting staQe S‘b Q(ﬁf | s .”D
ovet PV 91

Tom Mitchell, April 2011

@mhq“\/ Obsevved
HMM, Markov Process, Markov Decision Process

HiMM

HMM, Markov Process, Markov Decision Process

.......... Tom Mitchell, April 2011

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

» Learn control policy wt: S>A that maximizesi A B[]
from every states €S =0

Example: Robot grid world, deterministic reward r(s,a)

T
MEaE

(immediate reward)

Tom Mitchell, April 2011

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results and

» Learn control policy wt: S>A that maximizes Z F E[r]
from every state s € S t=0

Yikes!!

* Function to be learned is m: S>A

» But training examples are not of the form <s, a>
* They are instead of the form < <s,a>, r >

Tom Mitchell, April 2011

Value Function for each Policy sl (O

» Given apolicy n: S 2> A, define = f;

(0.¢] . .
VT —F t assuming action sequence chosen
(s) [EO il according to x, starting at state s

« Then we want the optimal policy " where G:S7A
7 = arg max VT (s), (Vs)

* For any MDP, such a policy exists!
« We'll abbreviate V*'(s) as V*
* Note if we have V*(s) and P(s.,4|s.,a), we can compute
(s) P — 5| >
M@ S acgmy = | CSJC‘ S|oesh \/(5
ack S ARAS SJ

Tom Mitchell, April 2011

Value Function — what are the V7(s) values?
Vs) = E[Y v'ri]
N t=0

5”??05‘& _- 15 s\/\O\AJI/\ \07/ Cl‘f(‘-itj Q_C‘F/DVl —p\rowl chL
5(/(7?05(b/ - O? state

PAS c@\lc&» O
@*O A_@ 10@ £0

- <l

0 -0 (00 0

{ ‘C\{ b(\

r(s,a) (immediate reward)

Tom Mitchell, April 2011

Value Function — what are the V*(s) values?
VT(s) = E[Y ~'rl
t=0

Vs

VD g0 e g0 22 O

H-H—=

o P 0o

0

r(s,a) (immediate reward)

.......... Tom Mitchell, April 2011

. 100 0 Immediate rewards r(s,a)
:; 5 (Q State values V*(s)

Ao He A

ol ¥ 0 100]
Ol Ol

r(s,a) (immediate reward) values

T T G 90 & 100 _>o (a
A /S Y W '
I 'y Ly |
T T 81 o 90 & 100
One optimal policy V*(s) values

,,,,,,,,,, Tom Mitchell, April 2011

Recursive definition for V*(S)

e assuming actions are

— t
V*(s) = E[E v'rt] chosen according to the
t=0 optimal policy, *

V*(s1) = Elr(s1,a1)]+Er(s2, a)l4+Ely2r(s3,a3)]+. .]

V*(s1) = Elr(s1,a1)] + 7Eg, s 0, [V (52)]

V*(s) = Blr(s, " ()4 7By po () [V ()]

Tom Mitchell, April 2011

Value lteration for learning V* : assumes P(S,,4|S;, A) known

Initialize V(s) arbitrarily .y +“ CB
Loop until policy good enough . O,Q aVéj)f v
ot
oop forsin S (ﬁ‘}\ ov"S(
Loop forain A Jf 1//
. @«—lr(s,a) + v Z P(s'|s,a)V (s
s'es
V(s) «— max Q(s,a)
End loop 0
0 100II
End loop ;l ({)
0

0 0
V(s) converges to V*(s) oH OH 1 oo*

Dynamic programming :‘: ﬂ:

Value lteration

Interestingly, value iteration works even if we randomly
traverse the environment instead of looping through
each state and action methodically

» but we must still visit each state infinitely often on an
infinite run

» For details: [Bertsekas 1989]
* Implications: online learning as agent randomly roams

If max (over states) difference between two successive
value function estimates is less than ¢, then the value of
the greedy policy differs from the optimal policy by no

more than 267/(1 _ 7)

Tom Mitchell, April 2011

So far: learning optimal policy when we
know P(s, | S, @.4)

What if we don’t?

Tom Mitchell, April 2011

Q learning

Define new function, closely related to V*

V*(s) = Elr(s,7°(5))] + 7 Eviae(o)!

If agent knows Q(s,a), it can choose optimal action
without knowing P(s,,4|s,a) !

