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Today: Recommended reading:
+ Computational Learning * Mitchell: Ch. 7

Theory _ + suggested exercises: 7.1,
* Probably Approximately 72, 7.7

Coorrect (PAC) learning

theorem
* Vapnik-Chervonenkis (VC)

dimension

Computational Learning Theory

« What general laws constrain inductive learning?

* Want theory to relate
— Number of training examples
— Complexity of hypothesis space
— Accuracy to which target function is approximated
— Manner in which training examples are presented
— Probability of successful learning

* See annual Conference on Computational Learning Theor




Sample Complexity £ X =7

How many training examples suffice to learn target concept

1. If learner proposes instances as queries to teacher?
- learner proposes x, teacher provides f(x)

2. If teacher (who knows f(x)) proposes training examples?
- teacher proposes sequence {<x', f(x')>, ... <x", f(x")>

@If some random process (e.g., nature) proposes
instances, and teacher labels them?
- instances drawn according to P(X)

Sample Complexity 3

Probl tti o z
roblem setting:

+ Set of instances X
» Setof hypotheses H = {h: X — {0,1}}

« Set of possible target functions C = {c¢: X — {0,1}}

« Sequence of training instances drawn at random from P(X)
teacher provides noise-free label ¢(x)

Learner outputs a hypothesis h € H such that

h = argmin errory.qin(h)
heH




Function Approximation: The Bigmeicture

o
. v _ R 4
H:Ek'xﬁl} X’<K Koo

20

[x)=2

How many, l‘ll:)<)rjss\<4wl})[‘€5 ace needel a a*MOev $ !&ﬂmmc
which o€ Hhe 92 hypotheses 15 Fhe covvect oue ?
KU 22 imsbences n X most be (ebeled |
/)'hwt_ (S no 4‘«1«. luvw\\l,
In.,fw;hw_ M-p,vcv\cr, - éemw\hz_w-;.\ocym)bk’{lt’{"fmwlw‘; o(a(f‘q 1%
M 051 ble \i'/\_ktiS_ we DW?CL woXe ﬂéSVWhWS éﬁ.evlml‘j N«‘U)

True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

The true error of h is the probability that it will
misclassify an example drawn at random from P(X)

erroryye(h) = Pr )[h(m) # c(z)]

z~P(X




Two Notions of Error

Training error of hypothesis h with respect to

target concept ¢ 1 B ass 15 heoe.
—_T

e How often h(z) # c(z) over training instances D/

ETTOT train = wlg)[h:v # c(z)] = ﬁ Z W

T

True error of hypothesis h with respect to ¢ ;:2:\';& sD
e How often h(z) # c(zx) over future instances
drawn at random from D
erroryye(h) = Pr [h(z) # c()] Probability
N ©oe~nPX) e 7 | distribution P(X)

Overfitting QIXOOJ/ ﬁ°
V)

Consider a hypothesis #» and its —~
- sz K
« Error rate over training data: erroriqqin(h) -

« True error rate over all data: errory..(h)

We say & overfits the trainina data if
errorime(h) > erroryqin(h)

Amount of overfitting =
ﬁerronme(h) — errort@




Overfitting

Consider a hypothesis #» and its
- Error rate over training data: erroriqin(h)
« True error rate over all data: erroryy.(h)

We say /& overfits the trainina data if
errorime(h) > erroryqin(h)

Amount of overfitting =
ETTOT trye (h) — E€TrTO0Ttrain (h)

Can we bound errory..(h)

in terms of erroriqin(h) ??

ETTOT train = a:l:e)rb[h(m) #c(z)] = ﬁ Z w

training

examples
erroryuwe(h) = Pr [h(z c(x
true(h) ac~P(X)[ (z) # c(z)] Probability
T distribution P(x)

if D was a set of examples drawn from P(X) and independent of
h, then we could use standard statistical confidence intervals to
determine that with 95% probability errors...(h) lies in the interval:

errorp(h) (1 — errorp(h))

errorD(h) +1.96 .

but D is the training data for 4 ....




