Hierarchical clustering

Reading: Bishop: 9-9.2
Second half: Overview

- Clustering
 - Hierarchical, semi-supervised learning
- Graphical models
 - Bayesian networks, HMMs, Reasoning under uncertainty
- Putting it together
 - Model / feature selection, Boosting, dimensionality reduction
- Advanced classification
 - SVM
What is Clustering?

• Organizing data into clusters such that there is
 • high intra-cluster similarity
 • low inter-cluster similarity
• Informally, finding natural groupings among objects.

• Why do we want to do that?
• Any REAL application?
Example: clusty

1. **Witness contradicts self in O.J. Simpson trial**
 Sep 17, 2008 - A key witness in the O.J. Simpson robbery trial was confronted with contradictions in his testimony Tuesday, including his claim that he didn't try to profit from the casino hotel room confrontation that led to charges against the former football star. Memorabilia dealer Bruce Fromong, who returned to the stand after becoming ill Monday, told defense attorney Gabriel Grasso he didn't have money on his mind while allegedly being robbed of sports collectibles by Simpson and a group of other men. "You...

2. **Witness in Simpson trial says gun brandished in incident**
 Sep 16, 2008 - A witness who says he was robbed by O.J. Simpson testified that a gun was brandished during the incident as the former football star's robbery and kidnapping trial opened. Bruce Fromong, 54, one of the two collectibles dealers at the center of the case, told the jury on Monday that someone in the room during the alleged robbery shouted, "Put the gun down," contradicting Simpson's claim he did not know firearms were present. The witness said he could not recall which of the six men who burst into the...

3. **Key OJ Simpson witness clutches chest in court**
 Sep 16, 2008 - A key witness in O.J. Simpson's kidnap and robbery trial became ill on Monday while testifying about a hotel room confrontation at the heart of the case -- clutching his chest before bailiffs helped him from the witness stand.
Example: clustering genes

- Microarrays measures the activities of all genes in different conditions

- Clustering genes can help determine new functions for unknown genes

- An early “killer application” in this area
 - The most cited (12,309) paper in PNAS!
Unsupervised learning

• Clustering methods are unsupervised learning techniques
 - We do not have a teacher that provides examples with their labels

• We will also discuss dimensionality reduction, another unsupervised learning method later in the course
Outline

• Distance functions
• Hierarchical clustering
• Number of clusters
What is Similarity?

The quality or state of being similar; likeness; resemblance; as, a similarity of features.

Webster's Dictionary

Similarity is hard to define, but…
“We know it when we see it”

The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.
Defining Distance Measures

Definition: Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) between O_1 and O_2 is a real number denoted by $D(O_1, O_2)$.

$D(O_1, O_2) = \begin{cases}
0.23 & \text{if } O_1 \text{ and } O_2 \text{ are similar} \\
3 & \text{if } O_1 \text{ and } O_2 \text{ are moderately similar} \\
342.7 & \text{if } O_1 \text{ and } O_2 \text{ are very dissimilar}
\end{cases}$
A few examples:

- **Euclidean distance**
 \[
 d(x, y) = \sqrt{\sum (x_i - y_i)^2}
 \]

- **Correlation coefficient**
 \[
 s(x, y) = \frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{\sigma_x \sigma_y}
 \]
 - Similarity rather than distance
 - Can determine similar trends
Outline

• Distance measure
• Hierarchical clustering
• Number of clusters
Desirable Properties of a Clustering Algorithm

• Scalability (in terms of both time and space)
• Ability to deal with different data types
• Minimal requirements for domain knowledge to determine input parameters
• Interpretability and usability

Optional
- Incorporation of user-specified constraints
Two Types of Clustering

- **Partitional algorithms**: Construct various partitions and then evaluate them by some criterion.
- **Hierarchical algorithms**: Create a hierarchical decomposition of the set of objects using some criterion (focus of this class).

Bottom up or top down

Hierarchical

Top down

Partitional
(How-to) Hierarchical Clustering

The number of dendrograms with \(n \) leafs is calculated by the formula:

\[
\text{Number of Possible Dendrograms} = \frac{(2n - 3)!}{((2^{n-2}) \ (n - 2)!)}
\]

<table>
<thead>
<tr>
<th>Number of Leafs</th>
<th>Number of Possible Dendrograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>34,459,425</td>
</tr>
</tbody>
</table>

Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.
We begin with a distance matrix which contains the distances between every pair of objects in our database.

\[
\begin{array}{cccc}
0 & 8 & 8 & 7 \\
8 & 0 & 2 & 4 \\
8 & 2 & 0 & 3 \\
7 & 4 & 3 & 0 \\
7 & 4 & 3 & 0 \\
\end{array}
\]

\[
D(\text{, }) = 8 \\
D(\text{, }) = 1
\]
Bottom-Up (agglomerative):
Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.
Bottom-Up (agglomerative):
Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Consider all possible merges…

Choose the best

Consider all possible merges…

Choose the best
Bottom-Up (agglomerative):
Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Consider all possible merges... Choose the best