7*(s) = arg max Q(s,a) V*(s) = max Q(s, a)

And, it can learn Q without knowing P(s,,,|s;,a)

Immediate rewards r(s,a) i c{)
Ao Ao A
State values V*(s) AN IEA S
ol Ol
State-action values Q*(s,a) T T
V*(s) = E[r(s,7"(s))] + WESI\S,w*(S)[V*(S/)] r(s,a) (immediate reward) values
—
90 100, 90
. —— - G o - G
Bellman equation. - 90 a— 100 [:)
q H
81 90 1 - _
<5 * g; 81 <:4: 100
Q(s,a) values V*(s) values
— _—/
Consider first the case where T TG /
P(s’| s,a) is deterministic f
—— —f—
One optimal policy
ML

Tom Mitchell, April 2011

10

Training Rule to Learn Q

Note @ and V* closely related:

Which allows us to write

recursively as S@k fu) ’ SH(

Q(st, = r(sna

e G

Nice! Let Q denote learner’s current approximation
to Q. Consider training rule

Q(s,a) « r+ymaxQ(s',d)

where s’ is the state resulting from applying action
a in state s

Tom Mitchell, April 2011

Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s,a) as follows:

Q(s,a) 7 +ymaxQ(s',)

o5+ s

Tom Mitchell, April 2011

Updating Q

o
<] =
+o_

Als

2y

5\

\J

|81 :_’ |81
a right
——
initial state: S, O next state: S,

— 0+ 0.9 max{63,81,100}
(o

notice if rewards non-negative, then

(VS, a, n) Qn+1(87 a’) Z Qfl(87 a’)

and .
(Vs,a,n) 0<Qn(s,a) <Q(s,a)

.......... Tom Mitchell, April 2011

(Q L:onverges to@ Consider case of deterministic
rld where see™each (s, a) visited infinitely often.
—
Proof: Define a full interval to be an interval during

which each (s, a) is visited. During each full
interval the largest error in @ table is reduced by

factor OMW

Let Qn be table after g__updates7 and A, be the
maximum error in @Q,; that is I

An An s,a)— s, a
<}%@@)~ QUs.0)

For any table entry Q,l(s, a) updated on iteration 9 \/,,’\\)(/
n+ 1, the error in the revised estimate Q,41(s,a) i &x&f

~ v

1Quii(s,a) — Q(s,a)| |(s',a'5 o Use general fact:

—p — S F | mp f1(a) — mpx fo(a)| <
T~ (7 maxQ(s, @)

T myx (¢ o) - mpxa(eay T
7ma;X|Qn(@ a') —QHS’,a’ —
|Qn+1(s,a) — Q(s,a)| < vA,

.......... Tom Mitchell, April 2011

12

Nondeterministic Case

(@ learning generalizes to nondeterministic worlds
Alter training rule to
Qn(s,a) — (1—ay,)Qn_1(s, a)+an[r+rrte,1x Qu_1(s,d)]

where
1

1+ visits,(s,a)

a‘ll

Can still prove convergence of Q to @ [Watkins and
Dayan, 1992]

Tom Mitchell, April 2011

Temporal Difference Learning

@ learning: reduce discrepancy between successive
() estimates

One step time difference:
QW (s, ar) =1+ max Q(3t+17a)
Why not two steps?
QP (sy,ar) =11+ yreg1 + 2 mgmx@(sprg, a)
Orn?

Q(n)(St, at) = re+yrite -+’y("_1)rt+n_1+7" mﬂaxQ(an, a)

Blend all of these:
Q)\(Staat) = (1-)) [Q(l)(Sn ar) + /\Q(Q)(Sn ar) + /\QQ(3)(3taat)

Temporal Difference Learning

Q*(st,ar) = (1-X) [Q(l)(st, ar) + AQ¥ (s,) + N2Q¥) (54, ay)

Equivalent expression:
QNsryar) =7+ (1=X) max Q(s1, az)
+A Q\(st41, ar41)]
TD(A) algorithm uses above training rule
e Sometimes converges faster than) learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm

.......... Tom Mitchell, April 2011

MDP’s and RL: What You Should Know

» Learning to choose optimal actions A
* From delayed reward
» By learning evaluation functions like V(S), Q(S,A)

Key ideas:
+ If next state function S; x A, > S,,4 is known

— can use dynamic programming to learn V(S)

— once learned, choose action A, that maximizes V(S,,,)
+ If next state function S, x A; > S,,; unknown

- learn Q(S,A) = E[V(S;4)]

— tolearn, sample S, x A, > S, in actual world

— once learned, choose action A, that maximizes Q(S,A,)

,,,,,,,,,, Tom Mitchell, April 2011

14

MDPs and Reinforcement Learning: Further Issues

What strategy for choosing actions will optimize
— learning rate? (explore uninvestigated states)
— obtained reward? (exploit what you know so far)

Patrtially observable Markov Decision Processes
— state is not fully observable
— maintain probability distribution over possible states you’re in

Convergence guarantee with function approximators?
— our proof assumed a tabular representation for Q, V

— some types of function approximators still converge (e.g., nearest
neighbor) [Gordon, 1999]

» Correspondence to human learning?

Tom Mitchell, April 2011

15