Version Spaces

c: X~>{0,1}

A hypothesis h is consistent with a set
training examples D of target concept c¢ if and
only if h(x) = ¢(x) for each training example
(z,e(x)) in D.

Consistent(h,D) = (Y{z,c(x)) € D) h(z) = ¢(zx)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSup={he€ H|C)’€nsistent(h, D)} = @\é{'f 2@—{2:;((93: ?}

==

Function Approximation: The BingPicture
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Exhausting the Version Space

Hypothesis space H

error=.3

r=4

error=.2
r=3

(r = training error, error = true error)

Definition: The version space V. Sy p with respect
to training data D is said to be e-exhausted if every
hypothesis h in V Sy p has true error less than e.

(Vh € VSup) erroryye(h) < €

How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e <1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to c) is less than

|H|€—€"l




How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].
If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than Any(!) learner

@—ml that OU'prfS

a hypothesis
Interesting! This bounds the probability that any consistent

,;consistent learner will output a hypothesis h with yr{:liqniar:'
/ error(h) > € '9 .
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Example: H is Conjunction of up to N Boolean Literals

m > %(ln|H\ +lnm

Consider classification problem f:X->Y:
 instances: X = <X, X, X; ﬁ#ﬂwhere each X; is boolean
« Each hypothesis in H is a rule of the form:

- [IF <X, X, X, x> =[<0.7,1,75), THEN Y=1, ELSE Y=0 |

— i.e., rules constrain any subset of the X;

How many training examples m suffice to assure that with
probability at least 0.99, any consistent learner using H will output
a hypothesis with true error at most 0.05?

n
7/5%([% 3 lw C’[/W)) > [8D
WA >/ ’0%5;6\(“3 -+ ('/\ ((/of>)
f.

What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr[(3h € H)s.t.(erroriqin(h) = 0)A(erroryye(h) >'e)] < |Hle ™
A ——= TMtraim\ ) — 4/ P true\t) 2 &)

T OVe o&g 5,4,44}3({} ‘,-C 2 7‘7‘0(:4413. cmm/:}(}
Suppose we want this probability to be at most 6

1. How many training examples suffice?

1
m > =(In [H| 4 In(1/5))
€
2. If erroryyqin(h) = 0 then with probability at least (1-9):

errorime(h) < —(In[H]| +1n(1/6))




Example: H is Decision Tree wih depth=2

Consider classification problem f:X->Y:
+ instances: X = <X, ... X, where each X; is boolean
+ learned hypotheses are decision trees of depth 2, using

(only two variables | o,
— Z\

%R R

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true
error at most 0.05? Z,

Mz%(hﬁ ")
a\@/v?(@'v I¢)

PAC Learning

Consider a class C of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 — J)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).

10



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using  Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if learner L

such that 0 < e < 1/2, and § such that requires only a
0<d<1/2, polynomial number of

learner L will with probability at least (1 4~ 4) ;:ﬁ?;ggi:;(;gg les, and

output a hypothesis h € H such that example is polynomial
errorp(h) < e, in time that is polynomial in
1/e, 1/4, n and size(c).

Agnostic Learning

So far, assumed ¢ € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?

m> (i |H] +In(1/6))

Here ¢ is the difference between the training error and true error
of the output hypothesis (the one with lowest training error)

11



Additive Hoeffding Bounds — Agnostic Learning

Given m independent flips of a coin with true Pr(heads) = 6
we can bound the error € in the maximum likelihood estimate @

Prif >0+ €] < ¢—2me”

* Relevance to agnostic learning: for any single hypothesis h

2
Prierrorirue(h) > erroripain(h) + €] < e

+ But we must consider all hypotheses in H

Pr[(3h € H)erroryye(h) > errorirqin(h)4+e€] < |H|e_2m62

» So, with probability at least (1-38) every h satisfies

In|H|+Ini
BT‘TOT’true(h) < errortmm(h) + #

General Hoeffding Bounds

When estimating parameter 6 inside [a,b] from m examples

—2me?
P10 — B[] > ¢) < 2600

When estimating a probability 6 is inside [0,1], so

P(10 - E[0)] > ¢) < 272"

