Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

Sharon. Carlovich @ CS. CMV. edv

Today:

- The Big Picture
- Overfitting
- Review: probability

Readings:

Decision trees, overfiting

· Mitchell, Chapter 3

Probability review

- Bishop Ch. 1 thru 1.2.3
- Bishop, Ch. 2 thru 2.2
- Andrew Moore's online tutorial

Function Approximation:

Problem Setting:

- Set of possible instances X
- Unknown target function $f: X \rightarrow Y$
- Set of function hypotheses $H = \{ h \mid h : X \rightarrow Y \}$

Input:

- Training examples $\{ \langle x^{(i)}, y^{(i)} \rangle \}$ of unknown target function f **Output**:
- Hypothesis $h \in H$ that best approximates target function f

Function Approximation: Decision Tree Learning

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector $x = \langle x_1, x_2 \dots x_n \rangle$
- Unknown target function $f: X \rightarrow Y$
 - Y is discrete valued
- Set of function hypotheses $H = \{ h \mid h : X \rightarrow Y \}$
 - each hypothesis h is a decision tree

Input:

- Training examples $\{ \langle x^{(i)}, y^{(i)} \rangle \}$ of unknown target function f **Output**:
- Hypothesis $h \in H$ that best approximates target function f

Top-Down Induction of Decision Trees

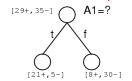
[ID3, C4.5, Quinlan]

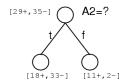
node = Root

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

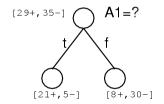


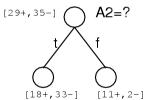


<u>Information Gain</u> (also called <u>mutual information</u>) between input attribute A and target variable Y

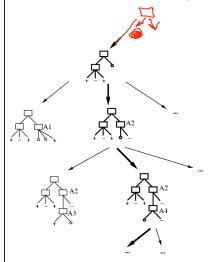
Information Gain is the expected reduction in entropy of target variable Y for data sample S, due to sorting on variable A

$$Gain(S, A) = I_S(A, Y) = H_S(Y) - H_S(Y|A)$$

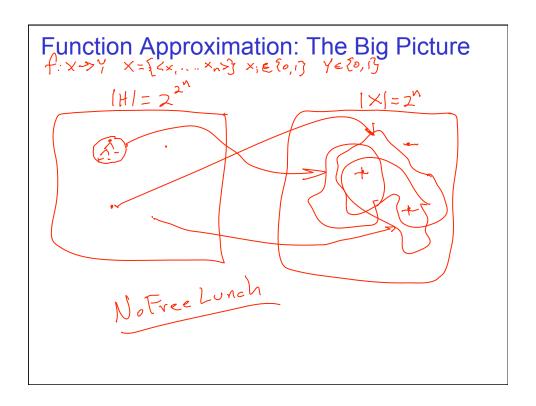


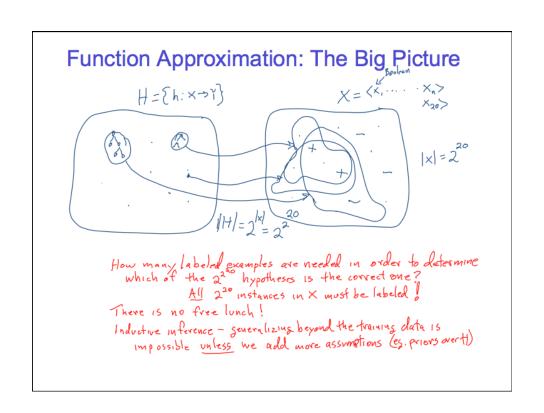


Function approximation as Search for the best hypothesis

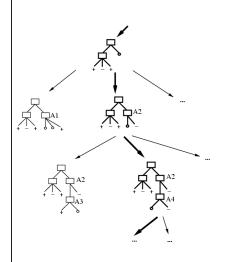


 ID3 performs heuristic search through space of decision trees





Which Tree Should We Output?



