Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 11, 2012

Today:

- Computational Learning Theory
- Probably Approximately Coorrect (PAC) learning theorem
- Vapnik-Chervonenkis (VC) dimension

Recommended reading:

- Mitchell: Ch. 7
- suggested exercises: 7.1, 7.2, 7.7

Computational Learning Theory

- · What general laws constrain inductive learning?
- · Want theory to relate
 - Number of training examples
 - Complexity of hypothesis space
 - Accuracy to which target function is approximated
 - Manner in which training examples are presented
 - Probability of successful learning

^{*} See annual Conference on Computational Learning Theory

Sample Complexity $f: \times \rightarrow \uparrow$

How many training examples suffice to learn target concept

- If learner proposes instances as queries to teacher?
 learner proposes x, teacher provides f(x)
- 2. If teacher (who knows f(x)) proposes training examples?
 teacher proposes sequence {<x¹, f(x¹)>, ... <xⁿ, f(xⁿ)>
- 3. If some random process (e.g., nature) proposes instances, and teacher labels them?
 instances drawn according to *P(X)*

Sample Complexity 3

Problem setting:

- Set of instances X
- Set of hypotheses $H = \{h : X \to \{0, 1\}\}$
- Set of possible target functions $C = \{c : X \to \{0,1\}\}$
- Sequence of training instances drawn at random from P(X) teacher provides noise-free label c(x)

Learner outputs a hypothesis $h \in H$ such that

$$h = \arg\min_{h \in H} \ error_{train}(h)$$

How many labeled examples are needed in order to determine which of the 220 hypotheses is the correct one?

All 200 instances in X must be labeled of

There is no free lunch!
Inductive inference - severalizing beyond the training data is
impossible unless we add more assumptions (eg. priors over t)

True Error of a Hypothesis

Instance space X

Where c and h disagree

The *true error* of h is the probability that it will misclassify an example drawn at random from P(X)

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

$$\underbrace{error_{train}}_{x \in D} \equiv \Pr_{x \in D}[hx \neq c(x)] = \frac{1}{|D|} \sum_{x \in D} \frac{\delta(h(x) \neq c(x))}{|D|}$$

True error of hypothesis h with respect to c

training examples D

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Probability
distribution P(X)

Overfitting /

true

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

3122 of 5172 of

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

Can we bound $error_{true}(h)$

in terms of $error_{train}(h)$??

$$error_{train} \equiv \Pr_{x \in D}[h(x) \neq c(x)] = \frac{1}{|D|} \sum_{x \in D} \frac{\delta(h(x) \neq c(x))}{|D|}$$

training examples

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Probability distribution P(x)

if D was a set of examples drawn from P(X) and $\underline{independent}$ of h, then we could use standard statistical confidence intervals to determine that with 95% probability $error_{true}(h)$ lies in the interval:

$$error_{D}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

but D is the training data for h

Version Spaces

 $c: X \to \{0,1\}$

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

 $Consistent(h,D) \equiv (\forall \langle x,c(x)\rangle \in D) \; h(x) = c(x)$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

 $VS_{H,D} \equiv \{h \in H | Consistent(h,D)\} = \{h \in H | Consiste$

Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ with respect to training data D is said to be ϵ -exhausted if every hypothesis h in $VS_{H,D}$ has true error less than ϵ .

$$(\forall h \in VS_{H,D}) \ error_{true}(h) < \epsilon$$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to C) is less than

 $|H|e^{-\epsilon m}$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to C) is less than

 $|H|e^{-\epsilon n}$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

outputs h such that error (h) = 0

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{HD})

hyp space H

Let hi... he be all of the hell st.

target for cix = 20,13 | Present in the nexamps, the

Prob that h, will be consistent with 1st from example

<(1-E)

Prob that h, will be consistent with first in examples

<(1-E) P(AvB) \leftarrow P(AvB) \leftarrow P(A) + P(B)

Prob that a least one of h,...he survives for in examps

<(1-E) \leftarrow E

when 0\leftarrow \leftarrow |

| H| (1-E) M

Example: H is Conjunction of up to N Boolean Literals

Consider classification problem f:X \rightarrow Y: $m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$

- instances: $X = \langle X_1 X_2 X_3 X_2 \rangle$ where each X_i is boolean
- Each hypothesis in H is a rule of the form:

$$-$$
 IF $< X_1 X_2 X_3 X_4 > = < 0.2, 1.2 >$, THEN Y=1, ELSE Y=0

- i.e., rules constrain any subset of the X_i

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner using H will output a hypothesis with true error at most 0.05?

