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Today: 

•  Computational Learning 
Theory 

•  Probably Approximately 
Coorrect (PAC) learning 
theorem 

•  Vapnik-Chervonenkis (VC) 
dimension 

Recommended reading: 
 
•  Mitchell: Ch. 7  
•  suggested exercises: 7.1, 

7.2, 7.7 
      

Computational Learning Theory   

•  What general laws constrain inductive learning? 
•  Want theory to relate 

–  Number of training examples 
–  Complexity of hypothesis space 
–  Accuracy to which target function is approximated 
–  Manner in which training examples are presented 
–  Probability of successful learning 

* See annual Conference on Computational Learning Theory 
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Sample Complexity 

How many training examples suffice to learn target concept 

1.  If learner proposes instances as queries to teacher? 
  - learner proposes x, teacher provides f(x) 
 

2.  If teacher (who knows f(x)) proposes training examples? 
 - teacher proposes sequence {<x1, f(x1)>, … <xn, f(xn)> 
 

3.  If some random process (e.g., nature) proposes 
instances, and teacher labels them? 
 - instances drawn according to P(X) 

Sample Complexity 3 

Problem setting: 
•  Set of instances 
•  Set of hypotheses  
•  Set of possible target functions  
•  Sequence of training instances drawn at random from 

teacher provides noise-free label 

Learner outputs a hypothesis             such that 
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Function Approximation: The Big Picture 

The true error of h is the probability that it will  
misclassify an example drawn at random from 
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D

instances	


drawn at random from 	



Probability 
distribution P(X) 

training 
examples D 

Overfitting 

Consider a hypothesis h and its 
•  Error rate over training data: 
•  True error rate over all data:  
 
We say h overfits the training data if 
 

Amount of overfitting =  
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Overfitting 

Consider a hypothesis h and its 
•  Error rate over training data: 
•  True error rate over all data:  
 
We say h overfits the training data if 
 

Amount of overfitting =  

Can we bound                     

  in terms of                     ??  

Probability 
distribution P(x) 

training 
examples 

if D was a set of examples drawn from            and independent of 
h, then we could use standard statistical confidence intervals to 
determine that with 95% probability,                    lies in the interval:  

but D is the training data for h …. 

xєD D xєD D xєD D xєD DxєD D xєD D
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c: X à {0,1} 

Function Approximation: The Big Picture 
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Any(!) learner 
that outputs 
a hypothesis 
consistent 
with all 
training 
examples (i.e., 
an h 
contained in 
VSH,D) 
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Example: H is Conjunction of up to N Boolean Literals 

Consider classification problem f:XàY: 
•  instances: X = <X1 X2  X3 X4> where each Xi is boolean 
•  Each hypothesis in H is a rule of the form: 

–  IF <X1 X2  X3 X4> = <0,?,1,?> ,  THEN Y=1, ELSE Y=0 
–  i.e., rules constrain any subset of the Xi 
 

 How many training examples m suffice to assure that with 
probability at least 0.99, any consistent learner using H will output 
a hypothesis with true error at most 0.05? 

What it means 

[Haussler, 1988]: probability that the version space is not ε-exhausted 
after m training examples is at most  

1. How many training examples suffice?	



Suppose we want this probability to be at most δ	



2. If                                 then with probability at least (1-δ):	
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Example: H is Decision Tree with depth=2 

Consider classification problem f:XàY: 
•  instances: X = <X1 … XN> where each Xi is boolean 
•  learned hypotheses are decision trees of depth 2, using 

only two variables 
 

 

How many training examples m suffice to assure that with probability 
at least 0.99, any consistent learner will output a hypothesis with true  
error at most 0.05? 
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Sufficient condition:  

Holds if learner L 
requires only a 
polynomial number of 
training examples, and 
processing per 
example is polynomial 

Here ε is the difference between the training error and true error 
of the output hypothesis (the one with lowest training error) 
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Additive Hoeffding Bounds – Agnostic Learning 

•  Given m independent flips of a coin with true Pr(heads) = θ	


 we can bound the error     in the maximum likelihood estimate 

 
 
•  Relevance to agnostic learning: for any single hypothesis h 

•  But we must consider all hypotheses in H 

•  So, with probability at least (1-δ) every h satisfies 

General Hoeffding Bounds 

•  When estimating parameter  θ inside [a,b] from m examples 

•  When estimating a probability θ is inside [0,1], so 

•  And if we’re interested in only one-sided error, then 
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Question: If H = {h | h: X à Y} is infinite, 
what measure of complexity should we 

use in place of |H| ? 