And if we're interested in only one-sided error, then

P((E[0] — 0) > €) < e=2me’

12



m > =(n |H| +1n(1/5))

(%)

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?

m > ~(n|H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

13



m > =(n |H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |[H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

intuition: WX Y
Informal intuition: P o LT -

H; = a/eF‘(é. 3 _D’)_S

14



Shattering a Set of Instances

a labeling of each
. . . member of S as
Definition: a dichotomy of a set S'is a positive or negative

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered \ — H can

by hypothesis space H if and only if for every Jvavaatee
dichotomy of S there exists some hypothesis Zevo Yoy,

in H consistent with this dichotomy. CAeof Ovex
Instance space X S

15



The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-3)?

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > 2(41095(2/5) + 8V C(H) 1095(13/6))

Compare to our earlier results based on |H|:

m > %(In(l/cS) + In|HJ)

16



VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
4 X

What is VC dimension of — o g wo—5
« Open intervals: 2

!

H1l: if z > a then y =1 else y =
Velig ») =) - ( )
Ve, K25 1f ¢ > a then y =1 else y =

ofyifx >atheny=0¢lsey=1

~—

~(/ Q-

* Closed intervals:
H3: ifa<zxz<btheny=1lelse y=0

H4: ifa<x<bhtheny=1else y=0
or,ifa<z<btheny=0elsey=1
o ! -

VC/CH'O;E‘ O D ou

VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of o o X
* Open intervals:

H1l: ifx >a then y =1 else y =

VC(H1)=1

H2: if x >a then y =1 else y

0
0 VC(H2)=2
or, ifx>atheny=0else y=1

* Closed intervals:
H3: ifa<z<btheny=1celse y=0 VC(H3)=2

H4: ifa<z<btheny=1else y=0 VC(H4)=3
@ifa<x<bthen y=0elsey=1

17



VC dimension: examples

What is VC dimension of lines in a plane?
© Hy={((wo+wix; + wyx))>0 > y=1) } (
— o,

-Q

VC dimension: examples

What is VC dimension of

© Hy={((wo+wx; + wpxy)>0 2> y=1) }

* For H, = linear separating hyperplanes in n dimensions, VC
(H,)-n+1

18



For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H| ?
(hint: yes)

More VC Dimension Examples to Think About

» Logistic regression over n continuous features
— Over n boolean features?

* Linear SVM over n continuous features

* Decision trees defined over n boolean features
Fi<X, ..X>>Y

» Decision trees of depth 2 defined over n features

* How about 1-nearest neighbor?

19



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (¢) correct?

m > = (41095(2/8) + 8VO(H) 10g2(13/0))

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (g) correct?

m > 2(41095(2/8) + 8VC(H) loga(13/¢))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, ?GO
any 0 <& < 1/8,and any 0 <8 <0.01. Then there exists a distribution«’Dﬂ
and a target concept in C, such that if L observes fewer examples than
ve(e) -1

1
max |—log(1/6),
; a(1/6) 3¢

Then with probability at least 8, L outputs a hypothesis with errorg(h) > €

fve

20



Agnostic Learning: VC Bounds
[Schélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)(In VC(H) +1)+In%

m

errorirye(h) < erroryyqin(h)+

0\/(’_\) QL#’B.(L) <

Oveth s = ewor; () — ol (W

‘“my)

[ 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

Structural Risk Minimization Vapnik]

Which hypothesis space should we choose?
+ Bias / variance tradeoff

Ha H3

SRM: choose H to minimize bound on expected true error!

VC(H)(In VC’(H) +1)+1In% 3

m

errorirue(h) < erroryqin(h) -I—\j

* unfortunately a somewhat loose bound...

21



What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples arrive at random

Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error

— For ANY consistent learner (case where ¢ € H)

— For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

VC dimension as measure of complexity of H

Conference on Learning Theory: http://www.learningtheory.org
Avrim Blum’s course on Machine Learning Theory:
— http://www.cs.cmu.edu/~avrim/ML09/index.html
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