- ID3 performs heuristic search through space of decision trees
- It stops at smallest acceptable tree. Why?

Occam's razor: prefer the simplest hypothesis that fits the data

Why Prefer Short Hypotheses? (Occam's Razor)

Arguments in favor:

Arguments opposed:

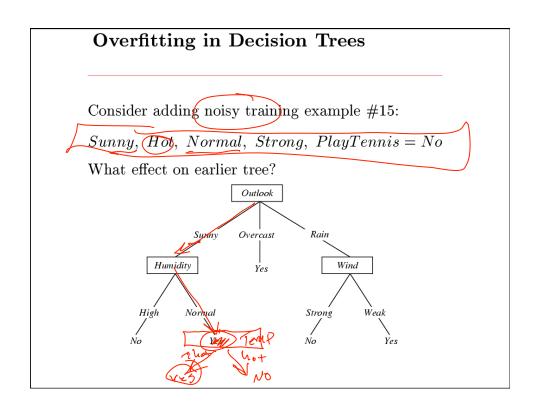
Why Prefer Short Hypotheses? (Occam's Razor)

Argument in favor:

- Fewer short hypotheses than long ones
- → a short hypothesis that fits the data is less likely to be a statistical coincidence

Argument opposed:

- Also fewer hypotheses containing a prime number of nodes and attributes beginning with "Z"
- What's so special about "short" hypotheses, instead of "prime number of nodes"?



Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(\hbar)$
- True error rate over all data: $error_{true}(h)$

Overfitting

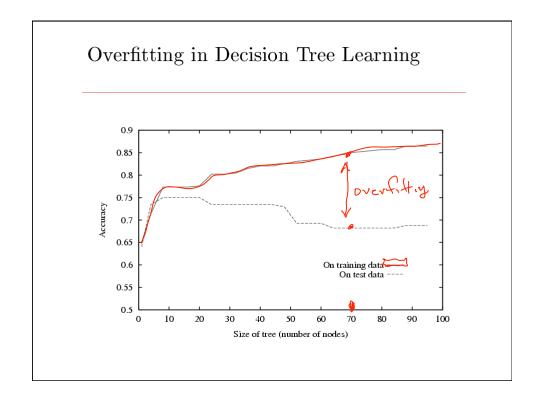
Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =
$$error_{true}(h) - error_{train}(h)$$



Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- \bullet grow full tree, then post-prune

Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select "best" tree:

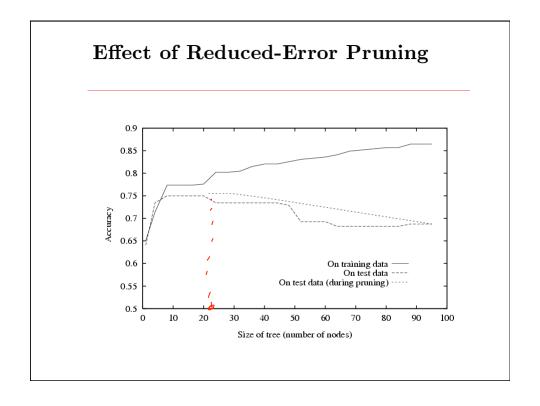
- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize size(tree) + size(misclassifications(tree))

Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies *training* set correctly Do until further pruning is harmful:

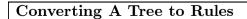
- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy
- produces smallest version of most accurate subtree
- What if data is limited?

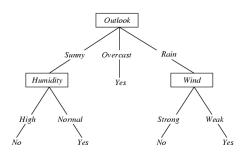


Rule Post-Pruning

- 1. Convert tree to equivalent set of rules
- 2. Prune each rule independently of others
- 3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)





Continuous Valued Attributes

Create a discrete attribute to test continuous

- Temperature = 82.5
- $\bullet \; (Temperature > 72.3) = t, f$

Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No

What you should know:

- Well posed function approximation problems:
 - Instance space, X
 - Sample of labeled training data { <x(i), y(i)>}
 - Hypothesis space, H = { f: X→Y }
- Learning is a search/optimization problem over H
 - Various objective functions
 - minimize training error (0-1 loss)
 - among hypotheses that minimize training error, select smallest (?)
 - But inductive learning without some bias is futile!
- Decision tree learning
 - Greedy top-down learning of decision trees (ID3, C4.5, ...)
 - Overfitting and tree post-pruning
 - Extensions...