Question: If H = {h | h: X à Y} is infinite, 
what measure of complexity should we 

use in place of |H| ? 

Answer: The largest subset of X for which H can guarantee 
zero training error (regardless of the target function c) 
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Question: If H = {h | h: X à Y} is infinite, 
what measure of complexity should we 

use in place of |H| ? 

Answer: The largest subset of X for which H can guarantee 
zero training error (regardless of the target function c) 
 

VC dimension of H is the size of this subset 

Question: If H = {h | h: X à Y} is infinite, 
what measure of complexity should we 

use in place of |H| ? 

Answer: The largest subset of X for which H can guarantee 
zero training error (regardless of the target function c) 
 
Informal intuition: 
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a labeling of each 
member of S as 
positive or negative 
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VC(H)=3	



Compare to our earlier results based on |H|: 

How many randomly drawn examples suffice to ε-exhaust 
VSH,D with probability at least (1-δ)?  

ie., to guarantee that any hypothesis that perfectly fits the 
training data is probably (1-δ) approximately (ε) correct 

Sample Complexity based on VC dimension 
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VC dimension: examples 
Consider X = <, want to learn c:Xà{0,1} 
What is VC dimension of 
•  Open intervals: 

•  Closed intervals:  

x

VC dimension: examples 
Consider X = <, want to learn c:Xà{0,1} 
What is VC dimension of 
•  Open intervals: 

•  Closed intervals:  

x

VC(H1)=1 

VC(H2)=2 

VC(H3)=2 

VC(H4)=3 
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VC dimension: examples 

What is VC dimension of lines in a plane? 
•  H2 = { ((w0 + w1x1 + w2x2)>0  à  y=1) } 

 

VC dimension: examples 

What is VC dimension of 
•  H2 = { ((w0 + w1x1 + w2x2)>0  à  y=1) } 

–  VC(H2)=3 
•  For Hn = linear separating hyperplanes in n dimensions, VC

(Hn)=n+1 
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For any finite hypothesis space H, can you 
give an upper bound on VC(H) in terms of |H| ? 

(hint: yes) 

More VC Dimension Examples to Think About 

•  Logistic regression over n continuous features 
–  Over n boolean features? 

•  Linear SVM over n continuous features 

•  Decision trees defined over n boolean features 
F: <X1, ... Xn> à Y	


 

•  Decision trees of depth 2 defined over n features 
 
•  How about 1-nearest neighbor? 
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How tight is this bound?	



How many examples m suffice to assure that any hypothesis that fits the 
training data perfectly is probably (1-δ) approximately (ε) correct?	



Tightness of Bounds on Sample Complexity 

How tight is this bound?	



How many examples m suffice to assure that any hypothesis that fits the 
training data perfectly is probably (1-δ) approximately (ε) correct?	



Tightness of Bounds on Sample Complexity 

Lower bound on sample complexity (Ehrenfeucht et al., 1989):	



Consider any class C of concepts such that VC(C) > 1, any learner L, 
any 0 < ε < 1/8, and any 0 < δ < 0.01.  Then there exists a distribution 
and a target concept in C, such that if L observes fewer examples than 	



Then with probability at least δ, L outputs a hypothesis with 	
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Agnostic Learning: VC Bounds 

 
With probability at least (1-δ) every h ∈ H satisfies 

[Schölkopf and Smola, 2002] 

Structural Risk Minimization 

Which hypothesis space should we choose?  
•  Bias / variance tradeoff 

H1 H2 H3 H4 

[Vapnik] 

SRM: choose H to minimize bound on expected true error! 

* unfortunately a somewhat loose bound... 
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What You Should Know 
•  Sample complexity varies with the learning setting 

–  Learner actively queries trainer 
–  Examples arrive at random 
–  … 
 

•  Within the PAC learning setting, we can bound the probability that 
learner will output hypothesis with given error 
–  For ANY consistent learner (case where c ∈ H) 
–  For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H) 

•  VC dimension as measure of complexity of H 
 
•  Conference on Learning Theory: http://www.learningtheory.org 
•  Avrim Blum’s course on Machine Learning Theory: 

–  http://www.cs.cmu.edu/~avrim/ML09/index.html 


