10601
Machine Learning

Model and feature selection
Model selection issues

- We have seen some of this before …
- Selecting features (or basis functions)
 - Logistic regression
 - SVMs
- Selecting parameter value
 - Prior strength
 - Naïve Bayes, linear and logistic regression
 - Regularization strength
 - Linear and logistic regression
 - Decision trees
 - depth, number of leaves
 - Clustering
 - Number of clusters
- More generally, these are called Model Selection Problems
Training and test set error as a function of model complexity
Model selection methods

- Cross validation
- Regularization
- Information theoretic criteria
Simple greedy model selection algorithm

• Pick a dictionary of features
 – e.g., polynomials for linear regression

• Greedy heuristic:
 – Start from empty (or simple) set of features \(F_0 = \emptyset \)
 – Run learning algorithm for current set of features \(F_t \)
 • Obtain \(h_t \)
 – Select next feature \(X_i^* \)
 • e.g., \(X_j \) is some polynomial transformation of \(X \)
 – \(F_{t+1} \leftarrow F_t \cup \{X_i^*\} \)
 – Recurse
Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - But, sometimes you can prove something cool about it
Simple greedy model selection algorithm

• Greedy heuristic:
 – …
 – Select next best feature X^*_i
 • e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 – $F_{t+1} \leftarrow F_t \cup \{X^*_i\}$
 – Recurse

When do you stop???

■ When training error is low enough?
■ When test set error is low enough?
Validation set

- Thus far: Given a dataset, **randomly** split it into two parts:
 - Training data – \(\{ x_1, \ldots, x_{N_{\text{train}}} \} \)
 - Test data – \(\{ x_1, \ldots, x_{N_{\text{test}}} \} \)
- But **Test data must always remain independent!**
 - Never ever ever ever learn on test data, including for model selection
- Given a dataset, **randomly** split it into three parts:
 - Training data – \(\{ x_1, \ldots, x_{N_{\text{train}}} \} \)
 - Validation data – \(\{ x_1, \ldots, x_{N_{\text{valid}}} \} \)
 - Test data – \(\{ x_1, \ldots, x_{N_{\text{test}}} \} \)
- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation
Simple greedy model selection algorithm

- Greedy heuristic:
 - …
 - Select **next best feature** X_i^*
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?

Sometimes, but there is an even better option …
Validating a learner, not a hypothesis (intuition only, not proof)

- With a validation set, get to estimate error of 1 hypothesis on 1 dataset
 - e.g. Should I use a polynomial of degree 3 or 4
- Need to estimate error of learner over multiple datasets to select parameters
 \[E_{\{x,y\}}[h_t] \]
 Expected error over all datasets
(LOO) Leave-one-out cross validation

• Consider a validation set with 1 example:
 – D – training data
 – $D\setminus i$ – training data with ith data point moved to validation set
• Learn classifier $h_{D\setminus i}$ with the $D\setminus i$ dataset
• Estimate true error as:
 – 0 if $h_{D\setminus i}$ classifies ith data point correctly
 – 1 if $h_{D\setminus i}$ is wrong about ith data point
 – Seems really bad estimator, but wait!
• LOO cross validation: Average over all data points i:
 – For each data point you leave out, learn a new classifier $h_{D\setminus i}$
 – Estimate error as:

$$\text{error}_{LOO} = \frac{1}{m} \sum_{i=1}^{m} 1 \left(h_{D\setminus i}(x^i) \neq y^i \right)$$
LOO cross validation is (almost) unbiased estimate of true error!

- When computing **LOOCV error**, we only use *m-1* data points
 - So it’s not estimate of true error of learning with *m* data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer

- **LOO is almost unbiased**!
 - Let \(\text{error}_{true,m-1} \) be true error of learner when you only get *m-1* data points
 - LOO is unbiased estimate of \(\text{error}_{true,m-1} \):
 \[
 E_D[\text{error}_{LOO}] = \text{error}_{true,m-1}
 \]

- **Great news!**
 - Use LOO error for model selection!!!
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i^*
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- **STOP WHEN** error$_{LOO}$ IS LOW!!!
LOO cross validation error
Computational cost of LOO

• Suppose you have 100,000 data points
• You implemented a great version of your learning algorithm
 – Learns in only 1 second
• Computing LOO will take about 1 day!!!
 – If you have to do for each choice of basis functions, it will take forever!
Solution: Use k-fold cross validation

- Randomly **divide training data into k equal parts**
 - D_1, \ldots, D_k
- For each i
 - Learn classifier $h_{D \setminus D_i}$ using data point not in D_i
 - Estimate error of $h_{D \setminus D_i}$ on validation set D_i:
 \[
 \text{error}_{D_i} = \frac{k}{m} \sum_{(x^j, y^j) \in D_i} 1 \left(h_{D \setminus D_i}(x^j) \neq y^j \right)
 \]
- k-fold cross validation error is **average** over data splits:
 \[
 \text{error}_{k\text{-fold}} = \frac{1}{k} \sum_{i=1}^{k} \text{error}_{D_i}
 \]
- k-fold cross validation properties:
 - **Much faster to compute** than LOO
 - **More (pessimistically) biased** – using much less data, only $m(k-1)/k$
Model selection methods