Consider all possible merges... Choose the best

Consider all possible merges... Choose the best
Bottom-Up (agglomerative):
Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

But how do we compute distances between clusters rather than objects?
Computing distance between clusters: Single Link

- cluster distance = distance of two closest members in each class

- Potentially long and skinny clusters
Computing distance between clusters: : Complete Link

- cluster distance = distance of two farthest members

+ tight clusters
Computing distance between clusters: Average Link

- cluster distance = average distance of all pairs

- the most widely used measure
- Robust against noise
Example: single link

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 0 \\
2 & 2 & 0 \\
3 & 6 & 3 & 0 \\
4 & 10 & 9 & 7 & 0 \\
5 & 9 & 8 & 5 & 4 & 0 \\
\end{bmatrix}
\]
Example: single link

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 0 \\
2 & 2 & 0 \\
3 & 6 & 3 & 0 \\
4 & 10 & 9 & 7 & 0 \\
5 & 9 & 8 & 5 & 4 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
(1,2) & 3 & 4 & 5 \\
(1,2) & 0 \\
3 & 3 & 0 \\
4 & 9 & 7 & 0 \\
5 & 8 & 5 & 4 & 0
\end{bmatrix}
\]

\[
d_{(1,2),3} = \min\{d_{1,3}, d_{2,3}\} = \min\{6,3\} = 3
\]

\[
d_{(1,2),4} = \min\{d_{1,4}, d_{2,4}\} = \min\{10,9\} = 9
\]

\[
d_{(1,2),5} = \min\{d_{1,5}, d_{2,5}\} = \min\{9,8\} = 8
\]
Example: single link

\[
\begin{align*}
&d_{(1,2,3),4} = \min\{d_{(1,2),4}, d_{3,4}\} = \min\{9,7\} = 7 \\
&d_{(1,2,3),5} = \min\{d_{(1,2),5}, d_{3,5}\} = \min\{8,5\} = 5
\end{align*}
\]
Example: single link

\[d_{(1,2,3),(4,5)} = \min\{d_{(1,2,3),4}, d_{(1,2,3),5}\} = 5 \]
Height represents distance between objects / clusters

Average linkage

Single linkage
Summary of Hierarchical Clustering Methods

- No need to specify the number of clusters in advance.
- Hierarchical structure maps nicely onto human intuition for some domains.
- They do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects.
- Like any heuristic search algorithms, local optima are a problem.
- Interpretation of results is (very) subjective.
But what are the clusters?

In some cases we can determine the “correct” number of clusters. However, things are rarely this clear cut, unfortunately.
One potential use of a dendrogram is to detect outliers.

The single isolated branch is suggestive of a data point that is very different to all others.
Example: clustering genes

- Microarrays measures the activities of all genes in different conditions
- Clustering genes can help determine new functions for unknown genes
Partitional Clustering

• Nonhierarchica, each instance is placed in exactly one of K non-overlapping clusters.
• Since the output is only one set of clusters the user has to specify the desired number of clusters K.
K-means Clustering: Finished!

Re-assign and move centers, until …
no objects changed membership.
Gaussian mixture clustering
Clustering methods: Comparison

<table>
<thead>
<tr>
<th></th>
<th>Hierarchical</th>
<th>K-means</th>
<th>GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time</td>
<td>naively, $O(N^3)$</td>
<td>fastest (each iteration is linear)</td>
<td>fast (each iteration is linear)</td>
</tr>
<tr>
<td>Assumptions</td>
<td>requires a similarity / distance measure</td>
<td>strong assumptions</td>
<td>strongest assumptions</td>
</tr>
<tr>
<td>Input parameters</td>
<td>none</td>
<td>K (number of clusters)</td>
<td>K (number of clusters)</td>
</tr>
<tr>
<td>Clusters</td>
<td>subjective (only a tree is returned)</td>
<td>exactly K clusters</td>
<td>exactly K clusters</td>
</tr>
</tbody>
</table>
Outline

• Distance measure
• Hierarchical clustering
• Number of clusters
How can we tell the right number of clusters?

In general, this is an unsolved problem. However, there are many approximate methods. In the next few slides we will see an example.
When $k = 1$, the objective function is 873.0
When $k = 2$, the objective function is 173.1
When $k = 3$, the objective function is 133.6
We can plot the objective function values for k equals 1 to 6…

The abrupt change at $k = 2$, is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as “knee finding” or “elbow finding”.

Note that the results are not always as clear cut as in this toy example
Cross validation

- We can also use cross validation to determine the correct number of classes
- Recall that GMMs is a generative model. We can compute the likelihood of the left out data to determine which model (number of clusters) is more accurate

\[
p(x_1 \cdots x_n \mid \theta) = \prod_{j=1}^{n} \left(\sum_{i=1}^{k} p(x_j \mid C = i) w_i \right)
\]
Cross validation
What you should know

• Why is clustering useful
• What are the different types of clustering algorithms
• What are the assumptions we are making for each, and what can we get from them
• Unsolved issues: number of clusters, initialization, etc.