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

$$\Pr[(\exists h \in H)s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \xi)] \leq |H|e^{-\epsilon m}$$

$$\uparrow \text{ over diff sumples of } m \text{ training examples}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \geq rac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \leq \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

Example: H is Decision Tree with depth=2

Consider classification problem f:X→Y:

- instances: $X = \langle X_1 ... X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2, using

only two variables

How many training examples m suffice to assure that with probability at least 0.99, any consistent learner will output a hypothesis with true error at most 0.05?

most 0.05? $M \geq \frac{1}{1000} \left(\ln \frac{1}{1000} + \ln \frac{1}{1000} \right)$ $2 \log n \left(\ln \frac{1}{1000} + \ln \frac{1}{1000} \right)$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least (1 output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:

Holds if learner L requires only a polynomial number of training examples, and processing per example is polynomial

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

Here ϵ is the difference between the training error and true error of the output hypothesis (the one with lowest training error)

Additive Hoeffding Bounds – Agnostic Learning

• Given m independent flips of a coin with true $\Pr(\text{heads}) = \theta$ we can bound the error ϵ in the maximum likelihood estimate $\widehat{\theta}$

$$\Pr[\theta > \hat{\theta} + \epsilon] \le e^{-2m\epsilon^2}$$

• Relevance to agnostic learning: for any single hypothesis h

$$\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

• But we must consider all hypotheses in H

$$\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \le |H|e^{-2m\epsilon^2}$$

So, with probability at least (1-δ) every h satisfies

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

General Hoeffding Bounds

• When estimating parameter θ inside [a,b] from m examples

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

• When estimating a probability θ is inside [0,1], so

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{-2m\epsilon^2}$$

· And if we're interested in only one-sided error, then

$$P((E[\hat{\theta}] - \hat{\theta}) > \epsilon) \le e^{-2m\epsilon^2}$$

$$m \ge \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

$$m \geq rac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ϵ -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \ge \frac{1}{\epsilon}(\ln(1/\delta) + \ln|H|)$$

VC dimension: examples

Consider X = <, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

· Open intervals:

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ or, if $a < x < b$ then $y = 0$ else $y = 1$

VC dimension: examples

Consider X = <, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x>a$$
 then $y=1$ else $y=0$ or, if $x>a$ then $y=0$ else $y=1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

VC dimension: examples

What is VC dimension of lines in a plane?

• $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$

VC dimension: examples

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, VC (H_n)=n+1

For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H|? (hint: yes)

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 Over n boolean features?
- · Linear SVM over n continuous features
- Decision trees defined over n boolean features $F: \langle X_I, \dots X_n \rangle \rightarrow Y$
- · Decision trees of depth 2 defined over n features
- How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ϵ) correct?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ϵ) correct?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \varepsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution and a target concept in C, such that if L observes fewer examples than

$$\max\left[\frac{1}{\epsilon}\log(1/\delta), \frac{VC(C)-1}{32\epsilon}\right]$$

Then with probability at least δ , L outputs a hypothesis with $error_{\mathcal{R}}(h) > \epsilon$

Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least $(1-\delta)$ every $h \in H$ satisfies

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln\frac{2m}{VC(H)} + 1) + \ln\frac{4}{\delta}}{m}}$$

$$Overfitting = error_{train}(h) - error_{train}(h)$$

$$verfitting = error_{train}($$

Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

· Bias / variance tradeoff

SRM: choose H to minimize bound on expected true error!

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln{\frac{2m}{VC(H)}} + 1) + \ln{\frac{4}{\delta}}}{m}}$$

* unfortunately a somewhat loose bound...

What You Should Know

- · Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples arrive at random
 - ..
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps c not in H)
- · VC dimension as measure of complexity of H
- Conference on Learning Theory: http://www.learningtheory.org
- · Avrim Blum's course on Machine Learning Theory:
 - http://www.cs.cmu.edu/~avrim/ML09/index.html