Extra slides

extensions to decision tree learning

Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Imagine using $Date = Jun_{-3}$ _1996 as attribute

One approach: use GainRatio instead

$$GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInformation(S,A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

Unknown Attribute Values

What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n
- assign most common value of A among other examples with same target value
- ullet assign probability p_i to each possible value v_i of A
 - assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion

Questions to think about (1)

• ID3 and C4.5 are heuristic algorithms that search through the space of decision trees. Why not just do an exhaustive search?

Questions to think about (2)

 Consider target function f: <x1,x2> → y, where x1 and x2 are real-valued, y is boolean. What is the set of decision surfaces describable with decision trees that use each attribute at most once?

Questions to think about (3)

 Why use Information Gain to select attributes in decision trees? What other criteria seem reasonable, and what are the tradeoffs in making this choice?

Questions to think about (4)

 What is the relationship between learning decision trees, and learning IF-THEN rules

```
One of 18 learned rules:
```

```
If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission
Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60
```

Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

September 6, 2012

Today:

Review: probability

many of these slides are derived from William Cohen, Andrew Moore, Aarti Singh, Eric Xing. Thanks!

Readings:

Probability review

- Bishop Ch. 1 thru 1.2.3
- Bishop, Ch. 2 thru 2.2
- Andrew Moore's online tutorial

Probability Overview

- Events
 - discrete random variables, continuous random variables, compound events
- Axioms of probability
 - What defines a reasonable theory of uncertainty
- Independent events
- Conditional probabilities
- Bayes rule and beliefs
- Joint probability distribution
- Expectations
- · Independence, Conditional independence

Random Variables

- · Informally, A is a random variable if
 - A denotes something about which we are uncertain
 - perhaps the outcome of a randomized experiment
- Examples
 - A = True if a randomly drawn person from our class is female
 - A = The hometown of a randomly drawn person from our class
 - A = True if two randomly drawn persons from our class have same birthday
- Define P(A) as "the fraction of possible worlds in which A is true" or "the fraction of times A holds, in repeated runs of the random experiment"
 - the set of possible worlds is called the sample space, S
 - A random variable A is a function defined over S

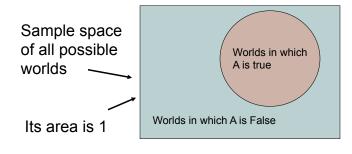
A:
$$S \to \{0,1\}$$

A little formalism

More formally, we have

- a <u>sample space</u> S (e.g., set of students in our class)
 - aka the set of possible worlds
- a <u>random variable</u> is a function defined over the sample space
 - Gender: $S \rightarrow \{ m, f \}$
 - Height: S → Reals
- an event is a subset of S
 - e.g., the subset of S for which Gender=f
 - e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
- we're often interested in probabilities of specific events
- and of specific events conditioned on other specific events

Visualizing A



P(A) = Area of reddish oval

The Axioms of Probability

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

[di Finetti 1931]:

when gambling based on "uncertainty formalism A" you can be exploited by an opponent

iff

your uncertainty formalism A violates these axioms

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

0

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

Theorems from the Axioms

- 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)
 - \rightarrow P(not A) = P(\sim A) = 1-P(A)

Theorems from the Axioms

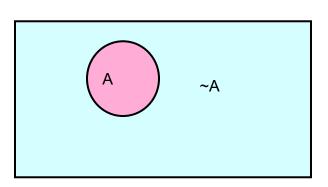
- 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

→
$$P(\text{not A}) = P(\sim A) = 1-P(A)$$

$$P(A \text{ or } \sim A) = 1$$
 $P(A \text{ and } \sim A) = 0$
 $P(A \text{ or } \sim A) = P(A) + P(\sim A) - P(A \text{ and } \sim A)$
 \downarrow \downarrow
 $1 = P(A) + P(\sim A) + 0$