- Cross validation
- Regularization
- Information theoretic criteria
Regularization

- Regularization
 - Include all possible features!
 - Penalize “complicated” hypothesis
Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:

 \[-2.2 + 3.1 X − 0.30 X^2\] \[-1.1 + 4,700,910.7 X − 8,585,638.4 X^2 + \ldots\]

- Regularized least-squares (a.k.a. ridge regression):

 \[w^* = \arg \min_w \sum_j (w^T x_j − y_j)^2 + \lambda \sum_i w_i^2\]
Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus **penalty for large parameters**

 \[
 \arg \max_w \sum_j \ln P(y_j^j|x_j^j, w) - \lambda \sum_i w_i^2
 \]

 - Biases towards small parameter values

- **Naïve Bayes** regularization
 - **Prior** over likelihood of features
 - Biases away from zero probability outcomes

- **Decision tree** regularization
 - Many possibilities, e.g., Chi-Square test
 - Biases towards smaller trees

- **Sparsity**: find good solution with few basis functions, e.g.:
 - Simple greedy model selection from earlier in the lecture
 - **L1 regularization**, e.g.:

 \[
 w^* = \arg \min_w \sum_j (w^T x_j - y_j)^2 + \lambda \sum_i |w_i|
 \]
Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

• For example, if we assume a zero mean, Gaussian prior for \(w \) in a logistic regression classification we would end up with an L2 regularization

 - Why?

 - Which value should we use for \(\lambda \) (the variance)?

• Similar interpretation for other learning approaches:

 - **Linear regression**: Also zero mean, Gaussian prior for \(w \)

 - **Naïve Bayes**: Directly defined as prior over parameters
How do we pick magic parameter λ?

Cross Validation!!!
Model selection methods

- Cross validation
- Regularization
- Information theoretic criteria
Occam’s Razor

- William of Ockham (1285-1349) *Principle of Parsimony*:
 - “One should not increase, beyond what is necessary, the number of entities required to explain anything.”

- *Minimum Description Length (MDL) Principle*:
 - minimize \(\text{length}(\text{misclassifications}) + \text{length}(\text{hypothesis}) \)

- \(\text{length}(\text{misclassifications}) \) – e.g., #wrong training examples
- \(\text{length}(\text{hypothesis}) \) – e.g., size of decision tree
Minimum Description Length Principle

• MDL prefers small hypothesis that fit data well:

\[L_{M DL}^h = \arg \min_h L_{C1}(D \mid h) + L_{C2}(h) \]

where \(h \) is the code C1 given \(h \)

• Only need to describe points that \(h \) doesn’t explain (classify correctly)

– \(L_{C2}(h) \) – description length of hypothesis \(h \)

• Decision tree example

– \(L_{C1}(D \mid h) \) – #bits required to describe data given \(h \)

 • If all points correctly classified, \(L_{C1}(D \mid h) = 0 \)

– \(L_{C2}(h) \) – #bits necessary to encode tree

– Trade off quality of classification with tree size

Other popular methods include: BIC, AIC
Feature selection

• Choose an optimal subset from the set of all N features
 - Only use a subset of a possible words in a dictionary
 - Only use a subset of genes

• Why?

• Can we use model selection methods to solve this? – 2^n models
eg. Microarray data

1682 Genes

>8x induced >8x repressed
Two approaches: 1. Filter

- Independent of classifier used
- Rank features using some criteria based on their relevance to the classification task
- For example, mutual information:

\[I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p_1(x) p_2(y)} \right), \]

- Choose a subset based on the sorted scores for the criteria used
2. Wrapper

• Classifier specific
• Greedy (large search space)
• Initialize $F = \text{null set}$
 – At each step, using cross validation or an information theoretic criteria, choose a feature to add to the subset [training should be done with only features in $F + \text{new feature}$]
 – Add the chosen feature to the subset
• Repeat until no improvement to CV accuracy
What you need to know about Model Selection, Regularization and Cross Validation

• Cross validation
 – (Mostly) Unbiased estimate of true error
 – LOOCV is great, but hard to compute
 – k-fold much more practical
 – Use for selecting parameter values!

• Regularization
 – Penalizes for complex models
 – Select parameter with cross validation
 – Really a Bayesian approach

• Minimum description length
 – Information theoretic interpretation of regularization
Final

- Open book, open notes
- GHC 4 1-4pm Monday, 12/10
- 3 hours
- Review session today at 6pm in PH100
- FCEs