Elementary Probability in Pictures

• $P(\sim A) + P(A) = 1$



Another useful theorem

0 <= P(A) <= 1, P(True) = 1, P(False) = 0,
 P(A or B) = P(A) + P(B) - P(A and B)

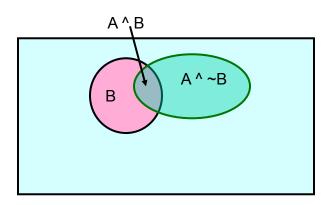
 $A = [A \text{ and } (B \text{ or } \sim B)] = [(A \text{ and } B) \text{ or } (A \text{ and } \sim B)]$

 $P(A) = P(A \text{ and } B) + P(A \text{ and } \sim B) - P((A \text{ and } B) \text{ and } (A \text{ and } \sim B))$

 $P(A) = P(A \text{ and } B) + P(A \text{ and } \sim B) - P(A \text{ and } B \text{ and } A \text{ and } \sim B)$

Elementary Probability in Pictures

• $P(A) = P(A ^ B) + P(A ^ ~B)$

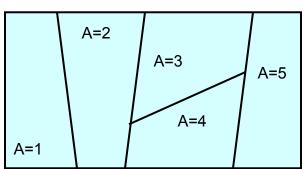


Multivalued Discrete Random Variables

- Suppose A can take on more than 2 values
- A is a <u>random variable with arity k</u> if it can take on exactly one value out of {v₁, v₂, ... v_k}
- Thus... $P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$ $P(A = v_1 \lor A = v_2 \lor ... \lor A = v_k) = 1$

Elementary Probability in Pictures

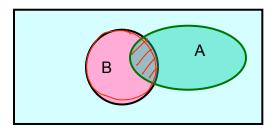
$$\sum_{j=1}^{k} P(A = v_j) = 1$$



Definition of Conditional Probability

$$P(A|B) = P(A ^ B)$$

$$P(B)$$



Definition of Conditional Probability

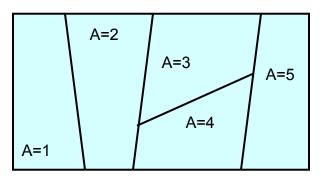
$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

Corollary: The Chain Rule

$$P(A \land B) = P(A|B) P(B)$$

Conditional Probability in Pictures

picture: P(B|A=2)



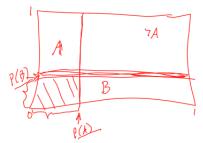
Independent Events

- Definition: two events A and B are independent if Pr(A and B)=Pr(A)*Pr(B)
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Picture "A independent of B"

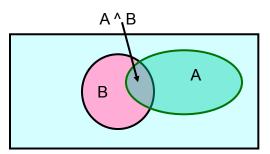
Independent Events

- P(AIB) = PCANB) = P(B)
- Definition: two events A and B are independent if P(A ^ B)=P(A)*P(B)
- Intuition: knowing A tells us nothing about the value of B (and vice versa)



Bayes Rule

• let's write 2 expressions for P(A ^ B)



$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of* the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Other Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

Applying Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$$

A = you have the flu, B = you just coughed

Assume:

P(A) = 0.05

P(B|A) = 0.80

 $P(B| \sim A) = 0.2$

what is $P(flu \mid cough) = P(A|B)$?

You should know

- Events
 - discrete random variables, continuous random variables, compound events
- Axioms of probability
 - What defines a reasonable theory of uncertainty
- Independent events
- Conditional probabilities
- · Bayes rule and beliefs

what does all this have to do with function approximation?

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

The Joint Distribution

Recipe for making a joint distribution of M variables:

 Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows). Example: Boolean
variables A, B, C
B C

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The Joint Distribution

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.

Example: Boolean

	· · · · · · · · · · · · · · · · · · ·						
	variables A. B. (
	Α	В	С	Prob			
	0	0	0	0.30			
	0	0	1	0.05			
1	0	1	0	0.10			
	0	1	1	0.05			
	1	0	0	0.05			
1	1	0	1	0.10			
Ì	1	1	0	0.25			
1	1	1	1	0.10			

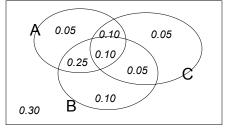
The Joint Distribution

Recipe for making a joint distribution of M variables:

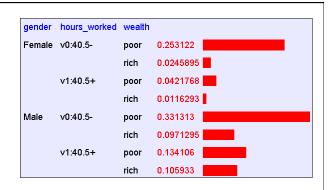
- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

Example: Boolean variables A. B. C.

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

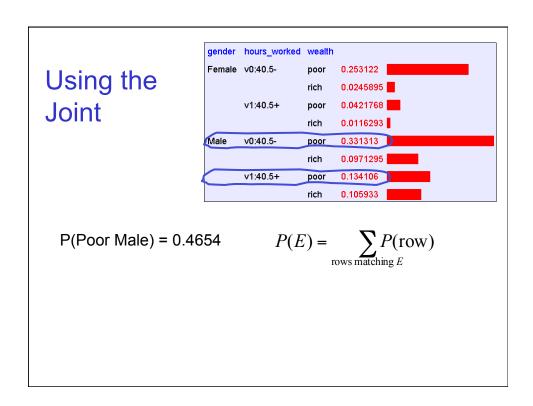


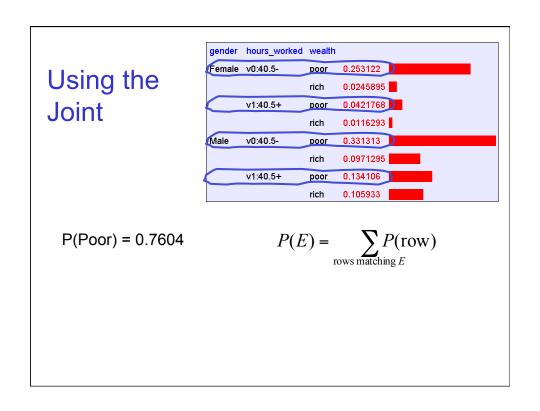
Using the Joint

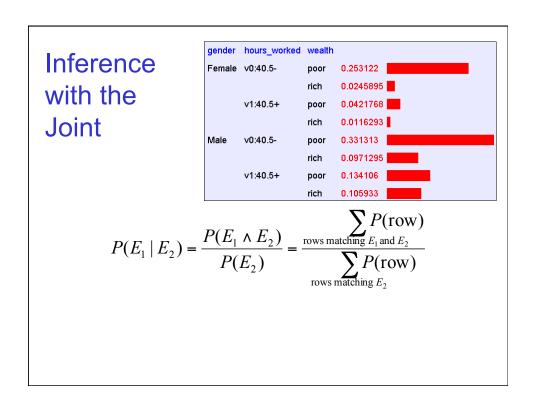


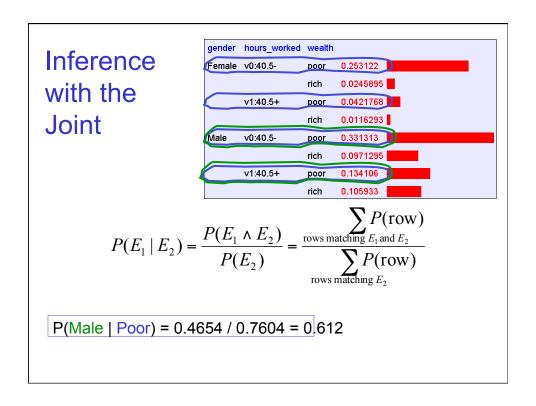
One you have the JD you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$









Expected values

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x)P(X = x)$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

e.g., X=gender, Y=playsFootball

or X=gender, Y=leftHanded

Rememb
$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$